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Abstract

Building and urban energy simulation software aim to model the energy �ows

in buildings and urban communities in which most of them are located, providing

tools that assist in the decision-making process to improve their initial and ongoing

energy performance. To maintain their utility, they must continually develop in

tandem with emerging technologies in the energy �eld. Demand Response (DR)

strategies represent one such family of technology that has been identi�ed as a key

and a�ordable solution in the global transition towards clean energy generation

and use, in particular at the residential scale.

This thesis contributes towards the development and application of a compre-

hensive building and urban energy simulation capability that parsimoniously rep-

resents occupants' energy using behaviours and responses to strategies to in�uence

them. This platform intends to better unify the modelling of Demand Response

strategies, by integrating the modelling of di�erent energy systems through Multi

Agent Simulation, considering stochastic processes taking place in electricity de-

mand and supply. This is addressed by: (a) improving the �delity of predictions of

household electricity demand, using stochastic models, (b) demonstrating the po-

tential of Demand Response strategies using Multi-Agent Simulation and machine

learning techniques, (c) integrating a suitable model for the low voltage network to

study and incorporate e�ects on the grid, (d) identifying how this platform should

be extended to better represent human-to-device interactions; to test strategies

designed to in�uence the scope and timing of occupants' energy using services.

Stochastic demand models provide the means to realistically simulate power de-

mands, which are subject to naturally random human behaviour. In this work, the
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power demand arising from small household appliances is identi�ed as a stochastic

variable, for which di�erent candidate modelling methods are explored. Variants

of two types of stochastic models have been tested, based on discrete time and con-

tinuous time stochastic processes. The alternative candidate models are compared

and validated using Household Electricity Survey data, which is also used to test

strategies, informed by advanced cluster analysis techniques, to simplify the form

of these models.

The recommended small appliance model is integrated with a Multi Agent

Simulation (MAS) platform, which is in turn extended and deployed to test DR

strategies, such as load shifting and electric storage operation. In the search for

optimal load-shifting strategies, machine learning algorithms, Q-learning in par-

ticular, are utilised. The application of this new developed tool, No-MASS/DR,

is demonstrated through the study of strategies to maximise the locally gener-

ated renewable energy of a single household and a small community of buildings

connected to a Low Voltage network.

Finally, an explicit model of the Low Voltage (LV) network has been developed

and coupled with the DR framework. The model solves for power-�ow analysis

of a general low-voltage distribution network, using an electrical circuit-based ap-

proach, implemented as a novel recursive algorithm, that can e�ciently calculate

the voltages at di�erent nodes of a complex branched network.

The work accomplished in this thesis contributes to the understanding of resi-

dential electricity management, by developing better uni�ed modelling of Demand

Response strategies, that require integrated modelling of energy systems, with a

particular focus on the study of maximising locally generated renewable energy.
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Chapter 1

Introduction

1.1 Motivation

The uptake of low carbon technologies is growing worldwide, as a consequence of

political regulation to reduce carbon emissions. In the UK, the domestic sector

is responsible for 20% of such emissions, and current trends indicate larger shares

in the future, as a result of the electri�cation of heat and transport. Electrical

devices and appliances used in households are thus becoming very important, and

it is crucial to understand how and why they are being used. Deployment of Dis-

tributed Generation (DG) sources at domestic scale is also expanding, bringing

new challenges to manage and control transmission and distribution of electricity.

The energy generation infrastructure is evolving, and new and improved technol-

ogy solutions are emerging, such as energy storage devices and Demand Response

solutions. Generally, these solutions may result in capital investment bene�ts for

utility companies, as they can defer the need for costly upgrades in the transmission

and distribution systems.

