441 research outputs found

    The contamination status of trace metals in Sinop coast of the Black Sea, Turkey

    Get PDF
    The concentration of some heavy metals in sediment from the Sinop coasts of the Black Sea were measured to monitor metal pollution in 2013. The distribution of the heavy metals in sediments of the Black Sea shows a variable pattern. The objectives of the present study were to elucidate the distribution of heavy metals such as Cu, Pb, Zn, Ni, Mn, Fe, As, Cd, Cr, Hg and Co in sediment from Sinop coast of the Black Sea. In order to determine the quality of sediment in the Black Sea, pollution levels of the metals were evaluated using the enrichment factor technique (EF). The lowest EF values were between 0-5 in Cu, Fe, Zn, Ni, Cd, Pb, Mn and Co. These values did not have statistically significant differences. As, Cr and Hg concentrations were estimated relatively higher enrichment values than other the metals. The results indicated that contamination of surface sediments in Sinop Coast is dominated by As (10.2-7.4 mg.kg-1), Cr (67-374 mg.kg-1) and Hg (0.07-0.03 mg.kg-1) and to a lesser extent Cu (7.24- 5.09 mg.kg-1), Fe (1.76-1.12%), Zn (19.3-13.8 mg.kg-1), Ni (16.2-12.5 mg.kg-1), Cd (0.06-0.04 mg.kg-1), Pb (7.12-6.32 mg.kg-1), Mn (470-227 mg.kg-1), Co (9.5-5.9 mg.kg-1). Also, the requirement of age determination is of great importance to assess the extent of the anthropogenic contribution in pollution

    Seed-derived microbial colonization of Wild Emmer and domesticated bread wheat (Triticum dicoccoides and T. aestivum) seedlings shows pronounced differences in overall diversity and composition

    Get PDF
    The composition of the plant microbiota may be altered by ecological and evolutionary changes in the host population. Seed-associated microbiota, expected to be largely vertically transferred, have the potential to coadapt with their host over generations. Strong directional selection and changes in the genetic composition of plants during domestication and cultivation may have impacted the assembly and transmission of seed-associated microbiota. Nonetheless, the effect of plant speciation and domestication on the composition of these microbes is poorly understood. Here, we have investigated the composition of bacteria and fungi associated with the wild emmer wheat (Triticum dicoccoides) and domesticated bread wheat (Triticum aestivum). We show that vertically transmitted bacteria, but not fungi, of domesticated bread wheat species T. aestivum are less diverse and more inconsistent among individual plants compared to those of the wild emmer wheat species T. dicoccoides. We propagated wheat seeds under sterile conditions to characterize the colonization of seedlings by seed-associated microbes. Hereby, we show markedly different community compositions and diversities of leaf and root colonizers of the domesticated bread wheat compared to the wild emmer wheat. By propagating the wild emmer wheat and domesticated bread wheat in two different soils, we furthermore reveal a small effect of plant genotype on microbiota assembly. Our results suggest that domestication and prolonged breeding have impacted the vertically transferred bacteria, but only to a lesser extent have affected the soil-derived microbiota of bread wheat.IMPORTANCE Genetic and physiological changes associated with plant domestication have been studied for many crop species. Still little is known about the impact of domestication on the plant-associated microbiota. In this study, we analyze the seed-associated and soil-derived bacterial and fungal microbiota of domesticated bread wheat and wild emmer wheat. We show a significant difference in the seed-associated, but not soil-derived, bacterial communities of the wheat species. Interestingly, we find less pronounced effects on the fungal communities. Overall, this study provides novel insight into the diversity of vertically transmitted microbiota of wheat and thereby contributes to our understanding of wheat as a “}metaorganism.{” Insight into the wheat microbiota is of fundamental importance for the development of improved crops

    Alpha-induced cross sections of 106Cd for the astrophysical p-process

    Get PDF
    The 106Cd(alpha,gamma)110Sn reaction cross section has been measured in the energy range of the Gamow window for the astrophysical p-process scenario. The cross sections for 106Cd(alpha,n)109Sn and for 106Cd(alpha,p)109In below the (alpha,n) threshold have also been determined. The results are compared with predictions of the statistical model code NON-SMOKER using different input parameters. The comparison shows that a discrepancy for 106Cd(alpha,gamma)110Sn when using the standard optical potentials can be removed with a different alpha+106Cd potential. Some astrophysical implications are discussed.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev

    Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat

    Get PDF
    One major strategy to increase the level of zinc (Zn) and iron (Fe) in cereal crops, is to exploit the natural genetic variation in seed concentration of these micronutrients. Genotypic variation for Zn and Fe concentration in seeds among cultivated wheat cultivars is relatively narrow and limits the options to breed wheat genotypes with high concentration and bioavailability of Zn and Fe in seed. Alternatively, wild wheat might be an important genetic resource for enhancing micronutrient concentrations in seeds of cultivated wheat. Wild wheat is widespread in diverse environments in Turkey and other parts of the Fertile Crescent (e.g., Iran, Iraq, Lebanon, Syria, Israel, and Jordan). A large number of accessions of wild wheat and of its wild relatives were collected from the Fertile Crescent and screened for Fe and Zn concentrations as well as other mineral nutrients. Among wild wheat, the collections of wild emmer wheat, Triticum turgidum ssp. dicoccoides (825 accessions) showed impressive variation and the highest concentrations of micronutrients, significantly exceeding those of cultivated wheat. The concentrations of Zn and Fe among the dicoccoides accessions varied from 14 to 190 mg kg(-1) DW for Zn and from 15 to 109 mg kg(-1) DW for Fe. Also for total amount of Zn and Fe per seed, dicoccoides accessions contained very high amount of Zn (up to 7 mug per seed) and Fe (up to 3.7 mug per seed). Such high genotypic variation could not be found for phosphorus, magnesium, and sulfur. In the case of modern cultivated wheat, seed concentrations of Zn and Fe were lower and less variable when compared to wild wheat accessions. There was a highly significant positive correlation between seed concentrations of Fe and Zn. Screening different series of dicoccoides substitution lines revealed that the chromosome 6A, 6B, and 5B of dicoccoides resulted in greater increase in Zn and Fe concentration when compared to their recipient parent and to other chromosome substitution lines. The results indicate that Triticum turgidum L. var. dicoccoides (wild emmer) is an important genetic resource for increasing concentration and content of Zn and Fe in modern cultivated wheat

    Measurements of proton induced reaction cross sections on 120Te for the astrophysical p-process

    Full text link
    The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % isotopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and SS factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.Comment: 17 pages, 5 figures, 5 tables, regular articl

    Evaluation of heart rate variability in patients with coronary artery ectasia and coronary artery disease

    Get PDF
    Objective: The present study compared heart rate variability (HRV) parameters in patients with coronary artery ectasia (CAE) and coronary artery disease (CAD). Methods: The study population consisted of 60 consecutive patients with CAE (14 women; mean age 51.63±7.44 years), 60 consecutive patients with CA (15 women; mean age 53.67±9.31 years), and 59 healthy individuals (13 women; mean age 52.85±8.19 years). Electrocardiograms, 24-hour Holter analyses, and routine biochemical tests were performed, and clinical characteristics were evaluated. Coronary angiography images were analyzed. Time-domain HRV parameters, including the standard deviation (SD) of normal-to-normal intervals (SDNN) and the root mean square of difference in successive normal-tonormal intervals (RMSSD) were evaluated, as were frequencydomain HRV parameters including low-frequency (LF), very lowfrequency (VLF), high-frequency (HF), the proportion derived by dividing low- and high-frequency (LF/HF), and total power (TP). Results: SDNN was lower in both the CAE and CAD groups, compared to the healthy group (140.85±44.21, 96.51±31.28, and 181.05±48.67, respectively). A significant difference in RMSSD values among the groups was determined (p=0.004). Significantly decreased VLF and HF values were found in the CAE group, compared with the healthy group (VLF p<0.001; HF, p=0.007). TP, VLF, and HF values were significantly lower (p<0.001, p<0.001, and p<0.001, respectively), but LF and LF/ HF values were significantly higher (p<0.001 for both) in the CAD group than in the healthy group. TP values were significantly higher (p<0.001), and LF and LF/HF values were lower in the CAE group, compared with the CAD group (p<0.001 for both). Conclusion: A decrease in vagal modulation or an increase in sympathetic activity of cardiac function, assessed by HRV analysis, is worse in patients with CAD than in patients with CAE. © 2016 Turkish Society of Cardiology

    Turner syndrome and associated problems in turkish children: A multicenter study

    Get PDF
    Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population. Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014. Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosi) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto’s thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%. Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespan. © Journal of Clinical Research in Pediatric Endocrinology
    corecore