64 research outputs found
Automated heart rate estimation in fish embryo
International audienceTransparent organisms such as fish embryos are being increasingly used for environmental toxicology studies. These studies require estimating a number of physiological parameters. These estimations may be diverse in nature and can be a challenge to automate. Among these, an example is the development of reliable and repeatable automated assays for the determination of heart rates. To achieve this, most existing method rely on cyclical luminance variations, since as the heart fills and empties, it become respectively brighter and darker. However, sometimes direct measurement of the heart rate may be difficult, depending on the age of the embryo, its actual transparency, and its aspect under the microscope. It may be easier to seek an indirect measurement. In this article, we estimate the heart function parameters, such as heart frequency, either from measuring the heart motion or from blood flow in arteries. This measurement is more complex from the image analysis point of view, but it is more precise, more physically meaningful and easier to use in practice and to automate than measuring illumination changes. It may also be more informative. We illustrate on medaka embryos
Automatic detection of beating cilia with frequencies estimations
International audienceMuco-ciliary clearance is the airway first mechanism of defence against environmental attacks such as microorganisms or pollution. Cilia motility impairment can be either of genetic (primary ciliary dyskinesia) or acquired origin (environmental attacks), entailing chronic diseases. It is of interest for practitioners to evaluate cilia beating frequency easily, robustly and reliably. As yet, no fully automatized method is available. 2 Methods Ciliated cells were sampled in patients by brushing nasal mucosa and cilia beating was recorded using high speed video microscopy. We first estimated and removed the sensor pattern. We then stabilized the sequence assuming rigid transforms. We retained only the moving parts of the sequence and, after deblurring, characterized and segmented the moving parts in several regions of interest. The frequency was estimated for each region
Automating the measurement of physiological parameters: a case study in the image analysis of cilia motion
International audienceAs image processing and analysis techniques improve, an increasing number of procedures in bio-medical analyses can be automated. This brings many benefits, e.g improved speed and accuracy, leading to more reliable diagnoses and follow-up, ultimately improving patients outcome. Many automated procedures in bio-medical imaging are well established and typically consist of detecting and counting various types of cells (e.g. blood cells, abnormal cells in Pap smears, and so on). In this article we propose to automate a different and difficult set of measurements, which is conducted on the cilia of people suffering from a variety of respiratory tract diseases. Cilia are slender, microscopic, hair-like structures or organelles that extend from the surface of nearly all mammalian cells. Motile cilia, such as those found in the lungs and respiratory tract, present a periodic beating motion that keep the airways clear of mucus and dirt. In this paper, we propose a fully automated method that computes various measurements regarding the motion of cilia, taken with high-speed video-microscopy. The advantage of our approach is its capacity to automatically compute robust, adaptive and regionalized measurements, i.e. associated with different regions in the image. We validate the robustness of our approach, and illustrate its performance in comparison to the state-of-the-art
MyoPS A Benchmark of Myocardial Pathology Segmentation Combining Three-Sequence Cardiac Magnetic Resonance Images
Assessment of myocardial viability is essential in diagnosis and treatment
management of patients suffering from myocardial infarction, and classification
of pathology on myocardium is the key to this assessment. This work defines a
new task of medical image analysis, i.e., to perform myocardial pathology
segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR)
images, which was first proposed in the MyoPS challenge, in conjunction with
MICCAI 2020. The challenge provided 45 paired and pre-aligned CMR images,
allowing algorithms to combine the complementary information from the three CMR
sequences for pathology segmentation. In this article, we provide details of
the challenge, survey the works from fifteen participants and interpret their
methods according to five aspects, i.e., preprocessing, data augmentation,
learning strategy, model architecture and post-processing. In addition, we
analyze the results with respect to different factors, in order to examine the
key obstacles and explore potential of solutions, as well as to provide a
benchmark for future research. We conclude that while promising results have
been reported, the research is still in the early stage, and more in-depth
exploration is needed before a successful application to the clinics. Note that
MyoPS data and evaluation tool continue to be publicly available upon
registration via its homepage
(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/)
Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge
Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin is of key importance in many neurological research studies. Currently, measurements are often still obtained from manual segmentations on brain MR images, which is a laborious procedure. The automatic WMH segmentation methods exist, but a standardized comparison of the performance of such methods is lacking. We organized a scientific challenge, in which developers could evaluate their methods on a standardized multi-center/-scanner image dataset, giving an objective comparison: the WMH Segmentation Challenge. Sixty T1 + FLAIR images from three MR scanners were released with the manual WMH segmentations for training. A test set of 110 images from five MR scanners was used for evaluation. The segmentation methods had to be containerized and submitted to the challenge organizers. Five evaluation metrics were used to rank the methods: 1) Dice similarity coefficient; 2) modified Hausdorff distance (95th percentile); 3) absolute log-transformed volume difference; 4) sensitivity for detecting individual lesions; and 5) F1-score for individual lesions. In addition, the methods were ranked on their inter-scanner robustness; 20 participants submitted their methods for evaluation. This paper provides a detailed analysis of the results. In brief, there is a cluster of four methods that rank significantly better than the other methods, with one clear winner. The inter-scanner robustness ranking shows that not all the methods generalize to unseen scanners. The challenge remains open for future submissions and provides a public platform for method evaluation
Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
Imaging markers of cerebral small vessel disease provide valuable information on brain health, but their manual assessment is time-consuming and hampered by substantial intra- and interrater variability. Automated rating may benefit biomedical research, as well as clinical assessment, but diagnostic reliability of existing algorithms is unknown. Here, we present the results of the VAscular Lesions DetectiOn and Segmentation (Where is VALDO?) challenge that was run as a satellite event at the international conference on Medical Image Computing and Computer Aided Intervention (MICCAI) 2021. This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels. Overall, 12 teams participated in the challenge proposing solutions for one or more tasks (4 for Task 1-EPVS, 9 for Task 2-Microbleeds and 6 for Task 3-Lacunes). Multi-cohort data was used in both training and evaluation. Results showed a large variability in performance both across teams and across tasks, with promising results notably for Task 1-EPVS and Task 2-Microbleeds and not practically useful results yet for Task 3-Lacunes. It also highlighted the performance inconsistency across cases that may deter use at an individual level, while still proving useful at a population level
Why is the Winner the Best?
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multicenter study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The “typical” lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work
PAIP 2019: Liver cancer segmentation challenge
Pathology Artificial Intelligence Platform (PAIP) is a free research platform in support of pathological artificial intelligence (AI). The main goal of the platform is to construct a high-quality pathology learning data set that will allow greater accessibility. The PAIP Liver Cancer Segmentation Challenge, organized in conjunction with the Medical Image Computing and Computer Assisted Intervention Society (MICCAI 2019), is the first image analysis challenge to apply PAIP datasets. The goal of the challenge was to evaluate new and existing algorithms for automated detection of liver cancer in whole-slide images (WSIs). Additionally, the PAIP of this year attempted to address potential future problems of AI applicability in clinical settings. In the challenge, participants were asked to use analytical data and statistical metrics to evaluate the performance of automated algorithms in two different tasks. The participants were given the two different tasks: Task 1 involved investigating Liver Cancer Segmentation and Task 2 involved investigating Viable Tumor Burden Estimation. There was a strong correlation between high performance of teams on both tasks, in which teams that performed well on Task 1 also performed well on Task 2. After evaluation, we summarized the top 11 team's algorithms. We then gave pathological implications on the easily predicted images for cancer segmentation and the challenging images for viable tumor burden estimation. Out of the 231 participants of the PAIP challenge datasets, a total of 64 were submitted from 28 team participants. The submitted algorithms predicted the automatic segmentation on the liver cancer with WSIs to an accuracy of a score estimation of 0.78. The PAIP challenge was created in an effort to combat the lack of research that has been done to address Liver cancer using digital pathology. It remains unclear of how the applicability of AI algorithms created during the challenge can affect clinical diagnoses. However, the results of this dataset and evaluation metric provided has the potential to aid the development and benchmarking of cancer diagnosis and segmentation. (C) 2020 The Authors. Published by Elsevier B.V
- …