21 research outputs found

    Role of endoplasmic reticulum stress in the pathogenesis of polycystic liver disease: new potential therapeutic target

    Get PDF
    142 p.La enfermedad hepática poliquística (PLD) abarca un grupo heterogéneo de colangiopatías genéticas caracterizadaspor la dilatación del conducto biliar y el desarrollo de múltiples quistes biliares intrahepáticos (>10), que son laprincipal causa de morbilidad. Actualmente, las terapias quirúrgicas y/o farmacológicas disponibles tienen efectosmodestos, siendo el trasplante hepático la única opción curativa. La mayoría de los genes causantes de PLD codificanpara proteínas del retículo endoplasmático (RE) que participan en la biogénesis y transporte de proteínas de nuevasíntesis. Por ello nos planteamos como hipótesis que, anomalías en la proteostasis del RE conducen a una situaciónde estrés de RE que puede subyacer la patogénia de la PLD y representar una nueva diana terapéutica. En estesentido, los niveles transcripcionales de varios factores de la respuesta a proteínas desplegadas (UPR) estabanaumentados en biopsias hepáticas de pacientes con PLD y ratas PCK, así como en cultivos primarios de colangiocitospoliquísticos de origen humano y murino, en comparación con los correspondientes grupos control. Asimismo, loscolangiocitos poliquisticos presentaron un lumen reticular notoriamente dilatado e hiperactivación del proteasoma20S. El tratamiento crónico de ratas PCK con el inhibidor del estrés de RE, ácido 4-fenilbutírico (4-PBA), redujo elpeso y volumen del tejido hepático, así como el volumen de los quistes, en animales tratados con esta chaperonaquímica (tanto en solitario como en combinación con tunicamicina), en comparación con el grupo control. In vitro, el4-PBA disminuyó la expresión de los factores de la UPR y redujo la actividad del proteasoma 20S, frenando lahiperproliferación de los colangiocitos poliquísticos y su muerte celular. Conclusión: los colangiocitos poliquísticosexperimentan mal plegamiento de proteínas, estrés de RE e hiperactividad del proteasoma 20S, lo que promueve lasupervivencia celular y la cistogénesis hepática. Así, la restauración de la proteostasis del RE con 4-PBA retrasa laevolución de la cistogénesis hepática, representando una potencial estrategia terapéutica

    The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma

    Get PDF
    Background Non-alcoholic fatty liver disease (NAFLD) is affecting more people globally. Indeed, NAFLD is a spectrum of metabolic dysfunctions that can progress to hepatocellular carcinoma (NAFLD-HCC). This development can occur in a non-cirrhotic liver and thus, often lack clinical surveillance. The aim of this study was to develop non-invasive surveillance method for NAFLD-HCC. Methods Using comprehensive ultra-high-performance liquid chromatography mass-spectrometry, we investigated 1,295 metabolites in serum from 249 patients. Area under the receiver operating characteristic curve was calculated for all detected metabolites and used to establish their diagnostic potential. Logistic regression analysis was used to establish the diagnostic score. Findings We show that NAFLD-HCC is characterised by a complete rearrangement of the serum lipidome, which distinguishes NAFLD-HCC from non-cancerous individuals and other HCC patients. We used machine learning to build a diagnostic model for NAFLD-HCC. We quantified predictive metabolites and developed the NAFLD-HCC Diagnostic Score (NHDS), presenting superior diagnostic potential compared to alpha-fetoprotein (AFP). Patients’ metabolic landscapes show a progressive depletion in unsaturated fatty acids and acylcarnitines during transformation. Upregulation of fatty acid transporters in NAFLD-HCC tumours contribute to fatty acid depletion in the serum. Interpretation NAFLD-HCC patients can be efficiently distinguished by serum metabolic alterations from the healthy population and from HCC patients related to other aetiologies (alcohol and viral hepatitis). Our model can be used for non-invasive surveillance of individuals with metabolic syndrome(s), allowing for early detection of NAFLD-HCC. Therefore, serum metabolomics may provide valuable insight to monitor patients at risk, including morbidly obese, diabetics, and NAFLD patients. Funding The funding sources for this study had no role in study design, data collection, data analyses, interpretation or writing of the report as it is presented herein

    Immune Checkpoint Inhibitors: The Emerging Cornerstone in Cholangiocarcinoma Therapy?