Building and urban energy simulation software aim to model the energy �ows
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in buildings and urban communities in which most of them are located, provid-

ing tools that assist in the decision-making process to improve their initial and

ongoing energy performance. It is therefore important that building and urban

simulation software is able to address new technological opportunities, such as

those mentioned above, using appropriate computing modelling techniques. This

task is complicated by the fact that in real households, there is a large variabil-

ity in occupants' energy using behaviours, referring to demand patterns, device

interaction or consumption management, which signi�cantly in�uence electricity

and heating demands. These stochastic behavioural processes should therefore be

represented in our computer simulations.

This thesis aims to address the above challenges; contributing towards the

achievement of a comprehensive building and urban energy simulation capability

that parsimoniously represents occupants' energy using behaviours and responses

to strategies to in�uence them; demonstrating the application of this new platform,

No-MASS/DR, through the study of strategies to maximise the locally generated

renewable energy of a single household and a small community of buildings con-

nected to a Low Voltage network.

Research context

AMulti-Agent Stochastic Simulation platform called No-MASS has been developed

in previous research (Figure 1.1), whose purpose is to augment existing building/ur-

ban simulation software to consider the stochastic actions of occupants. Thus far

it has mostly focused on thermal energy e�ects by implementing models of occu-

pants' locations and presence, activities and associated metabolic heat gains and

their interactions with windows, lights and shading devices; accounting also for
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negotiations between peers that in�uence these interactions. These models allow

building simulation software to more accurately and realistically calculate heat

�ows and associated energy demands.

Electrical energy loads have also previously been studied through models re-

lated to appliance usage: both appliance ownership and appliance use, whether

conditional or not on the associated activities. However, these models have only

considered large devices, meaning those that individually have a signi�cant energy

use and are commonly owned (e.g. fridge, dishwasher, washing-machine, cooker,

microwave and TV). There is no such model of small electrical appliances that may

not be signi�cant individually, but are when considered as like groups (aggregates

of similar type).

An extension to No-MASS is proposed in this thesis to also consider Demand

Response modelling, as depicted in Figure 1.1.

1.2 Objectives

This thesis contributes to knowledge by a) improving the �delity of predictions of

household electricity demand, b) demonstrating the potential of Demand Response

strategies using Multi-Agent Simulation and machine learning techniques and c)

integrating a suitable model for the low voltage network to study and incorporate

e�ects on the grid. The objectives of this thesis are therefore to:

Objective I. Develop stochastic models of demand for the use of small appli-

ances in homes (to complement existing models of relatively large appliances).

This requires that a range of modelling strategies are compared selecting the most

parsimonious.



4 Chapter 1. Introduction

Figure 1.1: No-MASS and proposed extension to No-MASS/DR.

Key requirements here are to:

a. Account for the time-dependency of electricity demand due to small appli-

ances.

b. Realistically describe demand in individual households, through appropriate

aggregation, either modelling appliances individually or as a group.

Objective II. Demonstrate the potential for Multi-Agent Simulation and ma-

chine learning algorithms to evaluate DR strategies, and propose a feasible method-

ology to investigate the maximization of renewable self-consumption in residential

communities. To achieve this it is necessary to:
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1. Identify a set of requirements that a DR simulation platform should aim

to satisfy, including the optimised use of local power sources, power loads

and storage devices and its impact on the power grid, but also enabling

interactions between devices and users.

2. Test the use of Multi Agent Simulation as a software architecture to address

these requirements.

3. Test the use of agent learning as a method for simulating DR strategies

(appliance re-schedule and battery operation) that support maximization of

on-site renewable energy use.

4. Explore applications for a single house and for a community of buildings.

A further general goal of this work is to develop and couple it with building/urban

energy simulation software using exclusively open-source software, to maximise

accessibility by the international research community and thereby its impact.

Objective III. Build a model for load �ow analysis of a residential low voltage

distribution network, which satis�es the following requirements:

1. The source code of the model should be available for its future implementa-

tion with building/urban energy simulation software.

2. Load-�ow analysis is e�ciently performed for a typical radial distribution

network, including branched layouts.

