323 research outputs found

    Antirheumatische Therapie und Reproduktion: Einfluss auf Fertilität, Schwangerschaft und Stillzeit

    Get PDF
    Zusammenfassung: Antirheumatische Medikamente können bei männlichen und weiblichen Patienten einen negativen Einfluss auf die Fortpflanzung haben. Mögliche negative Effekte sind: Beeinträchtigung der Fertiltät, Fruchtschädigung während der Schwangerschaft und Nebenwirkungen beim gestillten Kind. Bei der Frau können nichtsteroidale Antiphlogistika (NSAR) und Cyclophosphamid die Fertilität beeinträchtigen. Beim Mann kann Infertilität bei der Behandlung mit Salazopyrin und Cyclophosphamid auftreten. Vor dem Start einer Therapie mit Basistherapeutika sollte abgeklärt sein, ob ein Kinderwunsch besteht. Die Behandlung mit NSAR ist in einigen Abschnitten der Schwangerschaft möglich, ebenso können sie während der Stillzeit eingesetzt werden. Eine begrenzte Anzahl von Basistherapeutika sind mit einer Schwangerschaft vereinbar und werden vorgestellt. Medikamente wie Zytostatika und Leflunomid erfordern prophylaktisches Absetzen bereits vor einer geplanten Schwangerschaft. TNFα-Blocker müssen bei Eintritt einer Schwangerschaft abgesetzt werden. Bei Medikamenten, die toxisch für die Gonaden sind oder fruchtschädigend wirken können, muss während der Anwendung sicher verhütet werden. Die Anwendung von immunsuppressiven Medikamenten während der Stillzeit ist wegen unzureichender Datenlage sehr begrenz

    J08069+1527: A newly discovered high amplitude, hybrid subdwarf B pulsator

    Full text link
    We present our discovery of a new hybrid pulsating subdwarf B star, J08069+1527. The effective temperature and surface gravity of 28,500±\pm400\,K and 5.37±\pm0.04\,dex, respectively, place this object inside the instability strip and also among other pulsating hot subdwarfs of a hybrid nature, right next to another fascinating star: Balloon\,090100001. From this proximity, we anticipated this star could pulsate in both high and low frequency modes. Indeed, our analysis of photometric data confirmed our prediction. We detected two peaks in the high frequency region and two other peaks at low frequencies. In addition, the amplitude of the dominant mode is very high and comparable to the dominant peaks in other hybrid subdwarf B stars. Since this star is bright, we performed time-series low resolution spectroscopy. Despite a low signal-to-noise (S/N) ratio, we were able to detect the main peak from these data. All our results strongly indicate that J08069+1527 is a high amplitude pulsating hot subdwarf B star of hybrid nature. By analogy to the other pulsating sdB star, we judge that the dominant mode we detected here has radial nature. Future stellar modeling should provide us with quite good constrains as p- and g-modes presented in this star are driven in different parts of its interior.Comment: 7 pages, 10 figures, accepted for publication in MNRA

    A search for new hot subdwarf stars by means of Virtual Observatory tools

    Full text link
    Hot subdwarf stars are faint, blue objects, and are the main contributors to the far-UV excess observed in elliptical galaxies. They offer an excellent laboratory to study close and wide binary systems, and to scrutinize their interiors through asteroseismology, as some of them undergo stellar oscillations. However, their origins are still uncertain, and increasing the number of detections is crucial to undertake statistical studies. In this work, we aim at defining a strategy to find new, uncatalogued hot subdwarfs. Making use of Virtual Observatory tools we thoroughly search stellar catalogues to retrieve multi-colour photometry and astrometric information of a known sample of blue objects, including hot subdwarfs, white dwarfs, cataclysmic variables and main sequence OB stars. We define a procedure to discriminate among these spectral classes, particularly designed to obtain a hot subdwarf sample with a low contamination factor. In order to check the validity of the method, this procedure is then applied to two test sky regions: the Kepler FoV and to a test region of around (RA:225, DEC:5) deg. As a result, we obtained 38 hot subdwarf candidates, 23 of which had already a spectral classification. We have acquired spectroscopy for three other targets, and four additional ones have an available SDSS spectrum, which we used to determine their spectral type. A temperature estimate is provided for the candidates based on their spectral energy distribution, considering two-atmospheres fit for objects with clear infrared excess. Eventually, out of 30 candidates with spectral classification, 26 objects were confirmed to be hot subdwarfs, yielding a contamination factor of only 13%. The high rate of success demonstrates the validity of the proposed strategy to find new uncatalogued hot subdwarfs. An application of this method to the entire sky will be presented in a forthcoming work.Comment: 13 pages, 7 figure

    The orbits of subdwarf-B + main-sequence binaries. II. Three eccentric systems; BD+29 3070, BD +34 1543 and Feige 87