    Get PDF
    Background: Cholangiocarcinoma (CCA) encompasses a heterogeneous group of malignant tumors with dismal prognosis and increasing incidence worldwide. Both late diagnosis due to the lack of early symptoms and the refractory nature of these tumors seriously compromise patients' welfare and outcomes. Summary: During the last decade, immunotherapy and, more specifically, modulation of immune checkpoints-mediated signaling pathways have been under the spotlight in the field of oncology, emerging as a potential therapeutic approach for the treatment of several cancers, including CCA. Generally, high expression levels of immune checkpoints in patients with CCA have been associated with worse clinical outcomes, particularly with shorter overall survival and relapse-free survival. Thus, immune checkpoint inhibitors (ICIs), which mainly constitute different monoclonal antibodies, have been developed in order to hamper the immune checkpoint-mediated pathways. Interestingly, chemotherapy may increase the expression of immune checkpoints, while other therapeutic approaches such as ablative and targeted therapies may enhance their antitumor activity. In this sense, several clinical trials evaluated the safety and efficacy of ICIs for CCA, both as a monotherapy and in combination with other ICIs or loco-regional and systemic therapies. Additionally, many other clinical trials are currently ongoing and results are eagerly awaited. Here, we summarize the key aspects of immune checkpoint molecules as prognostic factors and therapeutic targets in CCA, highlighting the most recent advances in the field and future research directions. Key messages: (1) Effective therapeutic approaches for CCA are urgently needed. (2) Expression levels of immune checkpoints in patients with CCA have been proposed to be related with clinical outcomes. (3) Combination of different ICIs may outperform the efficacy of ICI monotherapy for CCA treatment. (4) Recent studies point toward the combination of ICIs and other common therapies, especially chemotherapy, as a promising strategy for treatment of CCA patients

    Targeting UBC9-Mediated Protein Hyper-SUMOylation in Cystic Cholangiocytes Halts Polycystic Liver Disease in Experimental Models

