86 research outputs found

    Validation of a Short Tandem Repeat Multiplex Typing System for Genetic Individualization of Domestic Cat Samples

    Get PDF
    Aim To conduct developmental validation studies on a polymerase chain reaction (PCR) based short tandem repeat (STR) multiplex typing system, developed for the purpose of genetic individualization and parentage testing in domestic cat samples. Methods To evaluate reproducibility of the typing system, the multiplex was amplified using DNA extracted from hair, blood, and buccal samples obtained from the same individual (n = 13). Additional studies were performed to evaluate the system’s species’ specificity, using 26 North American mammalian species and two prokaryotes Sacchromyces and Escherichia coli, sensitivity, and ability to identify DNA mixtures. Patterns of Mendelian inheritance and mutation rates for the 11 loci were directly examined in a large multi-generation domestic cat pedigree (n = 263). Results Our studies confirm that the multiplex system was species-specific for feline DNA and amplified robustly with as little as 125 picograms of genomic template DNA, demonstrating good product balance. The multiplex generated all components of a two DNA mixture when the minor component was one tenth of the major component at a threshold of 50 relative fluorescence units. The multiplex was reproducible in multiple tissue types of the same individual. Mutation rates for the 11 STR were within the range of sex averaged rates observed for Combined DNA Index System (CODIS) loci. Conclusion The cat STR multiplex typing system is a robust and reliable tool for the use of forensic DNA analysis of domestic cat samples

    The statement that folate supraphysiological levels in uremic patients do not cause harm should not go unchallenged

    Get PDF
    Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and inexpensive method for studying MHC diversity in large scale studies. We have developed six MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with five neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52) while the Burmese population has much significantly lower MHC diversity (average allelic richness = 6.81; P<0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species

    Recurrent Evolution of Melanism in South American Felids

    Get PDF
    Morphological variation in natural populations is a genomic test bed for studying the interface between molecular evolution and population genetics, but some of the most interesting questions involve non-model organisms that lack well annotated reference genomes. Many felid species exhibit polymorphism for melanism but the relative roles played by genetic drift, natural selection, and interspecies hybridization remain uncertain. We identify mutations of Agouti signaling protein (ASIP) or the Melanocortin 1 receptor (MC1R) as independent causes of melanism in three closely related South American species: the pampas cat (Leopardus colocolo), the kodkod (Leopardus guigna), and Geoffroy’s cat (Leopardus geoffroyi). To assess population level variation in the regions surrounding the causative mutations we apply genomic resources from the domestic cat to carry out clone-based capture and targeted resequencing of 299 kb and 251 kb segments that contain ASIP and MC1R, respectively, from 54 individuals (13–21 per species), achieving enrichment of ~500–2500-fold and ~150x coverage. Our analysis points to unique evolutionary histories for each of the three species, with a strong selective sweep in the pampas cat, a distinctive but short melanism-specific haplotype in the Geoffroy’s cat, and reduced nucleotide diversity for both ancestral and melanism-bearing chromosomes in the kodkod. These results reveal an important role for natural selection in a trait of longstanding interest to ecologists, geneticists, and the lay community, and provide a platform for comparative studies of morphological variation in other natural populations

    Mapping of diabetes susceptibility LOCI in a domestic cat breed with an unusually high incidence of diabetes mellitus

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Genetic variants that are associated with susceptibility to type 2 diabetes (T2D) are important for identification of individuals at risk and can provide insights into the molecular basis of disease. Analysis of T2D in domestic animals provides both the opportunity to improve veterinary management and breeding programs as well as to identify novel T2D risk genes. Australian-bred Burmese (ABB) cats have a 4-fold increased incidence of type 2 diabetes (T2D) compared to Burmese cats bred in the United States. This is likely attributable to a genetic founder effect. We investigated this by performing a genome-wide association scan on ABB cats. Four SNPs were associated with the ABB T2D phenotype with p values \u3c 0.005. All exons and splice junctions of candidate genes near significant single-nucleotide polymorphisms (SNPs) were sequenced, including the genes DGKG, IFG2BP2, SLC8A1, E2F6, ETV5, TRA2B and LIPH. Six candidate polymorphisms were followed up in a larger cohort of ABB cats with or without T2D and also in Burmese cats bred in America, which exhibit low T2D incidence. The original SNPs were confirmed in this cohort as associated with the T2D phenotype, although no novel coding SNPs in any of the seven candidate genes showed association with T2D. The identification of genetic markers associated with T2D susceptibility in ABB cats will enable preventative health strategies and guide breeding programs to reduce the prevalence of T2D in these cats

