3,830 research outputs found
A dynamical trichotomy for structured populations experiencing positive density-dependence in stochastic environments
Positive density-dependence occurs when individuals experience increased
survivorship, growth, or reproduction with increased population densities.
Mechanisms leading to these positive relationships include mate limitation,
saturating predation risk, and cooperative breeding and foraging. Individuals
within these populations may differ in age, size, or geographic location and
thereby structure these populations. Here, I study structured population models
accounting for positive density-dependence and environmental stochasticity i.e.
random fluctuations in the demographic rates of the population. Under an
accessibility assumption (roughly, stochastic fluctuations can lead to
populations getting small and large), these models are shown to exhibit a
dynamical trichotomy: (i) for all initial conditions, the population goes
asymptotically extinct with probability one, (ii) for all positive initial
conditions, the population persists and asymptotically exhibits unbounded
growth, and (iii) for all positive initial conditions, there is a positive
probability of asymptotic extinction and a complementary positive probability
of unbounded growth. The main results are illustrated with applications to
spatially structured populations with an Allee effect and age-structured
populations experiencing mate limitation
Generalized polarizabilities and the spin-averaged amplitude in virtual Compton scattering off the nucleon
We discuss the low-energy behavior of the spin-averaged amplitude of virtual
Compton scattering (VCS) off a nucleon.
Based on gauge invariance, Lorentz invariance and the discrete symmetries, it
is shown that to first order in the frequency of the final real photon only two
generalized polarizabilities appear.
Different low-energy expansion schemes are discussed and put into
perspective.Comment: 13 pages, 1 postscript figure, Revtex using eps
Applying scale-free mass estimators to the Local Group in Constrained Local Universe Simulations
We use the recently proposed scale-free mass estimators to determine the
masses of the Milky Way (MW) and Andromeda (M31) galaxy in a dark matter only
Constrained Local UniversE Simulation (CLUES). While these mass estimators work
rather well for isolated spherical host systems, we examine here their
applicability to a simulated binary system with a unique satellite population
similar to the observed satellites of MW and M31. We confirm that the
scale-free estimators work also very well in our simulated Local Group galaxies
with the right number of satellites which follow the observed radial
distribution. In the isotropic case and under the assumption that the
satellites are tracking the total gravitating mass, the power-law index of the
radial satellite distribution is directly related
to the host's mass profile as .
The use of this relation for any given leads to highly accurate mass
estimations which is a crucial point for observer, since they do not know a
priori the mass profile of the MW and M31 haloes. We discuss possible bias in
the mass estimators and conclude that the scale-free mass estimators can be
satisfactorily applied to the real MW and M31 system.Comment: 14 pages, 6 figures, 6 tables. Accepted in MNRAS 2012 March 29.
Received 2012 March 29; in original form 2011 September 2
Low-energy and low-momentum representation of the virtual Compton scattering amplitude
We perform an expansion of the virtual Compton scattering amplitude for low
energies and low momenta and show that this expansion covers the transition
from the regime to be investigated in the scheduled photon electroproduction
experiments to the real Compton scattering regime.
We discuss the relation of the generalized polarizabilities of virtual
Compton scattering to the polarizabilities of real Compton scattering.Comment: 13 pages, LaTeX2e/RevTeX, no figure
Cinematic and aesthetic cartographies of subjective mutation
This article exmaines the use of cinema as a mapping of subjective mutation in the work of Deleuze, Gauttari and Berardi. Drawing on Deleuze's distinciton between the reduction of the art-work to the symptom and the idea of art as symptomatology, the article focuses on Berardi's use of cinematic examples, posing the quesiton in each case of to what extent they function as symptomatologies or mere symptoms of cultural and subjective mutations in examples ranging from Bergman's Persona to Van Sant's Elephant to finish on speculations about Fincher's The Social Network as a cirtical engagement with subjective mutation in the 21st Century
Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy
The orbital poles of Milky Way satellite galaxies: a rotationally supported disc-of-satellites
Available proper motion measurements of Milky Way (MW) satellite galaxies are
used to calculate their orbital poles and projected uncertainties. These are
compared to a set of recent cold dark-matter (CDM) simulations, tailored
specifically to solve the MW satellite problem. We show that the CDM satellite
orbital poles are fully consistent with being drawn from a random distribution,
while the MW satellite orbital poles indicate that the disc-of-satellites of
the Milky Way is rotationally supported. Furthermore, the bootstrapping
analysis of the spatial distribution of theoretical CDM satellites also shows
that they are consistent with being randomly drawn. The theoretical CDM
satellite population thus shows a significantly different orbital and spatial
distribution than the MW satellites, most probably indicating that the majority
of the latter are of tidal origin rather than being DM dominated
sub-structures. A statistic is presented that can be used to test a possible
correlation of satellite galaxy orbits with their spatial distribution.Comment: Accepted for publication in Ap
- …