    Get PDF
    BACKGROUND & AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple fluid-filled biliary cysts. Most PLD-causative genes participate in protein biogenesis and/or transport. Post-translational modifications (PTMs) are implicated in protein stability, localization and activity, contributing to human pathobiology; however, their role in PLD is unknown. Herein, we aimed to unveil the role of protein SUMOylation in PLD and its potential therapeutic targeting. METHODS: Levels and functional effects of SUMOylation, along with response to S-adenosylmethionine (SAMe, inhibitor of the SUMOylation enzyme UBC9) and/or short-hairpin RNAs (shRNAs) against UBE2I (UBC9), were evaluated invitro, invivo and/or in patients with PLD. SUMOylated proteins were determined by immunoprecipitation and proteomic analyses by mass spectrometry. RESULTS: Most SUMOylation-related genes were found overexpressed (mRNA) in polycystic human and rat liver tissue, as well as in cystic cholangiocytes in culture compared to controls. Increased SUMOylated protein levels were also observed in cystic human cholangiocytes in culture, which decreased after SAMe administration. Chronic treatment of polycystic (PCK: Pkdh1-mut) rats with SAMe halted hepatic cystogenesis and fibrosis, and reduced liver/body weight ratio and liver volume. Invitro, both SAMe and shRNA-mediated UBE2I knockdown increased apoptosis and reduced cell proliferation of cystic cholangiocytes. High-throughput proteomic analysis of SUMO1-immunoprecipitated proteins in cystic cholangiocytes identified candidates involved in protein biogenesis, ciliogenesis and proteasome degradation. Accordingly, SAMe hampered proteasome hyperactivity in cystic cholangiocytes, leading to activation of the unfolded protein response and stress-related apoptosis. CONCLUSIONS: Cystic cholangiocytes exhibit increased SUMOylation of proteins involved in cell survival and proliferation, thus promoting hepatic cystogenesis. Inhibition of protein SUMOylation with SAMe halts PLD, representing a novel therapeutic strategy. LAY SUMMARY: Protein SUMOylation is a dynamic post-translational event implicated in numerous cellular processes. This study revealed dysregulated protein SUMOylation in polycystic liver disease, which promotes hepatic cystogenesis. Administration of S-adenosylmethionine (SAMe), a natural UBC9-dependent SUMOylation inhibitor, halted polycystic liver disease in experimental models, thus representing a potential therapeutic agent for patients.Spanish Carlos III Health Institute (ISCIII) [J.M. Banales (FIS PI12/00380, PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129 and CPII19/00008); M.J. Perugorria (FIS PI14/00399, PI17/00022 and PI20/00186); P.M. Rodrigues (Sara Borrell CD19/00254)] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); Ministerio de Ciencia, Innovación y Universidades (MICINN; M.L. Martinez-Chantar: SAF2017-87301-R); “Instituto de Salud Carlos III” [CIBERehd: J.M. Banales, M.J. Perugorria, M.L. Martinez-Chantar and L. Bujanda], Spain; “Diputación Foral Gipuzkoa” (J.M. Banales: DFG15/010, DFG16/004), Department of Health of the Basque Country (M.J. Perugorria: 2019111024, 2015111100 and J.M. Banales: 2017111010), “Euskadi RIS3” (J.M. Banales: 2016222001, 2017222014, 2018222029, 2019222054, 2020333010), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to J.M. Banales and M.L. Martinez-Chantar) and Department of Industry of the Basque Country (J.M. Banales: Elkartek: KK-2020/00008). La Caixa Scientific Foundation (J.M. Banales and M.L. Martinez-Chantar: HR17-00601). “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation, to J.M. Banales and M.L. Martinez-Chantar). “Ayudas para apoyar grupos de investigación del Sistema Universitario Vasco” (IT971-16 to P.A.). Università Politecnica delle Marche PSA2017_UNIVPM grant (to M. Marzioni). National Institutes of Health (NIH) of United States of America (DK24031 to N.F. LaRusso). MJ Perugorria was funded by the Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Program RYC-2015-17755), P.Y. Lee-Law by the European Association for the Study of the Liver (EASL; Sheila Sherlock Award 2017), F.J. Caballero-Camino by the Spanish Ministry of Science and Innovation (BES-2014-069148), and P. Olaizola and A. Santos-Laso by the Basque Government (PRE_2016_1_0269, PRE_2015_1_0126). We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). The funding sources had no involvement in study design, data collection and analysis, decision to publish, or preparation of the article

    Liver metastases of intrahepatic Cholangiocarcinoma: implications for an updated staging system

    Get PDF
    [EN] BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (iCCA) with liver metastases is perceived to have a poor prognosis, but the American Joint Committee on Cancer (AJCC) classifies them as early stage in the absence of lymph nodes or extrahepatic spread. APP ROA CH AND RESULT S: Patients with iCCA from the European Network for the Study of Cholangiocarcinoma (ENS-CCA) and Surveillance, Epidemiology, and End Results (SEER) registries with survival/staging (AJCC v.7) data were eligible. Modified staging was used (mAJCC v.7): group A: stages I-III (excluding T2bN0); group B: stage IVa (excluding T2bN1M0); group C: liver metastases (T2bN0/1); and group D: stage IVb (extrahepatic metastases). Survival analysis (Kaplan-Meier and Cox regression) was performed in an ENS-CCA training cohort (TC) and findings internally (ENS-CCA iVC) and externally (SEER) validated. The aim was to assess whether liver metastases (group C) had a shorter survival compared to other early stages (group A) to propose a modified version of AJCC v.8 (mAJCC v.8). A total of 574 and 4,171 patients from the ENS-CCA and SEER registries were included. Following the new classification, 19.86% and 17.31% of patients from the ENS-CCA and SEER registries were reclassified into group C, respectively. In the ENS-CCA TC, multivariable Cox regression was adjusted for obesity (p = 0.026) and performance status (P < 0.001); patients in group C (HR, 2.53; 95% CI, 1.18-5.42; P = 0.017) had a higher risk of death (vs. group A). Findings were validated in the ENS-CCA iVC (HR, 2.93; 95% CI, 2.04-4.19; P < 0.001) and in the SEER registry (HR, 1.88; 95% CI, 1.68-2.09; P < 0.001). CONCLUSIONS: iCCA with liver metastases has a worse outcome than other early stages of iCCA. Given that AJCC v.8 does not take this into consideration, a modification of AJCC v.8 (mAJCC v.8), including “liver metastases: multiple liver lesions, with or without vascular invasion” as an “M1a stage,” is suggested. (Hepatology 2021;73:2311-2325).The authors of this article are members of the European Network for the Study of Cholangiocarcinoma (ENS-CCA) and participate in the initiative European H2020 COST Action EURO-CHOLANGIO- NET granted by the COST Association (CA18122). The ENS-CCA registry is supported by the European Association for the Study of the Liver (EASL: Registry Grant Awards 2016 and 2019), the Spanish Association of Gastroenterology (AEG: RedCap access) and Incyte® (grant 2020). This article/publication is based upon work from COST Action European Cholangiocarcinoma Network, supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology: www.cost.eu) is a funding agency for research and innovation networks. Drs. Angela Lamarca, Juan Valle and Jesus M. Banales also received funding from The Christie Charity and the European Union’s Horizon 2020 Research and Innovation Programme [grant number 825510, ESCALON]. Some of the authors of this manuscript are members of the European Reference Network (ERN)-Liver (Liver Tumor Working Group) (European H2020 project)