3. The nodes of the network may represent either electricity use from single

appliances or aggregated power for the household.

4. Models (or input data) for microgeneration, electrical storage devices or Elec-

tric Vehicles (EV) can be easily added to the network model.
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1.3 Research approach

Objective I is achieved by developing data-driven models, which are based on

stochastic methods. More speci�cally, discrete (Markov) time processes and con-

tinuous (survival) time processes. For this thesis, the Household Electricity Survey

dataset [1] was analysed for parameter extraction. The methodology presented in

this work has been thoroughly validated using 10-fold cross validation on the same

dataset.

Objective II has been implemented as a Multi-Agent Stochastic Simulation,

where occupants and electrical devices are represented as agents. Each agent has a

range of properties and the ability to negotiate and interact with other agents, in

order to achieve individual and common goals. Some device agents are conferred

with learning intelligence to achieve such goals, via machine learning algorithms

(Q-learning in particular). Two DR mechanisms are implemented: load shifting

and battery discharge, for which the learning agents use information about the

system (such as the electricity cost signal, total power demands or renewable energy

available). The strategies studied in this thesis are focused on improving electricity

use from renewable local sources.

Improve renewable 
energy self-consumption 
by minimising cost

B.
D.

Demand Response 
mechanisms

Appliance 
reschedule

I )

2 ) Battery 
discharge

Achieve 
objective

C. Q-learning 
algorithm

Reward 
function

Mathematical
formulation

Figure 1.2: DR methodology proposed.
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Objective III uses a forward/backward sweep method to solve the power-�ow.

Computationally speaking, it has been implemented as a recursive algorithm, which

solves branched network layouts very e�ciently. In its early stages, the method was

validated against equivalent MATLAB Simulink models, producing the same re-

sults, with improvements in solver speed. MATLAB Simulink is a well-established

software, extensively used for power-�ow simulation. However, it requires an ex-

pensive license, failing in our open-source requirement as stated above.

1.4 Contribution to knowledge

The primary contribution of this thesis is the delivery of a simulation frame-

work that, when used as stand-alone software, is able to handle simultaneously

i) stochastic power demands, ii) device-to-device interactions for energy balancing

and DR of electrical equipment and iii) load �ow analysis, complementing exist-

ing functionality to handle occupants' behaviour and associated human-to-human

interaction. Moreover, it has been coupled with building/urban energy simulation

software and it is readily extensible to emulate device-to-human interactions.

More speci�cally, this thesis presents an e�ective methodology to model groups

of small appliances, even when they are of a di�erent type. It provides a mathe-

matical formulation to reduce Markov's transition matrix' dimensionality, by using

a state-of-the-art density clustering algorithm, with potential applications beyond

the energy modelling community.

It also puts into practice a novel implementation to perform load-�ow analysis

with a forward/backward sweep method using Object Oriented programming and

recursion, which is suitable to be integrated into a Demand Response simulation

framework.
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Foreword

The work presented in Chapters 4 and 5 is the result of a close collaboration with

Dr J. Chapman. As part of our goal to produce robust software, this collaboration

bene�ted from Chapman's advanced computing and programming skills, being re-

sponsible for developing C++ code to implement the models and algorithms used

and debugging tasks. The author's contribution to those chapters is mainly based

on the development, testing and application of the fundamental algorithms. In-

cluding also literature review, identi�cation of software requirements, testing and

using the software platform, �nding appropriate parameters and reward functions,

producing results, carrying out their analysis and identifying where and how im-

provements to the software are required.
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Figure 1.3: Thesis structure.
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Chapter 2

Stochastic Methods for Appliance

Modelling

Stochastic processes describe systems that are subject to random fea-

tures mathematically. When modelling them, we do not attempt to

model the occurrence of events (with respect to time) but the proba-

bility of occurrence of such events. Stochastic processes are thus repre-

sented with random variables. In our work, we identify the power de-

mand coming from small appliances to be a stochastic variable. Based

on that, we explore di�erent methods to model the electricity usage of

appliances in homes. In this chapter, the mathematical methods and

techniques used are explained and developed in detail. In particular,

two types of models have been tested: a) a discrete time discrete state

process: Markov chain, whose transition matrix dimension has been

reduced using cluster analysis; and b) a continuous-time and discrete

state process: survival analysis.

