42 research outputs found

    Electric Water Heater Modelling for Direct Load Control Demand Response

    Get PDF
    Home Energy Management System creates the scopes to small household electrical appliances users to participate in the demand response programs. Among several load controllable electrical household appliances water heater is more suitable. Integration of water heater is considered to manage the demand response events that can contribute to smart grid technology. This paper represents a thermodynamic load model for a water heater, which is considered as to be controlled through direct load control for demand response program. The daily electricity consumption and temperature profile of the heater is also considered, the direct load control method is activated to the heater as soon as the energy consumption reaches to 1 kW, with the effects the device is turned off for next one hour. In results, it gained a significant reduction in the electricity consumption for the users without making any discomfort as temperature does not reduce to disruption level. Real time electricity pricing is also compared which implied financial benefit to the consumers. The result exhibit that the method applied to this heater can contribute and participate in the demand response events.The present work was done and funded in the scope of the following projects: H2020 DREAM-GO Project (Marie Sklodowska-Curie grant agreement No 641794); SIMOCE (ANI|P2020 17690); and UID/EEA/00760/2013 funded by FEDER Funds through COMPETE program and by National Funds through FCT.info:eu-repo/semantics/publishedVersio

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS

    Integrated modelling of electrical energy systems for the study of residential demand response strategies

    Get PDF
    Building and urban energy simulation software aim to model the energy flows in buildings and urban communities in which most of them are located, providing tools that assist in the decision-making process to improve their initial and ongoing energy performance. To maintain their utility, they must continually develop in tandem with emerging technologies in the energy field. Demand Response (DR) strategies represent one such family of technology that has been identified as a key and affordable solution in the global transition towards clean energy generation and use, in particular at the residential scale. This thesis contributes towards the development and application of a comprehensive building and urban energy simulation capability that parsimoniously represents occupants' energy using behaviours and responses to strategies to influence them. This platform intends to better unify the modelling of Demand Response strategies, by integrating the modelling of different energy systems through Multi Agent Simulation, considering stochastic processes taking place in electricity demand and supply. This is addressed by: (a) improving the fidelity of predictions of household electricity demand, using stochastic models, (b) demonstrating the potential of Demand Response strategies using Multi-Agent Simulation and machine learning techniques, (c) integrating a suitable model for the low voltage network to study and incorporate effects on the grid, (d) identifying how this platform should be extended to better represent human-to-device interactions; to test strategies designed to influence the scope and timing of occupants' energy using services. Stochastic demand models provide the means to realistically simulate power demands, which are subject to naturally random human behaviour. In this work, the power demand arising from small household appliances is identified as a stochastic variable, for which different candidate modelling methods are explored. Variants of two types of stochastic models have been tested, based on discrete time and continuous time stochastic processes. The alternative candidate models are compared and validated using Household Electricity Survey data, which is also used to test strategies, informed by advanced cluster analysis techniques, to simplify the form of these models. The recommended small appliance model is integrated with a Multi Agent Simulation (MAS) platform, which is in turn extended and deployed to test DR strategies, such as load shifting and electric storage operation. In the search for optimal load-shifting strategies, machine learning algorithms, Q-learning in particular, are utilised. The application of this new developed tool, No-MASS/DR, is demonstrated through the study of strategies to maximise the locally generated renewable energy of a single household and a small community of buildings connected to a Low Voltage network. Finally, an explicit model of the Low Voltage (LV) network has been developed and coupled with the DR framework. The model solves for power-flow analysis of a general low-voltage distribution network, using an electrical circuit-based approach, implemented as a novel recursive algorithm, that can efficiently calculate the voltages at different nodes of a complex branched network. The work accomplished in this thesis contributes to the understanding of residential electricity management, by developing better unified modelling of Demand Response strategies, that require integrated modelling of energy systems, with a particular focus on the study of maximising locally generated renewable energy

    Non-intrusive load monitoring: Use of low resolution steady state features to disaggregate household appliances

    Get PDF
    This work focuses on understanding capability and limits of low resolution steady state features to disaggregate domestic appliances. Features are active and eventually reactive power with sampling period of one or few seconds. Three algorithms have been used: Hart, Weiss and EICCA - NILM algorithms. This work details results for several appliance groups. Time of occurrence has been investigated as a possible feature, exposing results and limitations