    Mapping of diabetes susceptibility LOCI in a domestic cat breed with an unusually high incidence of diabetes mellitus

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Genetic variants that are associated with susceptibility to type 2 diabetes (T2D) are important for identification of individuals at risk and can provide insights into the molecular basis of disease. Analysis of T2D in domestic animals provides both the opportunity to improve veterinary management and breeding programs as well as to identify novel T2D risk genes. Australian-bred Burmese (ABB) cats have a 4-fold increased incidence of type 2 diabetes (T2D) compared to Burmese cats bred in the United States. This is likely attributable to a genetic founder effect. We investigated this by performing a genome-wide association scan on ABB cats. Four SNPs were associated with the ABB T2D phenotype with p values \u3c 0.005. All exons and splice junctions of candidate genes near significant single-nucleotide polymorphisms (SNPs) were sequenced, including the genes DGKG, IFG2BP2, SLC8A1, E2F6, ETV5, TRA2B and LIPH. Six candidate polymorphisms were followed up in a larger cohort of ABB cats with or without T2D and also in Burmese cats bred in America, which exhibit low T2D incidence. The original SNPs were confirmed in this cohort as associated with the T2D phenotype, although no novel coding SNPs in any of the seven candidate genes showed association with T2D. The identification of genetic markers associated with T2D susceptibility in ABB cats will enable preventative health strategies and guide breeding programs to reduce the prevalence of T2D in these cats

    Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats

    Get PDF
    The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P \u3c 0.0001) and white spotting (P \u3c 0.0001), respectively

    A Mutation in LTBP2 Causes Congenital Glaucoma in Domestic Cats (Felis catus)

    Get PDF
    The glaucomas are a group of diseases characterized by optic nerve damage that together represent a leading cause of blindness in the human population and in domestic animals. Here we report a mutation in LTBP2 that causes primary congenital glaucoma (PCG) in domestic cats. We identified a spontaneous form of PCG in cats and established a breeding colony segregating for PCG consistent with fully penetrant, autosomal recessive inheritance of the trait. Elevated intraocular pressure, globe enlargement and elongated ciliary processes were consistently observed in all affected cats by 8 weeks of age. Varying degrees of optic nerve damage resulted by 6 months of age. Although subtle lens zonular instability was a common feature in this cohort, pronounced ectopia lentis was identified in less than 10% of cats examined. Thus, glaucoma in this pedigree is attributed to histologically confirmed arrest in the early post-natal development of the aqueous humor outflow pathways in the anterior segment of the eyes of affected animals. Using a candidate gene approach, significant linkage was established on cat chromosome B3 (LOD 18.38, θ = 0.00) using tightly linked short tandem repeat (STR) loci to the candidate gene, LTBP2. A 4 base-pair insertion was identified in exon 8 of LTBP2 in affected individuals that generates a frame shift that completely alters the downstream open reading frame and eliminates functional domains. Thus, we describe the first spontaneous and highly penetrant non-rodent model of PCG identifying a valuable animal model for primary glaucoma that closely resembles the human disease, providing valuable insights into mechanisms underlying the disease and a valuable animal model for testing therapies

    An ∼140-kb Deletion Associated with Feline Spinal Muscular Atrophy Implies an Essential LIX1 Function for Motor Neuron Survival

    Get PDF
    The leading genetic cause of infant mortality is spinal muscular atrophy (SMA), a clinically and genetically heterogeneous group of disorders. Previously we described a domestic cat model of autosomal recessive, juvenile-onset SMA similar to human SMA type III. Here we report results of a whole-genome scan for linkage in the feline SMA pedigree using recently developed species-specific and comparative mapping resources. We identified a novel SMA gene candidate, LIX1, in an ~140-kb deletion on feline chromosome A1q in a region of conserved synteny to human chromosome 5q15. Though LIX1 function is unknown, the predicted secondary structure is compatible with a role in RNA metabolism. LIX1 expression is largely restricted to the central nervous system, primarily in spinal motor neurons, thus offering explanation of the tissue restriction of pathology in feline SMA. An exon sequence screen of 25 human SMA cases, not otherwise explicable by mutations at the SMN1 locus, failed to identify comparable LIX1 mutations. Nonetheless, a LIX1-associated etiology in feline SMA implicates a previously undetected mechanism of motor neuron maintenance and mandates consideration of LIX1 as a candidate gene in human SMA when SMN1 mutations are not found
    • …
    corecore