2.1 Introduction

In the UK approximately 20% of energy use in households is due to electrical

appliances [2], and this proportion is higher in better insulated homes. Residential

electrical appliance use has direct implications for local Low Voltage (LV) networks,

the loads on them and their integrity; and indirect implications for thermal energy
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demands, since electrical energy is ultimately dissipated as heat, most of which

is emitted within the building envelope. It is therefore important to be able to

reliably predict electrical appliance use, in particular the magnitude and temporal

variation of the energy use and power demand pro�les arising from the aggregation

of individual appliances, to support design and regulation of LV networks serving

communities of buildings and of building's thermal systems.

But this is a complicated task, for the ownership and use of di�erent types of

appliance varies signi�cantly from house to house, and between users. Addressing

this diversity requires that we have an appropriate basis for allocating appliances

to households depending on their composition and socio-economic characteristics

and for predicting their subsequent use. This in turn implies the use of stochastic

simulation and bottom-up approaches that may also facilitate the future testing

of Demand Side Management (DSM) strategies.

So far, bottom-up approaches have focused on the modelling of high-load ap-

pliances: those that are commonly owned and which contribute signi�cantly to

total annual electricity use. Examples include cold (fridge and freezer), wet (wash-

ing machine and dishwasher) and cooking appliances. For example, the model of

Jaboob [3] predicts when the appliances are switched on, the duration for which

they will remain on and their �uctuating power demands whilst on. But in our

everyday lives we also use myriad low-load appliances. Their individual share of

energy use may be small, in some cases even negligible, but it is signi�cant when

considering them as a group (or groups).

As stated in section 1.2, one of the objectives of this thesis is to �nd a parsimo-

nious strategy for modelling low-load appliances. In this we distinguish between

four categories of appliance: audio-visual, computing, kitchen and other appli-
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ances, which collectively account for those that are not represented by current

device speci�c models.

The remainder of this chapter is organised as follows: section 2.2 introduces

former work in the �eld; the modelling tasks proposed are outlined in section 2.3;

in section 2.4 the mathematical methods employed in the modelling are described;

�nally the validation methods used are presented in section 2.5.

2.2 Literature Review

Bottom-up approaches describe the dynamics of a system by explicitly modelling

the behaviour of the individual parts of that system. For the case of energy use,

they consider the individual modelling of every end-use, or aggregates of them, in

order to obtain aggregate pro�les. These approaches are particularly promising

given their potential for a) improving predictions of energy use of individual build-

ings or neighbourhoods when integrated with building energy simulation, b) sizing

decentralised generation and storage devices, and c) testing Demand Side Man-

agement (DSM) strategies and rules for load management. Moreover, bottom-up

approaches have the potential to explicitly include the e�ects of household com-

position and individuals' behavioural diversity.

Regarding appliance modelling, bottom-up approaches can be con�gured at

di�erent aggregation levels: from a pure microsimulation where each device is

explicitly modelled, to strategies that consider aggregations of device for typologies

of them.

