18 research outputs found

    Tradeoffs and synergies in wetland multifunctionality: A scaling issue

    Get PDF
    Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale

    Causes and consequences of recent degradation of the Magdalena River basin, Colombia

    Get PDF
    The Magdalena River in Colombia is one of the world's largest (discharge = 7100 m3 s−1) tropical rivers, hosting > 170 aquatic vertebrate species. However, concise synthesis of the current ecological and environmental status is lacking. By documenting the anthropogenic stressors impacting the river on time scales ranging from centuries to decades, we found that the river system is subject to the compounding impacts of climate change, river impoundment, invasive alien species (IAS), catchment deforestation, and water pollution. We show that the Magdalena is a woefully understudied ecosystem relative to its critical importance to Colombia's economy, culture, and biodiversity compared with other similarly sized tropical rivers. We emphasize the need for research on (1) IAS population and ecological dynamics, (2) river damming and its links with IAS and climate change, and (3) land-use changes as well as identifying sources of water pollution and strategies for mitigation

    Hydro-climatic changes of wetlandscapes across the world

    Get PDF
    Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes

    Publisher Correction: Hydro-climatic changes of wetlandscapes across the world (Scientific Reports, (2021), 11, 1, (2754), 10.1038/s41598-021-81137-3)

    Get PDF
    In the original version of this Article, V. H. Rivera-Monroy was incorrectly affiliated with ‘Alexander von Humboldt Biological Resources Research Institute, Calle 28 A No. 15-09, Bogotá, DC, 70803, Colombia’. The correct affiliation is listed below. Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA As a result, Affiliations 22–27 were incorrectly listed as Affiliations 21–26 respectively. The original Article has been corrected

    Publisher Correction: Hydro-climatic changes of wetlandscapes across the world

    Get PDF
    Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes

    LINDA – the Astrid-2 Langmuir probe instrument

    No full text
    The Swedish micro-satellite Astrid-2, designed for studies in magnetosperic physics, was launched into orbit on 10 December 1998 from the Russian cosmodrome Plesetsk. It was injected into a circular orbit at 1000 km and at 83 degrees inclination. The satellite carried, among other instruments, a double Langmuir Probe instrument called LINDA (Langmuir INterferometer and Density instrument for Astrid-2). The scientific goals of this instrument, as well as the technical design and possible modes of operation, are described. LINDA consists of two lightweight deployable boom systems, each carrying a small spherical probe. With these probes, separated by 2.9 meters, and in combination with a high sampling rate, it was possible to discriminate temporal structures (waves) from spatial structures. An on-board memory made it possible to collect data also at times when there was no ground contact. Plasma density and electron temperature data from all magnetic latitudes and for all seasons have been collected.Key words. Ionosphere (plasma temperature and density; plasma waves and instabilities; instruments and techniques

    Tradeoffs and synergies in wetland multifunctionality: A scaling issue

    Get PDF
    Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale
    corecore