7,465 research outputs found

    Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998–2012

    Get PDF
    Atmospheric concentrations of dichloromethane, CH2Cl2, a regulated toxic air pollutant and minor contributor to stratospheric ozone depletion, were reported to have peaked around 1990 and to be declining in the early part of the 21st century. Recent observations suggest this trend has reversed and that CH2Cl2 is once again increasing in the atmosphere. Despite the importance of ongoing monitoring and reporting of atmospheric CH2Cl2, no time series has been discussed in detail since 2006. The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) has analysed the halocarbon content of whole-air samples collected at altitudes of between ~10–12 km via a custom-built container installed on commercial passenger aircraft since 1998, providing a long-term record of CH2Cl2 observations. In this paper we present this unique CH2Cl2 time series, discussing key flight routes which have been used at various times over the past 15 years. Between 1998 and 2012 increases were seen in all northern hemispheric regions and at different altitudes, ranging from ~7–10 ppt in background air to ~13–15 ppt in regions with stronger emissions (equating to a 38–69% increase). Of particular interest is the rising importance of India as a source of atmospheric CH2Cl2: based on CARIBIC data we provide regional emission estimates for the Indian subcontinent and show that regional emissions have increased from 3–14 Gg yr^-1 (1998–2000) to 16–25 Gg yr^-1 (2008). Potential causes of the increasing atmospheric burden of CH2Cl2 are discussed. One possible source is the increased use of CH2Cl2 as a feedstock for the production of HFC-32, a chemical used predominantly as a replacement for ozone-depleting substances in a variety of applications including air conditioners and refrigeration

    Methyl tetra-O-acetyl-α-d-glucopyranuronate: crystal structure and influence on the crystallisation of the β anomer

    Get PDF
    Methyl tetra-O-acetyl-β-d-glucopyranuronate (1) and methyl tetra-O-acetyl-α-d-glucopyranuronate (3) were isolated as crystalline solids and their crystal structures were obtained. That of the β anomer (1) was the same as that reported by Root et al., while anomer (3) was found to crystallise in the orthorhombic space group P212121 with two independent molecules in the asymmetric unit. No other crystal forms were found for either compound upon recrystallisation from a range of solvents. The α anomer (3) was found to be an impurity in initially precipitated batches of β-anomer (1) in quantities <3%; however, it was possible to remove the α impurity either by recrystallisation or by efficient washing, i.e. the α anomer is not incorporated inside the β anomer crystals. The β anomer (1) was found to grow as prisms or needles elongated in the a crystallographic direction in the absence of the α impurity, while the presence of the α anomer (3) enhanced this elongation

    Learning, Social Intelligence and the Turing Test - why an "out-of-the-box" Turing Machine will not pass the Turing Test

    Get PDF
    The Turing Test (TT) checks for human intelligence, rather than any putative general intelligence. It involves repeated interaction requiring learning in the form of adaption to the human conversation partner. It is a macro-level post-hoc test in contrast to the definition of a Turing Machine (TM), which is a prior micro-level definition. This raises the question of whether learning is just another computational process, i.e. can be implemented as a TM. Here we argue that learning or adaption is fundamentally different from computation, though it does involve processes that can be seen as computations. To illustrate this difference we compare (a) designing a TM and (b) learning a TM, defining them for the purpose of the argument. We show that there is a well-defined sequence of problems which are not effectively designable but are learnable, in the form of the bounded halting problem. Some characteristics of human intelligence are reviewed including it's: interactive nature, learning abilities, imitative tendencies, linguistic ability and context-dependency. A story that explains some of these is the Social Intelligence Hypothesis. If this is broadly correct, this points to the necessity of a considerable period of acculturation (social learning in context) if an artificial intelligence is to pass the TT. Whilst it is always possible to 'compile' the results of learning into a TM, this would not be a designed TM and would not be able to continually adapt (pass future TTs). We conclude three things, namely that: a purely "designed" TM will never pass the TT; that there is no such thing as a general intelligence since it necessary involves learning; and that learning/adaption and computation should be clearly distinguished.Comment: 10 pages, invited talk at Turing Centenary Conference CiE 2012, special session on "The Turing Test and Thinking Machines