Detailed microsimulation approaches are considered in probabilistic empirical

models (as de�ned in [4]), which tend to model appliances one-by-one. Collected

data, information on dwelling and household (occupants) characteristics, techni-
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cal properties of appliances and aggregated values of energy use are combined in

such approaches, and probabilistic methods are applied to generate results with

pro�le diversity. Stokes' model [5] generates pro�les at three aggregation levels:

30-minute-resolution average household, 30-minute-resolution speci�c household

(with occupancy considerations) and 1-minute resolution speci�c household (in-

cluding information relating to appliances' cycles). It considers 14 appliances plus

miscellaneous, although only 9 di�erent input monitored power cycles are taken

into account, resulting in a limitation on the diversity of pro�les generated, which

in turn leads to poor results estimating the energy demand in the validation of

the models. Paatero and Lund [6] introduce a social random factor (supposed to

capture the social variety of the demand) that improves the diversity of patterns

obtained; however, only yearly consumption data for the 16 end-uses is used for

the generation of the models, together with other aggregate statistics, restricting

the resolution to hourly time steps. In general, these approaches do not describe in

terms of model parameters the dynamic behaviour of appliances, but they generate

empirical pro�les of power demand as a function of time.

Relatively more aggregated methods are models based on time-use-survey (TUS)

datasets. In TUS datasets, the respondents �ll in diaries of their activities during

the day usually for one week periods, such as cooking, sleeping, travelling to work,

etc. This data provides a powerful input to bottom-up models, since it encap-

sulates highly detailed information describing occupants' activities, that can be

related to the use of appliances. To this end, Capasso [7] presents a �rst strategy

linking occupants' activities with appliance use, using TUS data. The model pro-

duces 15-minute pro�les of electricity use, considering aggregations of appliance

that correspond to just four type of activities: cooking, housework, leisure and
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hygiene; each associated with a blend of large and small appliances, which are

allocated by considering the average range of appliances present in the simulated

household. The relation between performing an activity and using an appliance

is described with a single coe�cient α (de�ned as a human resources). Tanimoto

[8] combines TUS with statistical data of ownership of appliances and its peak

and stand-by powers. 31 activities are considered in this case, so that the level of

aggregation is low, but this is contrasted by a small dataset size (58 households

over 2 days).

In a similar vein, Widén [9] uses Swedish TUS data to model electricity use

by assigning appliances to related activities (9 di�erent categories in this case)

and imposing �ve standard end-use pro�les based on the type of their demand

pro�le: demand disconnected from activity, power demand constant during activ-

ity, power demand constant after activity (with and without addition of temporal

constraint) and �uctuating power demand (only applied to lighting). This ap-

proach is further developed in [10], where inhomogeneous Markov chains generate

sequences of domestic activities that have an impact on power demand (5 minute

and 1 hour granularity), including dependencies with the number of occupants

performing these activities. A yet �ner temporal resolution of 1 minute is achieved

in the work developed by Richardson et al.[11]. Based on 7 di�erent activities, a

load curve for the appliances is created using the probability of switching on an

appliance when an activity is being performed, and applying a �xed power con-

version scheme. Using a calibration procedure based on the total time of use of an

appliance, they obtain annual energy predictions. Although this tuning ensures a

good overall match in annual energy demand, this does not imply the absence of

compensating errors in the modelling of di�erent appliance typologies, or that the
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dynamic characteristics of appliance use are well represented.

Although activity modelling is a promising method to obtain accurate energy

demand pro�les, this activity-appliance pairing approach does not facilitate the

modelling of the range of appliances, because the activities that are recorded in

time use surveys is insu�ciently detailed, limiting the applicability of this approach

to the modelling of either relatively high-load appliances or aggregations of small

and large appliances for which there is weak empirical evidence. There has been no

rigorous validation of those bottom-up modelling strategies to date, whether these

are based on TUS data or not, to demonstrate their ability to faithfully capture

energy use/power demand dynamics. These methods also have no rigorous basis for

modelling the dependency of appliance ownership and related use characteristics

as a function of household socio-demographic composition.

In partial response to these shortcomings, Jaboob [3] assigns (exclusively large)

appliances to households as a function of their socio-demographic characteristics.