    Synthetic conjugates of ursodeoxycholic acid inhibit cystogenesis in experimental models of polycystic liver disease

    Get PDF
    Background and aims: polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of symptomatic biliary cysts. Current surgical and pharmacological approaches are ineffective, and liver transplantation represents the only curative option. Ursodeoxycholic acid (UDCA) and histone deacetylase 6 inhibitors (HDAC6is) have arisen as promising therapeutic strategies, but with partial benefits. Approach and results: here, we tested an approach based on the design, synthesis, and validation of a family of UDCA synthetic conjugates with selective HDAC6i capacity (UDCA-HDAC6i). Four UDCA-HDAC6i conjugates presented selective HDAC6i activity, UDCA-HDAC6i #1 being the most promising candidate. UDCA orientation within the UDCA-HDAC6i structure was determinant for HDAC6i activity and selectivity. Treatment of polycystic rats with UDCA-HDAC6i #1 reduced their hepatomegaly and cystogenesis, increased UDCA concentration, and inhibited HDAC6 activity in liver. In cystic cholangiocytes UDCA-HDAC6i #1 restored primary cilium length and exhibited potent antiproliferative activity. UDCA-HDAC6i #1 was actively transported into cells through BA and organic cation transporters. Conclusions: these UDCA-HDAC6i conjugates open a therapeutic avenue for PLDs

    RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease

    Get PDF
    [EN]Objective Receptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD. Design RIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3(-/-)) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks. Results RIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3(-/-) mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3(-/-) mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor. (PPAR.) was increased in Ripk3(-/-) mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPAR. in controlling fat deposition and fibrosis. Conclusion Hepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.Main funding is provided by FEDER funds through the COMPETE programme and by national funds through Fundacao para a Ciencia e a Tecnologia to CMPR (grants SAICTPAC/0019/2015-LISBOA-01-0145--FEDER-016405 and PTDC/MED-FAR/29097/2017 -LISBOA-01-0145-FEDER-029097). Additional funding comes from research grant APEF (Portuguese Association for the Study of Liver)/BAYER 2020 to MBA. JG is funded by the Fondation pour la Recherche Medicale (ARF20170938613), the Institute of Cardiometabolism and Nutrition (PAP17NECJG), the Societe Francophone du Diabete (R19114DD) and the Mairie de Paris (Emergences -R18139DD). MBA, PMR, MMP and ALS were investigators or students funded by Fundacao para a Ciencia e a Tecnologia