    Cascaded four-wave mixing in tapered plasmonic nanoantenna

    Full text link
    We study theoretically the cascaded four-wave mixing (FWM) in broadband tapered plasmonic nanoantennas and demonstrate a 300-fold increase in nonlinear frequency conversion detected in the main lobe of the nanoantenna far-field pattern. This is achieved by tuning the elements of the nanoantenna to resonate frequencies involved into the FWM interaction. Our findings have a potentially broad application in ultrafast nonlinear spectroscopy, sensing, on-chip optical frequency conversion, nonlinear optical metamaterials and photon sources

    Serendipitous XMM-Newton discovery of a cluster of galaxies at z=0.28

    Get PDF
    We report the discovery of a galaxy cluster serendipitously detected as an extended X-ray source in an offset observation of the group NGC 5044. The cluster redshift, z=0.281, determined from the optical spectrum of the brightest cluster galaxy, agrees with that inferred from the X-ray spectrum using the Fe K alpha complex of the hot ICM (z=0.27 +/- 0.01). Based on the 50 ks XMM observation, we find that within a radius of 383 kpc the cluster has an unabsorbed X-ray flux, f_X (0.5-2 keV) = 3.34 (+0.08, -0.13) x 10^{-13} erg/cm^2/s, a bolometric X-ray luminosity, L_X = 2.21 (+0.34, -0.19) x 10^{44} erg/s, kT = 3.57 +/- 0.12 keV, and metallicity, 0.60 +/- 0.09 solar. The cluster obeys the scaling relations for L_X and T observed at intermediate redshift. The mass derived from an isothermal NFW model fit is, M_vir = 3.89 +/- 0.35 x 10^{14} solar masses, with a concentration parameter, c = 6.7 +/- 0.4, consistent with the range of values expected in the concordance cosmological model for relaxed clusters. The optical properties suggest this could be a ``fossil cluster''.Comment: 5 pages, 4 colour figures, accepted for publication in Ap

    Work extremum principle: Structure and function of quantum heat engines

    Full text link
    We consider a class of quantum heat engines consisting of two subsystems interacting via a unitary transformation and coupled to two separate baths at different temperatures Th>TcT_h > T_c. The purpose of the engine is to extract work due to the temperature difference. Its dynamics is not restricted to the near equilibrium regime. The engine structure is determined by maximizing the extracted work under various constraints. When this maximization is carried out at finite power, the engine dynamics is described by well-defined temperatures and satisfies the local version of the second law. In addition, its efficiency is bounded from below by the Curzon-Ahlborn value 1Tc/Th1-\sqrt{T_c/T_h} and from above by the Carnot value 1(Tc/Th)1-(T_c/T_h). The latter is reached|at finite power|for a macroscopic engine, while the former is achieved in the equilibrium limit ThTcT_h\to T_c. When the work is maximized at a zero power, even a small (few-level) engine extracts work right at the Carnot efficiency.Comment: 16 pages, 5 figure

    Crystal polymorphs and transformations of 2-iodo-4-nitroaniline

    Get PDF
    Full crystal structural characterization of three crystal polymorphs of 2-iodo-4-nitroaniline was carried out: the triclinic, orthorhombic, and a new monoclinic form. Powder X-ray diffraction, differential scanning calorimetry, and infrared data on the three of these are reported. Solvent-mediated transformations were observed on the basis of changes in crystal morphology and data from an in situ laser probe. Transformation to the monoclinic form was observed in all cases. [Published as part of a virtual special issue of selected papers presented in celebration of the 40th Anniversary Conference of the British Association for Crystal Growth (BACG), which was held at Wills Hall, Bristol, UK, September 6-8, 2009

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel
    corecore