5,568 research outputs found

    Translational potential of long-term decreases in mitochondrial lipids in a mouse model of Gulf War Illness

    Get PDF
    Gulf War Illness (GWI) affects 25% of veterans from the 1990–1991 Gulf War (GW) and is accompanied by damage to the brain regions involved in memory processing. After twenty-five years, the chronic pathobiology of GWI is still unexplained. To address this problem, we examined the long-term consequences of GW exposures in an established GWI mouse model to identify biological processes that are relevant to the chronic symptoms of GWI. Three-month old male C57BL6 mice were exposed for 10 days to GW agents (pyridostigmine bromide and permethrin). Barnes Maze testing conducted at 15- and 16-months post-exposure revealed learning and memory impairment. Immunohistochemical analyses showed astroglia and microglia activation in the hippocampi of exposed mice. Proteomic studies identified perturbation of mitochondria function and metabolomics data showed decreases in the Krebs cycle compounds, lactate, β-hydroxybutyrate and glycerol-3 phosphate in the brains of exposed mice. Lipidomics data showed decreases in fatty acids, acylcarnitines and phospholipids, including cardiolipins in the brains of exposed mice. Pilot biomarker studies showed that plasma from exposed mice and veterans with GWI had increases in odd-chain, and decreases in long-chain, acylcarnitines compared to their respective controls. Very long-chain acylcarnitines were decreased in veterans with GWI compared to controls. These studies suggest that mitochondrial lipid disturbances might be associated with GWI and that further investigation is required to determine its role in the pathophysiology of this illness. Targeting mitochondrial function may provide effective therapies for GWI, and that lipid abnormalities could serve as biomarkers of GWI

    Polyamidoamine dendrimer impairs mitochondrial oxidation in brain tissue

    Get PDF
    Background: The potential nanocarrier polyamidoamine (PAMAM) generation 5 (G5-NH2) dendrimer has been shown to evoke lasting neuronal depolarization and cell death in a concentration-dependent manner. In this study we explored the early progression of G5-NH2 action in brain tissue on neuronal and astroglial cells.Results: In order to describe early mechanisms of G5-NH2 dendrimer action in brain tissue we assessed G5-NH2 trafficking, free intracellular Ca2+ and mitochondrial membrane potential (ΨMITO) changes in the rat hippocampal slice by microfluorimetry. With the help of fluorescent dye conjugated G5-NH2, we observed predominant appearance of the dendrimer in the plasma membrane of pyramidal neurons and glial cells within 30 min. Under this condition, G5-NH2 evoked robust intracellular Ca2+ enhancements and ΨMITO depolarization both in pyramidal neurons and astroglial cells. Intracellular Ca2+ enhancements clearly preceded ΨMITO depolarization in astroglial cells. Comparing activation dynamics, neurons and glia showed prevalence of lasting and transient ΨMITO depolarization, respectively. Transient as opposed to lasting ΨMITO changes to short-term G5-NH2 application suggested better survival of astroglia, as observed in the CA3 stratum radiatum area. We also showed that direct effect of G5-NH2 on astroglial ΨMITO was significantly enhanced by neuron-astroglia interaction, subsequent to G5-NH2 evoked neuronal activation.Conclusion: These findings indicate that the interaction of the PAMAM dendrimer with the plasma membrane leads to robust activation of neurons and astroglial cells, leading to mitochondrial depolarization. Distinguishable dynamics of mitochondrial depolarization in neurons and astroglia suggest that the enhanced mitochondrial depolarization followed by impaired oxidative metabolism of neurons may be the primary basis of neurotoxicity. © 2013 Nyitrai et al.; licensee BioMed Central Ltd

    Aberrant Calcium Signaling in Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell Model.

    Get PDF
    Down syndrome (DS) is a genetic disorder that causes cognitive impairment. The staggering effects associated with an extra copy of human chromosome 21 (HSA21) complicates mechanistic understanding of DS pathophysiology. We examined the neuron-astrocyte interplay in a fully recapitulated HSA21 trisomy cellular model differentiated from DS-patient-derived induced pluripotent stem cells (iPSCs). By combining calcium imaging with genetic approaches, we discovered the functional defects of DS astroglia and their effects on neuronal excitability. Compared with control isogenic astroglia, DS astroglia exhibited more-frequent spontaneous calcium fluctuations, which reduced the excitability of co-cultured neurons. Furthermore, suppressed neuronal activity could be rescued by abolishing astrocytic spontaneous calcium activity either chemically by blocking adenosine-mediated signaling or genetically by knockdown of inositol triphosphate (IP3) receptors or S100B, a calcium binding protein coded on HSA21. Our results suggest a mechanism by which DS alters the function of astrocytes, which subsequently disturbs neuronal excitability

    Astrocyte glutamine synthetase : pivotal in health and disease

    Get PDF
    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease

    Coupling of capillary RBC flow failure with neuronal depolarization

    Get PDF
    RBC (oxygen-carrier) behaviour in the cerebrocortical microvasculature during K^+^-induced cortical spreading depression (CSD) was examined in urethane-anesthetized male Wistar rats (n=10). The movements of FITC-labeled RBCs in single capillaries in the cortical region were traced with a high-speed camera laser scanning confocal fluorescence microscope and analyzed with Matlab domain software, KEIO-IS2, to obtain the velocities of all labeled RBCs appearing in local capillaries during CSD wave propagation. We found that CSD induced periodic decreases in both RBC number and velocity until RBCs halted or disappeared for 3.3 +/- 2.3 s, and then RBC flow was restored. The RBC flow stall was statistically significant (P < 0.05). During capillary flow failure in association with CSD spread, systemic arterial blood pressure remained unchanged. We conclude that RBCs are transiently sieved and stalled in capillaries during neuronal depolarization, and we suggest that this neuro-capillary coupling involves a hemorheological (viscosity-related) mechanism

    Peripheral Inflammation Enhances Microglia Response and Nigral Dopaminergic Cell Death in an in vivo MPTP Model of Parkinson’s Disease

    Get PDF
    The impact of systemic inflammation in nigral dopaminergic cell loss remains unclear. Here, we have investigated the role of peripheral inflammation induced by systemic lipopolysaccharide (LPS) administration in the MPTP-based model of Parkinson’s disease. Brain inflammation, microglia and astroglia activation, disruption of the blood–brain barrier (BBB) and integrity of the nigrostriatal dopaminergic system were evaluated in response to i.p. injection of LPS, MPTP or the combination of both. Our results showed that combinative treatment exacerbates microglia activation and enhances (i) the appearance of galectin-3-positive microglia, recently identified as microglial disease-associated phenotypic marker, (ii) the up-regulation of pro-inflammatory cytokines, (iii) the occurrence of A1 neurotoxic astrocytes, (iv) the breakdown of the BBB, and (v) the loss of dopaminergic neurons in the substantia nigra. Microglia activation was triggered earlier than other degenerative events, suggesting that over-activation of microglia (including different polarization states) may induce dopaminergic neuron loss by itself, initiating the endless cycle of inflammation/degeneration. Our study revitalizes the importance of peripheral inflammation as a potential risk factor for Parkinson’s disease and raises the possibility of using new anti-inflammatory therapies to improve the course of neurodegenerative diseases, including those directly aimed at modulating the deleterious activity of disease-associated microglia.España MINECO y FEDER SAF2015-64171-

    Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

    Get PDF
    Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications
    corecore