69 research outputs found
The interactive effects of environmental gradient and dispersal shape spatial phylogenetic patterns
IntroductionThe emergence and maintenance of biodiversity include interacting environmental conditions, organismal adaptation to such conditions, and dispersal. To understand and quantify such ecological, evolutionary, and spatial processes, observation and interpretation of phylogenetic relatedness across space (e.g., phylogenetic beta diversity) is arguably a way forward as such patterns contain signals from all the processes listed above. However, it remains challenging to extract information about complex eco-evolutionary and spatial processes from phylogenetic patterns.MethodsWe link environmental gradients and organismal dispersal with phylogenetic beta diversity using a trait-based and eco-evolutionary model of diversification along environmental gradients. The combined effect of the environment and dispersal leads to distinct phylogenetic patterns between subsets of species and across geographical distances.Results and discussionSteep environmental gradients combined with low dispersal lead to asymmetric phylogenies, a high phylogenetic beta diversity, and the phylogenetic diversity between communities increases linearly along the environmental gradient. High dispersal combined with a less steep environmental gradient leads to symmetric phylogenies, low phylogenetic beta diversity, and the phylogenetic diversity between communities along the gradient increases in a sigmoidal form. By disentangling the eco-evolutionary mechanisms that link such interacting environment and dispersal effects and community phylogenetic patterns, our results improve understanding of biodiversity in general and help interpretation of observed phylogenetic beta diversity
Consequences of fluctuating group size for the evolution of cooperation
Studies of cooperation have traditionally focused on discrete games such as
the well-known prisoner's dilemma, in which players choose between two pure
strategies: cooperation and defection. Increasingly, however, cooperation is
being studied in continuous games that feature a continuum of strategies
determining the level of cooperative investment. For the continuous snowdrift
game, it has been shown that a gradually evolving monomorphic population may
undergo evolutionary branching, resulting in the emergence of a defector
strategy that coexists with a cooperator strategy. This phenomenon has been
dubbed the 'tragedy of the commune'. Here we study the effects of fluctuating
group size on the tragedy of the commune and derive analytical conditions for
evolutionary branching. Our results show that the effects of fluctuating group
size on evolutionary dynamics critically depend on the structure of payoff
functions. For games with additively separable benefits and costs, fluctuations
in group size make evolutionary branching less likely, and sufficiently large
fluctuations in group size can always turn an evolutionary branching point into
a locally evolutionarily stable strategy. For games with multiplicatively
separable benefits and costs, fluctuations in group size can either prevent or
induce the tragedy of the commune. For games with general interactions between
benefits and costs, we derive a general classification scheme based on second
derivatives of the payoff function, to elucidate when fluctuations in group
size help or hinder cooperation.Comment: 22 pages, 5 figure
Fruit harvesting: A potential threat to the persistence, spatial distribution, and establishment of plants
Plant-frugivore interactions play a central role for plant persistence and
spatial distribution by promoting the long-range dispersal of seeds by
frugivores. However, plant-frugivore interactions are increasingly being
threatened by anthropogenic activities. An important anthropogenic threat that
could expose plant-frugivore systems to extinction risk is fruit harvesting.
Here, we develop an individual-based and a pair-approximation model of
plant-frugivore-human interactions to elucidate the effects of human harvesting
of fruits on plant establishment, persistence, and spatial distribution. Our
results show that frugivores strongly affect global density of plants and
gradually shift their spatial distribution from aggregated to random, depending
on the attack rate and dispersal efficiency of frugivores. We find that, in the
absence of frugivores, plants experiencing intense fruit harvesting cannot
persist even if their fecundity is high. In the presence of frugivores, fruit
harvesting profoundly affects the global dispersal of seeds and thus changes
the spatial distributions of plants from random to aggregated, potentially
causing plant extinction. Our results demonstrate that sufficiently efficient
frugivores mitigate the negative impact of fruit harvesting on plant
populations and enable plant establishment precluded by harvesting. Taken
together, these results draw attention to previously underappreciated impacts
of fruit harvesting in plant-frugivore-human interactions
Recommended from our members
Eco-evolutionary optimality as a means to improve vegetation and land-surface models
Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generate parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration, and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental chang
Modelling animal populations
This thesis consists of four papers, three papers about modelling animal populations and one paper about an area integral estimate for solutions of partial differential equations on non-smooth domains. The papers are: I. Ă
. BrĂ€nnström, Single species population models from first principles. II. Ă
. BrĂ€nnström and D. J. T. Sumpter, Stochastic analogues of deterministic single species population models. III. Ă
. BrĂ€nnström and D. J. T. Sumpter, Coupled map lattice approximations for spatially explicit individual-based models of ecology. IV. Ă
