307 research outputs found

    Absorption and cutaneous deposition of yellow pigment in male and female broilers in response to different levels of xanthophylls from Tagetes erecta

    Get PDF
    To determine the saturation point of absorption and cutaneous deposition of yellow xanthophylls (XA) in broilers, two hundred and sixteen Ross 308 chickens (108 males and 108 females) were sorted by sex and randomly assigned to 6 dietary treatments containing 6 replications of 6 birds each. Treatments consisted of increasing levels of xanthophylls from Aztec marigold flower (Tagetes erecta) (65, 92, 119, 146, 173, and 200 ppm). Weight gain, feed consumption, and feed conversion were measuredweekly. Plasma pigment levels and skin yellowness in live birds were measured twice per week. Growth performance was analysed through ANOVA for a 6X2 factorial arrangement, where the first factor was the XA adding at six levels, and the second factor was sex at two levels. Pigment plasma concentration and skin yellowness were fitted into a multiple linear regression model. Results indicated that the highest levels of plasma xanthophylls and skin yellowness were found after 28 d of feeding. Skin yellowness increased by 2.24 b* for every d of xanthophylls consumption. In the females, skin yellowness was 1.35 b* higher than in the males. Increasing dietary xanthophylls by 10 ppm was reflected in 0.83 b* of increase in skin yellowness

    Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development

    Get PDF
    There have been significant advances in understanding human embryogenesis using human pluripotent stem cells (hPSCs) in conventional monolayer and 3D self-organized cultures. Thus, in vitro models have contributed to elucidate the molecular mechanisms for specification and differentiation during development. However, the molecular and functional spectrum of human pluripotency (i.e., intermediate states, pluripotency subtypes and regionalization) is still not fully understood. This review describes the mechanisms that establish and maintain pluripotency in human embryos and their differences with mouse embryos. Further, it describes a new pluripotent state representing a transition between naïve and primed pluripotency. This review also presents the data that divide pluripotency into substates expressing epiblast regionalization and amnion specification as well as primordial germ cells in primates. Finally, this work analyzes the amnion’s relevance as an “signaling center” for regionalization before the onset of gastrulation

    Metabolite production and/or gut microbiota-associated metabotypes?

    Get PDF
    Funding Information: This research was supported by the Project PID2019-103914RB-I00 from the Ministry of Science and Innovation (MICINN, Spain) and by Fundación Séneca de la Región de Murcia (Spain), grant number 20880/PI/18. J.A.G.-B. was supported by a Standard European Marie Curie Fellowship from the European Commission. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 838991. A.C.M. and C.E.I.-A. are the holders of predoctoral grants from MINECO (grant number BES-2016-078098) and MICINN (grant number FPU18/03961) (Spain), respectively. Publisher Copyright: © 2021 The Royal Society of Chemistry.Despite the high human interindividual variability in response to (poly)phenol consumption, the cause-and-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention of LDL oxidation, respectively) has been well established. Most of the variables affecting this interindividual variability have been identified (food matrix, gut microbiota, single-nucleotide-polymorphisms, etc.). However, the final drivers for the health effects of (poly)phenol consumption have not been fully identified. At least partially, these drivers could be (i) the (poly)phenols ingested that exert their effect in the gastrointestinal tract, (ii) the bioavailable metabolites that exert their effects systemically and/or (iii) the gut microbial ecology associated with (poly)phenol metabolism (i.e., gut microbiota-associated metabotypes). However, statistical associations between health effects and the occurrence of circulating and/or excreted metabolites, as well as cross-sectional studies that correlate gut microbial ecologies and health, do not prove a causal role unequivocally. We provide a critical overview and perspective on the possible main drivers of the effects of (poly)phenols on human health and suggest possible actions to identify the putative actors responsible for the effects.publishersversionpublishe

    Muscle mass to visceral fat ratio is an important predictor of the metabolic syndrome in college students