    Full text link
    The predicted orbital-period distribution of the subdwarf-B (sdB) population is bi-modal with a peak at short ( 250 days) periods. Observationally, many short-period sdB systems are known, but the predicted long period peak is missing as orbits have only been determined for a few long-period systems. As these predictions are based on poorly understood binary-interaction processes, it is of prime importance to confront the predictions with reliable observational data. We therefore initiated a monitoring program to find and characterize long-period sdB stars. In this paper we aim to determine the orbital parameters of the three long-period sdB+MS binaries BD+29 3070, BD+34 1543 and Feige 87, to constrain their absolute dimensions and the physical parameters of the components. High-resolution spectroscopic time series were obtained with HERMES at the Mercator telescope on La Palma, and analyzed to determine the radial velocities of both the sdB and MS components. Photometry from the literature was used to construct the spectral-energy distribution (SED) of the binaries. Atmosphere models were used to fit these SEDs and to determine the surface gravities and temperatures of both components of all systems. Spectral analysis was used to check the results of the SEDs. An orbital period of 1283 +- 63 d, a mass ratio of q = 0.39 +- 0.04 and a significant non-zero eccentricity of e = 0.15 +- 0.01 were found for BD+29 3070. For BD+34 1543 we determined P = 972 +- 2 d, q = 0.57 +- 0.01 and again a clear non-zero eccentricity of e = 0.16 +- 0.01. Last, for Feige 87 we found P = 936 +- 2 d, q = 0.55 +- 0.01 and e = 0.11 +- 0.01. BD+29 3070, BD+34 1543 and Feige 87 are long period sdB + MS binaries on clearly eccentric orbits. These results are in conflict with the predictions of stable Roche-lobe overflow models.Comment: 15 pages, 6 figures, Accepted by A&

    First Kepler results on compact pulsators VIII: Mode identifications via period spacings in g−g-mode pulsating Subdwarf B stars

    Full text link
    We investigate the possibility of nearly-equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal period spacings of modes with differing degrees and relationships between periods of the same radial order but differing degrees. Period transforms, Kolmogorov-Smirnov tests, and linear least-squares fits have been used to detect and determine the significance of equal period spacings. We have also used Monte Carlo simulations to estimate the likelihood that the detected spacings could be produced randomly. Period transforms for nine of the Kepler stars indicate ell=1 period spacings, with five also showing peaks for ell=2 modes. 12 stars indicate ell=1 modes using the Kolmogorov-Smirnov test while another shows solely ell=2 modes. Monte Carlo results indicate that equal period spacings are significant in 10 stars above 99% confidence and 13 of the 14 are above 94% confidence. For 12 stars, the various methods find consistent regular period spacing values to within the errors, two others show some inconsistencies, likely caused by binarity, and the last has significant detections but the mode assignment disagrees between methods. We find a common ell=1 period spacing spanning a range from 231 to 272 s allowing us to correlate pulsation modes with 222 periodicities and that the ell=2 period spacings are related to the ell=1 spacings by the asymptotic relationship 1/31/\sqrt{3}. We briefly discuss the impact of equal period spacings which indicate low-degree modes with a lack of significant mode trappings.Comment: 27 pages, 4 figures, 17 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models

    Full text link
    Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby-beta standard photometry was obtained with the Stromgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. Masses and radii with a precision of 0.6% and 1.0% respectively have been established for both components of EF Aqr. The active 0.956 M_sol secondary shows star spots and strong Ca II H and K emission lines. The 1.224 M_sol primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00+-0.10 is derived with similar abundances for Si, Ca, Sc, Ti, V, Cr, Co, and Ni. Solar calibrated evolutionary models such as Yonsei-Yale, Victoria-Regina and BaSTI isochrones and evolutionary tracks are unable to reproduce EF Aqr, especially for the secondary, which is 9% larger and 400 K cooler than predicted. Models adopting significantly lower mixing length parameters l/H_p remove these discrepancies, as seen in other solar type binaries. For the observed metallicity, Granada models with a mixing length of l/H_p=1.30 (primary) and 1.05 (secondary) reproduce both components at a common age of 1.5+-0.6 Gyr. Observations of EF Aqr suggests that magnetic activity, and its effect on envelope convection, is likely to be the cause of discrepancies in both radius and temperature, which can be removed by adjusting the mixing length parameter of the models downwards.Comment: 11 pages, 8 figures, accepted for publication by A&

    Seismic evidence for a weak radial differential rotation in intermediate-mass core helium burning stars

    Full text link
    The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Mosser et al. (2012) have measured the rotation rates in the central regions of intermediate-mass core helium burning stars (secondary clump stars). Our aim was to exploit& the rotational splittings of mixed modes to estimate the amount of radial differential rotation in the interior of secondary clump stars using Kepler data, in order to place constraints on angular momentum transport in intermediate-mass stars. We selected a subsample of Kepler secondary clump stars with mixed modes that are clearly rotationally split. By applying a thorough statistical analysis, we showed that the splittings of both gravity-dominated modes (trapped in central regions) and p-dominated modes (trapped in the envelope) can be measured. We then used these splittings to estimate the amount of differential rotation by using inversion techniques and by applying a simplified approach based on asymptotic theory (Goupil et al. 2013). We obtained evidence for a weak radial differential rotation for six of the seven targets that were selected, with the central regions rotating 1.8±0.31.8\pm0.3 to 3.2±1.03.2\pm1.0 times faster than the envelope. The last target was found to be consistent with a solid-body rotation. This demonstrates that an efficient redistribution of angular momentum occurs after the end of the main sequence in the interior of intermediate-mass stars, either during the short-lived subgiant phase, or once He-burning has started in the core. In either case, this should bring constraints on the angular momentum transport mechanisms that are at work.Comment: 16 pages, 8 figures, accepted in A&
    • …
    corecore