174 research outputs found

    Exploring internal conversations to understand the experience of young adults transitioning out of care

    Get PDF
    Margaret Archer’s model of reflexivity suggests that it is our internal conversations, those conversations we have within our own minds, that enable us to decide how we act in relation to the constraints and enablements of social structure to realise a meaningful life. We use the concept of internal conversations to explore the experience of six care leavers. In-depth interviews were carried out, using the interview structure proposed by Archer, to elicit discussion of internal conversations. The research had three related aims: explore the relevance of Archer’s model of reflexivity to care leavers; explore how they make sense of planning and the future; and consider how care leavers make sense of their family and social relationships. There was considerable diversity in internal conversations and in how useful they were perceived to be; We suggest that previous trauma may impact the reflexivity of care leavers and how they engage in planning. Eight themes are discussed including: planning; early trauma and future orientation; making sense of themselves and their past; and the complexity of social relationships. The plurality of attitudes to future planning is of relevance to how care leavers are supported, particularly to pathway or transition planning

    Physiological and genetic aspects of a diploid potato population in the Netherlands and Northern Finland

    Get PDF
    Tuberization of potatoes exposed to different photoperiod regimes has been earlier investigated in several studies. However, there is still a limited understanding of the entire tuberization process and the factors influencing this process. One of the constraints of the previous studies has been the use of only one or a few genotypes. Furthermore, the experimental designs have not utilised the natural growing conditions with continuous changes in daylength during the growing season. The general aim of the project was to study the developmental dynamics of the broad-based potato (Solanum tuberosum L.) (CxE) population development at different climatical regimes under the very long-day, long-day and short conditions in Finland, the Netherlands and Ecuador/Venezuela, respectively. In this paper we are presenting some of the results achieved in the studies in Finland during the growing season 2004. In addition to population level trait characteristics we also describe here some of the identified QTLs (quantitative trait loci) for stolon related and tuber formation traits. In some cases we also compare the expression of some of the traits both in Finland and Netherlands.The main difference between the CxE population grown in Finland and the Netherlands was that the onset of flowering took place one week later in Finland. The relationship between tuber initiation and onset of flowering differed depending on the day length. In Finland approximately 70 % of the genotypes had swollen stolon tips before the onset of flowering, while in the Netherlands only 30 % of the genotypes had reached this condition. We also found numerous different trait linked QTLs, for example, a QTL associated with tuber formation was identified on chromosome E5, and QTLs associated with stolon characteristics on chromosomes E1, E4, E10 and E12. As a conclusion, the present preliminary results provide a good basis for determining the influence of different environmental conditions on potato development. In addition, the QTLs obtained in this study give a better understanding of the genetics of complex characters, and can be used in improving the potato crop in breeding programs

    Open-label, clinical phase I studies of tasquinimod in patients with castration-resistant prostate cancer

    Get PDF
    Background:Tasquinimod is a quinoline-3-carboxamide derivative with anti-angiogenic activity. Two open-label phase I clinical trials in patients were conducted to evaluate the safety and tolerability of tasquinimod, with additional pharmacokinetic and efficacy assessments.Methods:Patients with castration-resistant prostate cancer with no previous chemotherapy were enrolled in this study. The patients received tasquinimod up to 1 year either at fixed doses of 0.5 or 1.0 mg per day or at an initial dose of 0.25 mg per day that escalated to 1.0 mg per day.Results:A total of 32 patients were enrolled; 21 patients were maintained for >/=4 months. The maximum tolerated dose was determined to be 0.5 mg per day; but when using stepwise intra-patient dose escalation, a dose of 1.0 mg per day was well tolerated. The dose-limiting toxicity was sinus tachycardia and asymptomatic elevation in amylase. Common treatment-emergent adverse events included transient laboratory abnormalities, anaemia, nausea, fatigue, myalgia and pain. A serum prostate-specific antigen (PSA) decline of >/=50% was noted in two patients. The median time to PSA progression (>25%) was 19 weeks. Only 3 out of 15 patients (median time on study: 34 weeks) developed new bone lesions.Conclusion:Long-term continuous oral administration of tasquinimod seems to be safe, and the overall efficacy results indicate that tasquinimod might delay disease progression.British Journal of Cancer advance online publication, 15 September 2009; doi:10.1038/sj.bjc.6605322 www.bjcancer.com

    Expression of Multiple Resistance Genes Enhances Tolerance to Environmental Stressors in Transgenic Poplar (Populus × euramericana ‘Guariento’)

    Get PDF
    Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana ‘Guariento’) harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants

    Targeted plant improvement through genome editing: from laboratory to field

    Get PDF
    This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.European Cooperation in Science and Technology (COST) CA18111info:eu-repo/semantics/publishedVersio
    • …
    corecore