128,358 research outputs found

    Laser-dressed vacuum polarization in a Coulomb field

    Get PDF
    We investigate quantum electrodynamic effects under the influence of an external, time-dependent electromagnetic field, which mediates dynamic modifications of the radiative corrections. Specifically, we consider the quantum electrodynamic vacuum-polarization tensor under the influence of two external background fields: a strong laser field and a nuclear Coulomb field. We calculate the charge and current densities induced by a nuclear Coulomb field in the presence of a laser field. We find the corresponding induced scalar and vector potentials. The induced potential, in first-order perturbation theory, leads to a correction to atomic energy levels. The external laser field breaks the rotational symmetry of the system. Consequently, the induced charge density is not spherically symmetric, and the energy correction therefore leads to a "polarized Lamb shift." In particular, the laser generates an additional potential with a quadrupole moment. The corresponding laser-dressed vacuum-polarization potential behaves like 1/r**3 at large distances, unlike the Uehling potential that vanishes exponentially for large r. Our investigation might be useful for other situations where quantum field theoretic phenomena are subjected to external fields of a rather involved structure.Comment: 13 pages, RevTe

    The synthesis, characterization and thermal chemistry of modified norbornenyl PMR endcaps

    Get PDF
    As part of a program to further the understanding of the polymerization of Nadic-Endcapped PMR systems, a series of model Norbornenyl-Imides has been synthesized and their thermal behavior explored. Their syntheses and characterizations as well as their rearrangement and polymerization chemistry are described. Monomer isomerization at temperatures as low as 125 C and oligomer formation at somewhat higher temperatures are observed. Approximate relative rates for competing isomerization pathways are established and some information is obtained about the details of oligomer formation. The relationship of this data to current PMR systems is briefly discussed

    Simulation of marine boundary layer characteristics using a 1-D PBL model over the Bay of Bengal during BOBMEX-99

    Get PDF
    The characteristic features of the marine boundary layer (MBL) over the Bay of Bengal during the southwest monsoon and the factors influencing it are investigated. The Bay of Bengal and Monsoon Experiment (BOBMEX) carried out during July-August 1999 is the first observational experiment under the Indian Climate Research Programme (ICRP). A very high-resolution data in the vertical was obtained during this experiment, which was used to study the MBL characteristics off the east coast of India in the north and south Bay of Bengal. Spells of active and suppressed convection over the Bay were observed, of which, three representative convective episodes were considered for the study. For this purpose a one-dimensional multi-level PBL model with a TKE-ε closure scheme was used. The soundings, viz., the vertical profiles of temperature, humidity, zonal and meridional component of wind, obtained onboard ORV Sagar Kanya and from coastal stations along the east coast are used for the study. The temporal evolution of turbulent kinetic energy, marine boundary layer height (MBLH), sensible and latent heat fluxes and drag coefficient of momentum are simulated for different epochs of monsoon and monsoon depressions during BOBMEX-99.The model also generates the vertical profiles of potential temperature, specific humidity, zonal and meridional wind. These simulated values compared reasonably well with the observations available from BOBMEX

    Conserved variable analysis of the marine boundary layer and air-sea exchange processes using BOBMEX-Pilot data sets

    Get PDF
    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature, saturation equivalent potential temperature and specific humidity were carried out at every point of upper air observation obtained on board ORV Sagar Kanya. The values are estimated up to a maximum of 4 km to cover the boundary layer. The Marine Boundary Layer Height is estimated from the conserved thermodynamic profiles. During the disturbed period when the convective activity is observed, the deeper boundary layers show double mixing line structures. An attempt is also made to study the oceanic heat budget using empirical models. The estimated short-wave radiation flux compared well with the observations

    Finger patterns produced by thermomagnetic instability in superconductors

    Full text link
    A linear analysis of thermal diffusion and Maxwell equations is applied to study the thermomagnetic instability in a type-II superconducting slab. It is shown that the instability can lead to formation of spatially nonuniform distributions of magnetic field and temperature. The distributions acquire a finger structure with fingers perpendicular to the screening current direction. We derive the criterion for the instability, and estimate its build-up time and characteristic finger width. The fingering instability emerges when the background electric field is larger than a threshold field, E>EcE>E_c, and the applied magnetic field exceeds a value Hfing1/EH_fing \propto 1/\sqrt{E}. Numerical simulations support the analytical results, and allow to follow the development of the fingering instability beyond the linear regime. The fingering instability may be responsible for the nucleation of dendritic flux patterns observed in superconducting films using magneto-optical imaging.Comment: 8 pages, 6 figures, accepted to Phys. Rev. B; (new version: minor changes

    Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 I. Spectropolarimetric observations in all four Stokes parameters