    The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma

    Get PDF
    [Background] Non-alcoholic fatty liver disease (NAFLD) is affecting more people globally. Indeed, NAFLD is a spectrum of metabolic dysfunctions that can progress to hepatocellular carcinoma (NAFLD-HCC). This development can occur in a non-cirrhotic liver and thus, often lack clinical surveillance. The aim of this study was to develop non-invasive surveillance method for NAFLD-HCC.[Methods] Using comprehensive ultra-high-performance liquid chromatography mass-spectrometry, we investigated 1,295 metabolites in serum from 249 patients. Area under the receiver operating characteristic curve was calculated for all detected metabolites and used to establish their diagnostic potential. Logistic regression analysis was used to establish the diagnostic score.[Findings] We show that NAFLD-HCC is characterised by a complete rearrangement of the serum lipidome, which distinguishes NAFLD-HCC from non-cancerous individuals and other HCC patients. We used machine learning to build a diagnostic model for NAFLD-HCC. We quantified predictive metabolites and developed the NAFLD-HCC Diagnostic Score (NHDS), presenting superior diagnostic potential compared to alpha-fetoprotein (AFP). Patients’ metabolic landscapes show a progressive depletion in unsaturated fatty acids and acylcarnitines during transformation. Upregulation of fatty acid transporters in NAFLD-HCC tumours contribute to fatty acid depletion in the serum.[Interpretation] NAFLD-HCC patients can be efficiently distinguished by serum metabolic alterations from the healthy population and from HCC patients related to other aetiologies (alcohol and viral hepatitis). Our model can be used for non-invasive surveillance of individuals with metabolic syndrome(s), allowing for early detection of NAFLD-HCC. Therefore, serum metabolomics may provide valuable insight to monitor patients at risk, including morbidly obese, diabetics, and NAFLD patients.We thank all funding sources: The laboratory of JBA is supported by the Novo Nordisk Foundation (14040, 0058419), Danish Cancer Society (R98-A6446, R167-A10784, R278-A16638), and the Danish Medical Research Council (4183-00118A, 1030-00070B). Data used for validation in this study provided by JMB was funded by the Spanish Ministry of Economy and Competitiveness and ’Instituto de Salud Carlos III’ grants (PI18/01075, Miguel Servet Programme CON14/00129 and CPII19/00008) co-financed by ’Fondo Europeo de Desarrollo Regional’ (FEDER); CIBERehd, Spain; IKERBASQUE, Basque foundation for Science, Spain; BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD); Department of Health of the Basque Country (2017111010), Euskadi RIS3 (2019222054, 2020333010); Department of Industry of the Basque Country (Elkartek: KK-2020/00008), AECC Scientific Foundation and European Commission Horizon 2020 program (ESCALON project no.: 825510). Similarly, MAJ was funded by grants from the Fondo Nacional De Ciencia y Tecnología de Chile (FONDECYT #1191145 to M.A.) and the Comisión Nacional de Investigación, Ciencia y Tecnología (CONICYT, AFB170005, CARE Chile UC).Peer reviewe

    Synthetic Conjugates of Ursodeoxycholic Acid Inhibit Cystogenesis in Experimental Models of Polycystic Liver Disease

    Get PDF
    Background and Aims Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of symptomatic biliary cysts. Current surgical and pharmacological approaches are ineffective, and liver transplantation represents the only curative option. Ursodeoxycholic acid (UDCA) and histone deacetylase 6 inhibitors (HDAC6is) have arisen as promising therapeutic strategies, but with partial benefits. Approach and Results Here, we tested an approach based on the design, synthesis, and validation of a family of UDCA synthetic conjugates with selective HDAC6i capacity (UDCA-HDAC6i). Four UDCA-HDAC6i conjugates presented selective HDAC6i activity, UDCA-HDAC6i #1 being the most promising candidate. UDCA orientation within the UDCA-HDAC6i structure was determinant for HDAC6i activity and selectivity. Treatment of polycystic rats with UDCA-HDAC6i #1 reduced their hepatomegaly and cystogenesis, increased UDCA concentration, and inhibited HDAC6 activity in liver. In cystic cholangiocytes UDCA-HDAC6i #1 restored primary cilium length and exhibited potent antiproliferative activity. UDCA-HDAC6i #1 was actively transported into cells through BA and organic cation transporters. Conclusions These UDCA-HDAC6i conjugates open a therapeutic avenue for PLDs.Supported by the Spanish Carlos III Health Institute (ISCIII; J.M. Banales: FIS PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129; M.J. Perugorria: PI14/00399, PI17/00022; J.J.G. Marin: FIS PI16/00598) cofinanced by "Fondo Europeo de Desarrollo Regional" (FEDER); CIBERehd (ISCIII): J.M. Banales, M.J. Perugorria, L. Bujanda, and J.J.G. Marin; Spanish Ministry of Economy and Competitiveness (M. J. Perugorria: Ramon y Cajal Program RYC-2015-17755); IKERBASQUE, Basque foundation for Science (M.J. Perugorria and J.M. Banales), Spain; "Junta de Castilla y Leon" (J.J.G. Marin: SA06P17); " Diputacion Foral Gipuzkoa" (J.M. Banales: DFG15/010, DFG16/004; M.J. Perugorria: DFG18/114, DFG19/081), BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to J.M. Banales), Department of Health of the Basque Country (J.M. Banales: 2017111010; M.J. Perugorria: 2019111024), and Euskadi RIS3 (J.M. Banales: 2016222001, 2017222014, and 2018222029; 2019222054); La Caixa Scientific Foundation (J.M. Banales: HR17-00601); "Fundacion Cientifica de la Asociacion Espanola Contra el Cancer" (AECC Scientific Foundation, to J.M. Banales and J.J.G. Marin); and "Centro Internacional sobre el Envejecimiento", Spain (J.J.G. Marin: OLD-HEPAMARKER, 0348-CIE-6-E). F.J. Caballero-Camino was funded by the Spanish Ministry of Science and Innovation (BES-2014-069148), A. Santos-Laso by the Basque Government (PRE_2018_2_0195), and Pui Y. Lee-Law by the European Association for the Study of the Liver (EASL; Sheila Sherlock Award). The Spanish Ministry of Science and Innovation supported F. P. Cossio: (CTQ2016-80375-P and CTQ2014-51912-REDC) as well as the Basque Government (F.P. Cossio: IT-324-07). I. Rivilla had a postdoctoral contract from the Donostia International Physics Center