. BrÀnnström, An area integral estimate for higher order parabolic equations. In the first paper we derive deterministic discrete single species population models with first order feedback, such as the Hassell and Beverton-Holt model, from first principles. The derivations build on the site based method of Sumpter & Broomhead (2001) and Johansson & Sumpter (2003). A three parameter generalisation of the Beverton-Holtmodel is also derived, and one of the parameters is shown to correspond directly to the underlying distribution of individuals. The second paper is about constructing stochastic population models that incorporate a given deterministic skeleton. Using the Ricker model as an example, we construct several stochastic analogues and fit them to data using the method of maximum likelihood. The results show that an accurate stochastic population model is most important when the dynamics are periodic or chaotic, and that the two most common ways of constructing stochastic analogues, using additive normally distributed noise or multiplicative lognormally distributed noise, give models that fit the data well. The latter is also motivated on theoretical grounds. In the third paper we approximate a spatially explicit individual-based model with a stochastic coupledmap lattice. The approximation effectively disentangles the deterministic and stochastic components of the model. Based on this approximation we argue that the stable population dynamics seen for short dispersal ranges is a consequence of increased stochasticity from local interactions and dispersal. Finally, the fourth paper contains a proof that for solutions of higher order real homogeneous constant coefficient parabolic operators on Lipschitz cylinders, the area integral dominates the maximal function in the L2-norm
A treeâs quest for lightâoptimal height and diameter growth under a shading canopy
For trees in forests, striving for light is matter of life and death, either by growing taller toward brighter conditions or by expanding the crown to capture more of the available light. Here, we present a mechanistic model for the development path of stem height and crown size, accounting for light capture and growth, as well as mortality risk. We determine the optimal growth path among all possible trajectories using dynamic programming. The optimal growth path follows a sequence of distinct phases: (i) initial crown size expansion, (ii) stem height growth toward the canopy, (iii) final expansion of the crown in the canopy and (iv) seed production without further increase in size. The transition points between these phases can be optimized by maximizing fitness, defined as expected lifetime reproductive production. The results imply that to reach the canopy in an optimal way, trees must consider the full profile of expected increasing light levels toward the canopy. A shortsighted maximization of growth based on initial light conditions can result in arrested height growth, preventing the tree from reaching the canopy. The previous result can explain canopy stratification, and why canopy species often get stuck at a certain size under a shading canopy. The model explains why trees with lower wood density have a larger diameter at a given tree height and grow taller than trees with higher wood density. The model can be used to implement plasticity in height versus diameter growth in individual-based vegetation and forestry models.Originally included in thesis in manuscript form.</p
Arbetslöshet som en icke önskvĂ€rd konsekvens av socialbidrag : Resultat frĂ„n en tidsserieanalys pĂ„ befolkningsnivĂ„ i Sverige 1946â1990
Unemployment as an unintended consequence of social assistance recipiency: results from a time-series analysis of aggregated population data Does the frequency of unemployment have a tendency to increase the number of social assistance recipients, or does the relationship work the other way around? This article utilizes Swedish annual data on aggregated unemployment and means-tested social assistance recipiency in the period 1946â1990 and proposes a multiple time-series approach based on vector error-correction modelling to establish the direction of influence. First, we show that rates of unemployment and receipt of social assistance is co-integrated. Second, we demonstrate that adjustments to the long-run equilibrium are made through adjustments of the unemployment. This indicates that the level of unemployment reacts to changes in rates of social assistance recipiency rather than vice versa. It is also shown that lagged changes in the level of unemployment do not predict changes in rates of social assistance recipients in short-term. Together these findings demonstrate that the number of social assistance recipients does increase the number of unemployed in a period characterized by low unemployment and high employment.Sociologisk Forsknings digitala arkiv</p
Arbetslöshet som en icke önskvĂ€rd konsekvens av socialbidrag : Resultat frĂ„n en tidsserieanalys pĂ„ befolkningsnivĂ„ i Sverige 1946â1990
Unemployment as an unintended consequence of social assistance recipiency: results from a time-series analysis of aggregated population data Does the frequency of unemployment have a tendency to increase the number of social assistance recipients, or does the relationship work the other way around? This article utilizes Swedish annual data on aggregated unemployment and means-tested social assistance recipiency in the period 1946â1990 and proposes a multiple time-series approach based on vector error-correction modelling to establish the direction of influence. First, we show that rates of unemployment and receipt of social assistance is co-integrated. Second, we demonstrate that adjustments to the long-run equilibrium are made through adjustments of the unemployment. This indicates that the level of unemployment reacts to changes in rates of social assistance recipiency rather than vice versa. It is also shown that lagged changes in the level of unemployment do not predict changes in rates of social assistance recipients in short-term. Together these findings demonstrate that the number of social assistance recipients does increase the number of unemployed in a period characterized by low unemployment and high employment.Sociologisk Forsknings digitala arkiv</p
- âŠ