    Get PDF
    High-resolution spectropolarimetric observations provide simultaneous information about stellar magnetic field topologies and three-dimensional distributions of chemical elements. Here we present analysis of a unique full Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap star HD 24712. The goal of our work is to examine circular and linear polarization signatures inside spectral lines and to study variation of the stellar spectrum and magnetic observables as a function of rotational phase. HD 24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over a period of 2010-2011. The resulting spectra have S/N ratio of 300-600 and resolving power exceeding 100000. The multiline technique of least-squares deconvolution (LSD) was applied to combine information from the spectral lines of Fe-peak and rare-earth elements. We used the HARPSPol spectra of HD 24712 to study the morphology of the Stokes profile shapes in individual spectral lines and in LSD Stokes profiles corresponding to different line masks. From the LSD Stokes V profiles we measured the longitudinal component of the magnetic field, , with an accuracy of 5-10 G. We also determined the net linear polarization from the LSD Stokes Q and U profiles. We determined an improved rotational period of the star, P_rot = 12.45812 +/- 0.00019d. We measured from the cores of Halpha and Hbeta lines. The analysis of measurements showed no evidence for a significant radial magnetic field gradient in the atmosphere of HD 24712. We used our and net linear polarization measurements to determine parameters of the dipolar magnetic field topology. We found that magnetic observables can be reasonably well reproduced by the dipolar model. We discovered rotational modulation of the Halpha core and related it a non-uniform surface distribution of rare-earth elements.Comment: Accepted for publication in A&

    Statistical model for intermittent plasma edge turbulence

    Full text link
    The Probability Distribution Function of plasma density fluctuations at the edge of fusion devices is known to be skewed and strongly non-Gaussian. The causes of this peculiar behaviour are, up to now, largely unexplored. On the other hand, understanding the origin and the properties of edge turbulence is a key issue in magnetic fusion research. In this work we show that a stochastic fragmentation model, already successfully applied to fluid turbulence, is able to predict an asymmetric distribution that closely matches experimental data. The asymmetry is found to be a direct consequence of intermittency. A discussion of our results in terms of recently suggested BHP universal curve [S.T. Bramwell, P.C.W. Holdsworth, J.-F. Pinton, Nature (London) 396, 552 (1998)], that should hold for strongly correlated and critical systems, is also proposedComment: 13 pages. Physica Review E, accepte

    870 micron continuum observations of the bubble-shaped nebula Gum 31

    Get PDF
    We are presenting here a study of the cold dust in the infrared ring nebula Gum 31. We aim at deriving the physical properties of the molecular gas and dust associated with the nebula, and investigating its correlation with the star formation in the region, that was probably triggered by the expansion of the ionization front. We use 870 micron data obtained with LABOCA to map the dust emission. The obtained LABOCA image was compared to archival IR,radio continuum, and optical images. The 870 micron emission follows the 8 micron (Spitzer), 250 micron, and 500 micron (Herschel) emission distributions showing the classical morphology of a spherical shell. We use the 870 micron and 250 micron images to identify 60 dust clumps in the collected layers of molecular gas using the Gaussclumps algorithm. The clumps have effective deconvolved radii between 0.16 pc and 1.35 pc, masses between 70 Mo and 2800 Mo, and volume densities between 1.1x10^3 cm^-3 and 2.04x10^5 cm^-3. The total mass of the clumps is 37600 Mo. The dust temperature of the clumps is in the range from 21 K to 32 K, while inside the HII region reaches ~ 40 K. The clump mass distribution is well-fitted by a power law dN/dlog(M/Mo) proportional to M^(-alpha), with alpha=0.93+/-0.28. The slope differs from those obtained for the stellar IMF in the solar neighborhood, suggesting that the clumps are not direct progenitors of single stars/protostars. The mass-radius relationship for the 41 clumps detected in the 870 microns emission shows that only 37% of them lie in or above the high-mass star formation threshold, most of them having candidate YSOs projected inside. A comparison of the dynamical age of the HII region with the fragmentation time, allowed us to conclude that the collect and collapse mechanism may be important for the star formation at the edge of Gum 31, although other processes may also be acting.Comment: 15 pages, 10 figures. Accepted for publication in A&

    Adiabatic population transfer via multiple intermediate states

    Get PDF
    This paper discusses a generalization of stimulated Raman adiabatic passage (STIRAP) in which the single intermediate state is replaced by NN intermediate states. Each of these states is connected to the initial state \state{i} with a coupling proportional to the pump pulse and to the final state \state{f} with a coupling proportional to the Stokes pulse, thus forming a parallel multi-Λ\Lambda system. It is shown that the dark (trapped) state exists only when the ratio between each pump coupling and the respective Stokes coupling is the same for all intermediate states. We derive the conditions for existence of a more general adiabatic-transfer state which includes transient contributions from the intermediate states but still transfers the population from state \state{i} to state \state{f} in the adiabatic limit. We present various numerical examples for success and failure of multi-Λ\Lambda STIRAP which illustrate the analytic predictions. Our results suggest that in the general case of arbitrary couplings, it is most appropriate to tune the pump and Stokes lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure

    A Yule-Simon process with memory

    Full text link
    The Yule-Simon model has been used as a tool to describe the growth of diverse systems, acquiring a paradigmatic character in many fields of research. Here we study a modified Yule-Simon model that takes into account the full history of the system by means of an hyperbolic memory kernel. We show how the memory kernel changes the properties of preferential attachment and provide an approximate analytical solution for the frequency distribution density as well as for the frequency-rank distribution.Comment: 7 pages, 5 figures; accepted for publication in Europhysics Letter
    corecore