    Get PDF
    This study aimed to evaluate the associations between the muscle mass to visceral fat (MVF) ratio and cardiometabolic risk factors in a large population of college students in Colombia and to propose cut-off points of this index for the metabolic syndrome (MetS). A total of 1464 young adults recruited from the FUPRECOL (Asociación de la Fuerza Prensil con Manifestaciones Tempranas de Riesgo Cardiovascular en Jóvenes y Adultos Colombianos) study were categorised into four groups based on their MVF ratio. Muscle mass and visceral fat level of the participants were measured using a bioelectrical impedance analysis. Cardiometabolic risk factors including lifestyle characteristics, anthropometry, blood pressure and biochemical parameters were assessed. The prevalence of moderate to severe obesity, hypertension and the MetS was higher in subjects in quartile (Q)1 (lower MVF ratio) (P less than 0·001). ANCOVA revealed that the subjects in Q1 had higher cardiometabolic disturbances, including altered anthropometry, blood pressure, muscle strength and biochemical parameters after adjusting for age and sex compared with young adults in higher MVF ratio quartiles (P less than 0·001). Muscular mass and physical activity levels were significantly lower in subjects with a lower MVF ratio (P less than 0·001). The receiver operating characteristic curve analyses indicated that in men the best MVF ratio cut-off point for detecting the MetS was 18·0 (AUC 0·83, sensitivity 78 % and specificity 77 %) and for women, the MVF ratio cut-off point was 13·7 (AUC 0·85, sensitivity 76 % and specificity 87 %). A lower MVF ratio is associated with a higher risk cardiometabolic profile in early adulthood, supporting that the MVF ratio could be used as a complementary screening tool that may help clinicians identify young adults at high cardiometabolic risk. © The Authors 2018

    Diseño de un Scalp Cooling System

    Get PDF
    La pérdida de cabello inducida por tratamientos contra el cáncer es uno de los efectos secundarios más traumáticos y comunes en los pacientes. El enfriamiento del cuero cabelludo se ha convertido, progresivamente, en un método que previene la alopecia. En este artículo se describe el proceso llevado a cabo para diseñar un sistema de enfriamiento del cuero cabelludo que permita prevenir la pérdida de cabello inducida por la quimioterapia.Chemotherapy-induced hair loss is one of the most common and distressing side-effects of cancer therapy. Scalp cooling has become an increasingly effective method to prevent hair loss. The aim of this article is to describe the process of design of a scalp cooling system to prevent chemotherapy-induced alopecia

    Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings

    Full text link
    [EN] Forest ecosystems are frequently exposed to abiotic stress, which adversely affects their growth, resistance and survival. For silver fir (Abies alba), the physiological and biochemical responses to water and salt stress have not been extensively studied. Responses of one-year-old seedlings to a 30-day water stress (withholding irrigation) or salt stress (100, 200 and 300 mM NaCl) treatments were analysed by determining stress-induced changes in growth parameters and different biochemical markers: accumulation of ions, different osmolytes and malondialdehyde (MDA, an oxidative stress biomarker), in the seedlings, and activation of enzymatic and non-enzymatic antioxidant systems. Both salt and water stress caused growth inhibition. The results obtained indicated that the most relevant responses to drought are based on the accumulation of soluble carbohydrates as osmolytes/osmoprotectants. Responses to high salinity, on the other hand, include the active transport of Na+, Cl¿ and Ca2+ to the needles, the maintenance of relatively high K+/Na+ ratios and the accumulation of proline and soluble sugars for osmotic balance. Interestingly, relatively high Na+ concentrations were measured in the needles of A. alba seedlings at low external salinity, suggesting that Na+ can contribute to osmotic adjustment as a `cheap¿ osmoticum, and its accumulation may represent a constitutive mechanism of defence against stress. These responses appear to be efficient enough to avoid the generation of high levels of oxidative stress, in agreement with the small increase in MDA contents and the relatively weak activation of the tested antioxidant systems.This research was partially funded by Doctoral School from the University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, granted to I.M.T. The publication was supported by funds from the National Research Development Projects to finance excellence (PFE)-37/2018-2020 granted by the Romanian Ministry of Research and Innovation.Todea (morar), IM.; González-Orenga, S.; Boscaiu, M.; Plazas Ávila, MDLO.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.... (2020). Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings. Forests. 11(4):1-21. https://doi.org/10.3390/f11040395S121114Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034Zhou, S.-X., Prentice, I. C., & Medlyn, B. E. (2019). Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01965Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P., & Ritsema, C. J. (2016). The threat of soil salinity: A European scale review. Science of The Total Environment, 573, 727-739. doi:10.1016/j.scitotenv.2016.08.177Cuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9(6), 295. doi:10.3390/agronomy9060295In Proceedings of the 5th Assessment Report, WGII, Climate Change 2014: Impacts, Adaptation, and Vulnerability http://www.ipcc.ch/report/ar5/wg2/Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410Tinner, W., Colombaroli, D., Heiri, O., Henne, P. D., Steinacher, M., Untenecker, J., … Valsecchi, V. (2013). The past ecology ofAbies albaprovides new perspectives on future responses of silver fir forests to global warming. Ecological Monographs, 83(4), 419-439. doi:10.1890/12-2231.1Vicario, F., Vendramin, G. G., Rossi, P., Liò, P., & Giannini, R. (1995). Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis. Theoretical and Applied Genetics, 90(7-8), 1012-1018. doi:10.1007/bf00222915Muller, S. D., Nakagawa, T., De Beaulieu, J.-L., Court-Picon, M., Carcaillet, C., Miramont, C., … Bruneton, H. (2007). Post-glacial migration of silver fir (Abies alba Mill.) in the south-western Alps. Journal of Biogeography, 34(5), 876-899. doi:10.1111/j.1365-2699.2006.01665.xRuosch, M., Spahni, R., Joos, F., Henne, P. D., van der Knaap, W. O., & Tinner, W. (2016). Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology, 22(2), 727-740. doi:10.1111/gcb.13075Dobrowolska, D., Bončina, A., & Klumpp, R. (2017). Ecology and silviculture of silver fir (Abies alba Mill.): a review. Journal of Forest Research, 22(6), 326-335. doi:10.1080/13416979.2017.1386021Flückiger, W., & Braun, S. (1981). Perspectives of reducing the deleterious effect of de-icing salt upon vegetation. Plant and Soil, 63(3), 527-529. doi:10.1007/bf02370056Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419Cailleret, M., Nourtier, M., Amm, A., Durand-Gillmann, M., & Davi, H. (2013). Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Annals of Forest Science, 71(6), 643-657. doi:10.1007/s13595-013-0265-0Nourtier, M., Chanzy, A., Cailleret, M., Yingge, X., Huc, R., & Davi, H. (2012). Transpiration of silver Fir (Abies alba mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Annals of Forest Science, 71(6), 683-695. doi:10.1007/s13595-012-0229-9Gazol, A., Camarero, J. J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., … Carrer, M. (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42(6), 1150-1162. doi:10.1111/jbi.12512TODEA (MORAR), I. M., GONZÁLEZ-ORENGA, S., PLAZAS, M., SESTRAS, A. F., PROHENS, J., VICENTE, O., … BOSCAIU, M. (2019). Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1063-1072. doi:10.15835/nbha47411348ZW, S., LK, R., JW, F., Li, Q., KJ, W., MM, G., … XN, L. (2016). Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance  . Plant, Soil and Environment, 62(No. 11), 515-521. doi:10.17221/529/2016-pseZhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029LUGO-CRUZ, E., ZAVALA-GARCÍA, F., PICÓN-RUBIO, F. J., URÍAS-ORONA, V., RODRÍGUEZ-FUENTES, H., VIDALES-CONTRERAS, J. A., … NIÑO-MEDINA, G. (2016). Water Stress Effect on Cell Wall Components of Maize (Zea mays) Bran. Notulae Scientia Biologicae, 8(1), 81-84. doi:10.15835/nsb819710Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiology, 148(1), 6-24. doi:10.1104/pp.108.120725Zhang, D., Tong, J., He, X., Xu, Z., Xu, L., Wei, P., … Shao, H. (2016). A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01237FARDUS, J., MATIN, M. A., HASANUZZAMAN, M., HOSSAIN, M. S., NATH, S. D., HOSSAIN, M. A., … HASANUZZAMAN, M. (2017). Exogenous Salicylic Acid-Mediated Physiological Responses and Improvement in Yield by Modulating Antioxidant Defense System of Wheat under Salinity. Notulae Scientia Biologicae, 9(2), 219-232. doi:10.15835/nsb929998Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.xGriffith, M., & Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 9(8), 399-405. doi:10.1016/j.tplants.2004.06.007Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi:10.1016/j.tplants.2008.06.007Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009ESFANDIARI, E., & GOHARI, G. (2017). Response of ROS-Scavenging Systems to Salinity Stress in Two Different Wheat (Triticum aestivum L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 287-291. doi:10.15835/nbha45110682Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.xLICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.xBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911GANANÇA, J. F. T., FREITAS, J. G. R., NÓBREGA, H. G. M., RODRIGUES, V., ANTUNES, G., GOUVEIA, C. S. S., … LEBOT, V. (2018). Screening for Drought Tolerance in Thirty Three Taro Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 65-74. doi:10.15835/nbha46110950Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees, 31(5), 1479-1490. doi:10.1007/s00468-017-1563-1Melo, H. F. de, Souza, E. R. de, & Cunha, J. C. (2017). Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(4), 232-237. doi:10.1590/1807-1929/agriambi.v21n4p232-237Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99. doi:10.1016/j.scienta.2004.04.009Plesa, I. M., Al Hassan, M., González-Orenga, S., Sestras, A. F., Vicente, O., Prohens, J., … Sestras, R. E. (2019). Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests, 10(6), 511. doi:10.3390/f10060511Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops – what is the cost? New Phytologist, 208(3), 668-673. doi:10.1111/nph.13519Tang, X., Mu, X., Shao, H., Wang, H., & Brestic, M. (2014). Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 35(4), 425-437. doi:10.3109/07388551.2014.889080MF, G., Li, N., TY, S., XH, L., Brestič, M., HB, S., … rki, S. (2016). Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water  . Plant, Soil and Environment, 62(No. 7), 314-320. doi:10.17221/771/2015-pseBogemans, J., Neirinckx, L., & Stassart, J. M. (1989). Effect of deicing chloride salts on ion accumulation in spruce (Picea abies (L.) sp.). Plant and Soil, 113(1), 3-11. doi:10.1007/bf02181915RAVEN, J. A. (1985). TANSLEY REVIEW No. 2. New Phytologist, 101(1), 25-77. doi:10.1111/j.1469-8137.1985.tb02816.xManishankar, P., Wang, N., Köster, P., Alatar, A. A., & Kudla, J. (2018). Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany, 69(17), 4215-4226. doi:10.1093/jxb/ery201Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106KAVI KISHOR, P. B., & SREENIVASULU, N. (2013). Is proline accumulationper secorrelated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300-311. doi:10.1111/pce.12157Ditmarova, L., Kurjak, D., Palmroth, S., Kmet, J., & Strelcova, K. (2009). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30(2), 205-213. doi:10.1093/treephys/tpp116Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456-1466. doi:10.4161/psb.21949Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. doi:10.3109/07388550903524243Chan, Z., Yokawa, K., Kim, W.-Y., & Song, C.-P. (2016). Editorial: ROS Regulation during Plant Abiotic Stress Responses. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01536Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63(1-3), 317-326. doi:10.1016/j.envexpbot.2007.11.003Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi:10.1016/j.biotechadv.2008.09.003Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00800Tuna, A. L., Kaya, C., Dikilitas, M., & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9. doi:10.1016/j.envexpbot.2007.06.007Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). ScienceAsia, 29(2), 109. doi:10.2306/scienceasia1513-1874.2003.29.109Ashraf, M., & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(1-3), 266-273. doi:10.1016/j.envexpbot.2007.11.008Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum, 30(4), 433-440. doi:10.1007/s11738-008-0140-zBen Amor, N., Ben Hamed, K., Debez, A., Grignon, C., & Abdelly, C. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168(4), 889-899. doi:10.1016/j.plantsci.2004.11.002Kangasjärvi, S., Lepistö, A., Hännikäinen, K., Piippo, M., Luomala, E.-M., Aro, E.-M., & Rintamäki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochemical Journal, 412(2), 275-285. doi:10.1042/bj20080030Lee, D. H., & Lee, C. B. (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159(1), 75-85. doi:10.1016/s0168-9452(00)00326-5Keleş, Y., & Öncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Science, 163(4), 783-790. doi:10.1016/s0168-9452(02)00213-3Vital, S. A., Fowler, R. W., Virgen, A., Gossett, D. R., Banks, S. W., & Rodriguez, J. (2008). Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environmental and Experimental Botany, 62(1), 60-68. doi:10.1016/j.envexpbot.2007.07.006Naya, L., Ladrera, R., Ramos, J., González, E. M., Arrese-Igor, C., Minchin, F. R., & Becana, M. (2007). The Response of Carbon Metabolism and Antioxidant Defenses of Alfalfa Nodules to Drought Stress and to the Subsequent Recovery of Plants. Plant Physiology, 144(2), 1104-1114. doi:10.1104/pp.107.099648Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2452. doi:10.3390/molecules24132452KEBBAS, S., BENSEDDIK, T., MAKHLOUF, H., & AID, F. (2018). Physiological and Biochemical Behaviour of Gleditsia triacanthos L. Young Seedlings Under Drought Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 585-592. doi:10.15835/nbha4621106

    Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations

    Full text link
    [EN] Drought periods are becoming more frequent and intense, due to the effects of climate change, threatening natural habitats worldwide, including European forests. Forest trees can also be affected by high soil salinity, because of the common practice of de-icing of mountain roads with NaCl in winter. We have evaluated the responses to salt and water stress of silver fir (Abies alba), an important forest species for which very limited information is available. One-year-old fir seedlings, with origin in seven different locations in Romania, were subjected to salt (watering with NaCl solutions of increasing concentrations) and water deficit (complete withholding of irrigation) treatments in the greenhouse. After one month, plant material was harvested and different morphological parameters were determined in the stressed and control plants. Both stress treatments inhibited growth of fir seedlings from all seven provenances, although quantitative differences in the responses to stress were observed between populations. Growth inhibition was established by the relative reduction ¿ as compared to the non-stressed controls - in several parameters, such as stem elongation, root length, number of needles, or fresh weight and water content of roots and needles. Statistical multivariate analysis of the results suggested that seedlings from Valea Morii (population 6) were the most tolerant to both, water deficit and high (300 mM NaCl) salt concentrations. These results support the possibility to screen a large number of individuals from different populations, at the seedling stage, to select Abies alba genotypes with enhanced drought and/or salinity tolerance.I.M.T.(M.) was recipients of Erasmus Mundus predoctoral scholarships in UPV financed by the European Commission.Todea (morar), IM.; González-Orenga, S.; Plazas Ávila, MDLO.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.; Sestras, RE.... (2019). Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 47(4):1063-1072. https://doi.org/10.15835/nbha47411348S1063107247

    SDSS-IV MaNGA : the MaNGA dwarf galaxy sample presentation

    Get PDF
    M.C.D. acknowledges support from CONACYT "Ciencia de Frontera" grant 320199. M.C.D. and H.M.H.T. acknowledge support from UC MEXUS-CONACYT grant CN-17-128. A.R.P. acknowledges support from the CONACyT "Ciencia Basica" grant 285721. E.A.O. acknowledges support from the SECTEI (Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México) under the Postdoctoral Fellowship SECTEI/170/2021 and CM-SECTEI/303/2021. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions.We present the MaNGA Dwarf galaxy (MaNDala) Value Added Catalog (VAC), from the final release of the Sloan Digital Sky Survey-IV program. MaNDala consists of 136 randomly selected bright dwarf galaxies with M* −18.5, making it the largest integral field spectroscopy homogeneous sample of dwarf galaxies. We release a photometric analysis of the g, r, and z broadband imaging based on the DESI Legacy Imaging Surveys, as well as a spectroscopic analysis based on the Pipe3D SDSS-IV VAC. Our release includes the surface brightness (SB), geometric parameters, and color profiles, Sérsic fits as well as stellar population properties (such as stellar ages, metallicities, and star formation histories), and emission lines' fluxes within the FOV and the effective radii of the galaxies. We find that the majority of the MaNDala galaxies are star-forming late-type galaxies with 〈nSersic,r〉∼1.6 that are centrals (central/satellite dichotomy). MaNDala covers a large range of SB values (we find 11 candidate ultra-diffuse galaxies and three compact ones), filling the gap between classical dwarfs and low-mass galaxies in the Kormendy Diagram and in the size–mass/luminosity relation, which seems to flatten at 108 2, while the last 20% was at 〈z〉 < 0.3. Finally, a bending of the sSFR-M * relation at M* ∼ 109 M⊙ for the main-sequence galaxies seems to be supported by MaNDala.Publisher PDFPeer reviewe

    Influencia del tipo y tiempo de cocción en la degradación de clorofila en hortalizas.

    Get PDF
    Puesto que el color verde es una de las principales características sensoriales en la determinación de la calidad final del procesado térmico en hortalizas verdes, es importante prevenir o por lo menos minimizar la degradación de la clorofila durante el procesamiento térmico en la industria alimentaria, a dicho compuesto se le atribuyen propiedades anticancerígenas, antimutagénicas y quimiopreventivas contra agentes como hidrocarburos policíclicos y aflatoxinas. El interés por la clorofila en tecnología alimentaría no estriba tanto en su uso como aditivo, sino en evitar que se degrade durante el procesado y almacenamiento, la presente en forma natural en los alimentos de origen vegetal. Por lo cual el propósito del presente trabajo, fue evaluar la posible pérdida de este pigmento presente naturalmente en los vegetales de hoja verde por efecto de diferentes tiempos y procesos de cocción mediante la técnica colorimétrica de Goodwin. Los resultados mostraron que el mayor contenido de clorofila total y sus componentes A y B se presenta en la espinaca. El salteado fue el proceso de cocción que mejor conserva el contenido de clorofila en los vegetales de hoja verde. Combinando tiempos y procesos, los valores de clorofila total más altos se presentaron en espinaca procesada al vapor
    corecore