The activities of the members of these households are then predicted, from which

the conditional likelihood that related appliances will be switch on is modelled,

as is the corresponding duration that they will remain on and their time-varying

mean power demands whilst on. Thus, this modelling chain rigorously resolves

for dynamic variations in mean power demand, in contrast to static power con-

version schemes. Moreover, it presents the possibility of being used together with

explicit models of low-load appliances, in order to obtain accurate values of the

total electricity use of a house.

To this end and informed by these past endeavours, our task is to develop a

parsimonious strategy for the use of relatively low-load appliances, in complement

to Jaboob's model of high-load appliances.
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2.3 Proposed modelling tasks

In this work we are interested in modelling the energy and power demands of

low-load appliances to support building, systems and network design. In order to

contribute to accurate predictions of residential energy use, we need to address the

diversity in dwelling characteristics and human behaviours. Thus, we identify the

following modelling tasks:

I Low-load appliances are categorised into four groups: audio-visual, comput-

ing, small kitchen and other (miscellaneous housework, garden and personal

care appliances). This classi�cation keeps the possibility of linking the mod-

elling of low-load appliances with occupants' activity modelling, which in

turn allows for considering socio-demographic factors. Low-load appliance

allocation is performed using a random sampling of the total rated power

(sum of all devices in te category) of aggregates of appliances, based on the

available data set.

II Model the characteristic use of these appliances in individual households. To

this end, we utilise the fractional energy use f(t): the ratio of the actual to

the maximum energy Emaxk,i that an appliance i belonging to a category k

can use, determined by its rated power. Modelling f(t), we can distinguish

between:

• Switching on/o� events.

• Fluctuating demands whilst the appliances are in use.

The modelling of fractional power can be applied to modelling single devices

(fj(t), where j is a speci�c type of appliance) or aggregates of them (fk(t)
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where k refers to a category of appliances).

Two considerations need to be taken into account in carrying out these tasks.

Firstly, stochastic methods are required, as we are interested in describing the un-

derlying randomness in households' appliance use and investment decisions. These

methods rely on the de�nition of coe�cients that represent the system as a prob-

ability distribution, which can be dependent on di�erent variables such as time

of the day, number of occupants, weather, etc. Secondly, using the normalized

fractional energy of individual appliances fj(t) instead of absolute energy allows

us to evaluate load pro�les from di�erent appliances of a similar type, but that do

not necessarily have the same magnitude. In this way, appliances can be classi�ed

into groups and modelled as a category (fk(t)).

Candidate techniques that have been used to good e�ect in the modelling of

occupants' behaviours include Bernoulli processes (activities [3]), discrete-time ran-

dom or Markov processes (presence [12], blinds [13], windows [14]) and continuous-

time random processes (blinds [13], windows [14]): the latter being a hybrid be-

tween discrete and continuous time random process models.

Furthermore, it has been previously shown [3, 9, 11] that stochastic methods

are successful in describing energy demands and the information listed in Task II.

In the work here presented, two of these statistical approaches have been exploited:

• Discrete-time Markov processes can model the probability of transitions oc-

curring between energy states s(t), with or without time dependency. Energy

states are the result of discretising the range of fractional energy values. This

discretization process can be more e�ciently achieved if complemented with

clustering techniques.

• Survival analysis can model the switching-on/o� of appliances, as well as the
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duration an appliance remains in di�erent energy states.

In the methodology presented here we have tested a range of strategies in order

to �nd the most parsimonious approach. In this, we have ensured that the number

of subjective decisions needed for modelling have been minimised, so that the

methodology can be appropriately applied independently of the data set employed

to estimate the models' coe�cients.

2.4 Methods: modelling fractional energy

2.4.1 Discrete-time Markov processes

A Markov process is a stochastic process that ful�ls the Markov property, by which

a future state depends on the most recent state, and not on any prior history

[15]. A stochastic process X(t) is therefore a Markov process if for every n and

t1 < t2 < · · · < tn:

P [X(tn) = xn|X(tn−1) = xn−1, . . . , X(t1) = x1] = P [X(tn) = xn|X(tn−1) = xn−1].