    On the energy demands of small appliances in homes

    Get PDF
    Understanding the use of electrical appliances in households is crucial for improving the accuracy of electricity and energy loads forecasts. In particular, bottom-up techniques provide a powerful tool, not only for predicting demands considering socio-demographic characteristics of the occupants, but also to better resolve and implement demand side management strategies in homes. With this purpose, a study of the temporal energy use of low-load appliances (meaning those whose annual energy share is individually negligible but relevant when considered as a group) has been carried out, with the longer term objective of finding a parsimonious approach to modelling them, and which considers an appropriate aggregation of appliances. In this work, a discrete-time stochastic process has been implemented for a specific classification of low-load appliances. More precisely, a time-inhomogeneous Markov chain has been used to model energy variations over time for four different categories of appliances and its prediction capabilities have been tested and compared

    Integrated modelling of electrical energy systems for the study of residential demand response strategies

    Get PDF
    Building and urban energy simulation software aim to model the energy flows in buildings and urban communities in which most of them are located, providing tools that assist in the decision-making process to improve their initial and ongoing energy performance. To maintain their utility, they must continually develop in tandem with emerging technologies in the energy field. Demand Response (DR) strategies represent one such family of technology that has been identified as a key and affordable solution in the global transition towards clean energy generation and use, in particular at the residential scale. This thesis contributes towards the development and application of a comprehensive building and urban energy simulation capability that parsimoniously represents occupants' energy using behaviours and responses to strategies to influence them. This platform intends to better unify the modelling of Demand Response strategies, by integrating the modelling of different energy systems through Multi Agent Simulation, considering stochastic processes taking place in electricity demand and supply. This is addressed by: (a) improving the fidelity of predictions of household electricity demand, using stochastic models, (b) demonstrating the potential of Demand Response strategies using Multi-Agent Simulation and machine learning techniques, (c) integrating a suitable model for the low voltage network to study and incorporate effects on the grid, (d) identifying how this platform should be extended to better represent human-to-device interactions; to test strategies designed to influence the scope and timing of occupants' energy using services. Stochastic demand models provide the means to realistically simulate power demands, which are subject to naturally random human behaviour. In this work, the power demand arising from small household appliances is identified as a stochastic variable, for which different candidate modelling methods are explored. Variants of two types of stochastic models have been tested, based on discrete time and continuous time stochastic processes. The alternative candidate models are compared and validated using Household Electricity Survey data, which is also used to test strategies, informed by advanced cluster analysis techniques, to simplify the form of these models. The recommended small appliance model is integrated with a Multi Agent Simulation (MAS) platform, which is in turn extended and deployed to test DR strategies, such as load shifting and electric storage operation. In the search for optimal load-shifting strategies, machine learning algorithms, Q-learning in particular, are utilised. The application of this new developed tool, No-MASS/DR, is demonstrated through the study of strategies to maximise the locally generated renewable energy of a single household and a small community of buildings connected to a Low Voltage network. Finally, an explicit model of the Low Voltage (LV) network has been developed and coupled with the DR framework. The model solves for power-flow analysis of a general low-voltage distribution network, using an electrical circuit-based approach, implemented as a novel recursive algorithm, that can efficiently calculate the voltages at different nodes of a complex branched network. The work accomplished in this thesis contributes to the understanding of residential electricity management, by developing better unified modelling of Demand Response strategies, that require integrated modelling of energy systems, with a particular focus on the study of maximising locally generated renewable energy

    Appliance electrical consumption modelling at scale using smart meter data

    Get PDF
    The food industry is one of the world's largest contributors to carbon emissions, due to energy consumption throughout the food life cycle. This paper is focused on the residential consumption phase of the food life cycle assessment (LCA), i.e., energy consumption during home cooking. Specically, while much eort has been placed on improving appliance energy eciency, appliance models used in various applications, including the food LCA, are not updated regularly. This process is hindered by the fact that the cooking appliance models are either very cumbersome, requiring knowledge of parameters which are dicult to obtain or dependent on manufacturers' data which do not always re ect variable cooking behaviour of the general public. This paper proposes a methodology for generating accurate appliance models from energy consumption data, obtained by smart meters that are becoming widely available worldwide, without detailed knowledge of additional parameters such as food being prepared, mass of food, etc. Furthermore, the proposed models, due to the nature of smart meter data, are built incorporating actual usage patterns re ecting specic cooking practice. We validate our results from large, geographically spread energy datasets and demonstrate, as a case study, the impact of up-to-date models in the consump- tion phase of food LCA
    corecore