We investigate the possibility of nearly-equally spaced periods in 13 hot
subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed
with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide
relationships between equal period spacings of modes with differing degrees and
relationships between periods of the same radial order but differing degrees.
Period transforms, Kolmogorov-Smirnov tests, and linear least-squares fits have
been used to detect and determine the significance of equal period spacings. We
have also used Monte Carlo simulations to estimate the likelihood that the
detected spacings could be produced randomly.
Period transforms for nine of the Kepler stars indicate ell=1 period
spacings, with five also showing peaks for ell=2 modes. 12 stars indicate ell=1
modes using the Kolmogorov-Smirnov test while another shows solely ell=2 modes.
Monte Carlo results indicate that equal period spacings are significant in 10
stars above 99% confidence and 13 of the 14 are above 94% confidence. For 12
stars, the various methods find consistent regular period spacing values to
within the errors, two others show some inconsistencies, likely caused by
binarity, and the last has significant detections but the mode assignment
disagrees between methods.
We find a common ell=1 period spacing spanning a range from 231 to 272 s
allowing us to correlate pulsation modes with 222 periodicities and that the
ell=2 period spacings are related to the ell=1 spacings by the asymptotic
relationship 1/3. We briefly discuss the impact of equal period
spacings which indicate low-degree modes with a lack of significant mode
trappings.Comment: 27 pages, 4 figures, 17 tables. Accepted for publication in Monthly
Notices of the Royal Astronomical Societ