    Adiponectin, leptin, and IGF-1 are useful diagnostic and stratification biomarkers of NAFLD

    Get PDF
    [EN] Background: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease where liver biopsy remains the gold standard for diagnosis. Here we aimed to evaluate the role of circulating adiponectin, leptin, and insulin-like growth factor 1 (IGF-1) levels as non-invasive NAFLD biomarkers and assess their correlation with the metabolome. Materials and Methods: Leptin, adiponectin, and IGF-1 serum levels were measured by ELISA in two independent cohorts of biopsy-proven obese NAFLD patients and healthy-liver controls (discovery: 38 NAFLD, 13 controls; validation: 194 NAFLD, 31 controls) and correlated with clinical data, histology, genetic parameters, and serum metabolomics. Results: In both cohorts, leptin increased in NAFLD vs. controls (discovery: AUROC 0.88; validation: AUROC 0.83; p < 0.0001). The leptin levels were similar between obese and non-obese healthy controls, suggesting that obesity is not a confounding factor. In the discovery cohort, adiponectin was lower in non-alcoholic steatohepatitis (NASH) vs. non-alcoholic fatty liver (AUROC 0.87; p < 0.0001). For the validation cohort, significance was attained for homozygous for PNPLA3 allele c.444C (AUROC 0.63; p < 0.05). Combining adiponectin with specific serum lipids improved the assay performance (AUROC 0.80; p < 0.0001). For the validation cohort, IGF-1 was lower with advanced fibrosis (AUROC 0.67, p<0.05), but combination with international normalized ratio (INR) and ferritin increased the assay performance (AUROC 0.81; p < 0.01). Conclusion: Serum leptin discriminates NAFLD, and adiponectin combined with specific lipids stratifies NASH. IGF-1, INR, and ferritin distinguish advanced fibrosis.CR was funded by FEDER through the COMPETE program and by national funds through Fundação para a Ciência e a Tecnologia (PTDC/MED-FAR/29097/2017—LISBOA-01- 0145-FEDER-029097) and by European Horizon 2020 (H2020- MSCA-RISE-2016-734719). This work was also supported by Fundação para a Ciência e Tecnologia (PD/BD/135467/2017) and Portuguese Association for the Study of Liver/MSD 2017. JB was funded by Spanish Carlos III Health Institute (ISCIII) (PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129 and CPII19/00008), co-financed by Fondo Europeo de Desarrollo Regional (FEDER), Instituto de Salud Carlos III (CIBERehd, Spain), La Caixa Scientific Foundation (HR17-00601), Fundación Científica de la Asociación Española Contra el Cáncer, and European Horizon 2020 (ESCALON project: H2020-SC1-BHC-2018-2020)
    corecore