(2.1)

Markov chains describe the process of making transitions between a present state

i to a future state j, according to a probability distribution, described by a state

transition probability matrix (or Markov matrix) as follows:

Pij =



p11(t) p12(t) . . . p1m(t)

p21(t) p22(t) . . . p2m(t)

...
...

. . .
...

pm1(t) pm2(t) . . . pmm(t)


, (2.2)
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where

pij(t) =
nij(t)

ni(t)
=

nij(t)∑
j nij(t)

(2.3)

is the probability that a transition from i to j takes place, given by the ratio of

transitions that occur to state j from i to the total number of transitions occurring

from i.

The dimensions of a Markov matrix m×m are given by the number of states

m de�ned in the system. At the same time, the coe�cients in the matrix may

or may not depend on time. In the �rst instance, a time-homogeneous Markov

process is considered, where the system can be described using a single matrix.

We then consider a time-inhomogeneous Markov chain, in which the number of

matrices r is given by the number of time slots considered to have di�erent transi-

tion probabilities. For instance, if it is assumed that the probabilities are di�erent

for each hour of a day, then r = 24 (considering a single-day). This means that

the probability distribution is given by a matrix of dimension r ×m×m.

Appropriate dimensioning of the Markov matrices is not a trivial task: if m

and r are set too low or even equal to 1, the dynamics or temporal variation of

the system may not be suitably described by the model. On the other hand, if m

and r are set too high, there is a risk of performing redundant calculations, adding

unnecessary computing complexity, as well as a risk of over�tting the model.

In our case, fractional energyf(t) is a continuous variable with values between

0 and 1, that is discretized into m energy states s. The time variable t is discrete,

and it takes values every 10 minutes, but it can also be divided into r temporal

states. In this sense, the subdivision chosen of the two-dimensional space {t, f}

generated by the time of the day and the fractional energy of a category of appli-

ances will set the values of m and r, that determine the dimension of the transition
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matrix. Consequently, estimating an adequate and e�cient subdivision of {t, f}

is key in the formulation of a parsimonious model. In our search for an objective

methodology, clustering techniques were identi�ed as good candidates to evaluate

the partitioning of this space.

2.4.2 Matrix dimensioning: Density based clustering

Cluster analysis techniques provide a powerful and systematic mechanism for iden-

tifying groups or common features of a database D of n objects. There are a large

number of clustering algorithms, two of the main being hierarchical and partitional

[16] algorithms. The former decomposes D into a nested hierarchy of clusters, rep-

resented by a dendrogram, i.e. a tree diagram that splits the database into subsets

of smaller size, until each object belongs to one subset. The process can be agglom-

erative or divisive, depending on whether the structure is made from the leaves

towards the root or from the root to the leaves. The latter creates a single-level

partition of D into k clusters based on similarity and distance measures. The pa-

rameter k is required as an input, even though it is not generally known a priori.

A third type of clustering method is density-based clustering algorithms, which

apply local cluster criteria [17] in order to classify D. They identify regions of

high density that are separated from other clusters by regions of a low density of

points, which can be classi�ed as noise. Each object of the database is evaluated

in terms of density in the neighbourhood, which has to exceed some threshold.

Density-based clustering algorithms present some advantages over other types of

clustering:

(i) They are suitable for large data sets.

(ii) Clusters may have irregular shapes.
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(iii) Although distance metrics are employed, clusters are identi�ed based on

density estimations of areas of the data set. The advantage of this is the

identi�cation of points that do not belong to any cluster, allowing for the

treatment of unstructured (noise) points.

DBSCAN is a typical density-based clustering algorithm that was developed in

1996 [18]. The core idea behind DBSCAN is that for each object in a cluster, the

neighbourhood of radius ε has to be populated with a minimum number of points

MinPts. ε and MinPts are the two only parameters required.

However, the cluster structure of a real data set cannot usually be identi�ed

with a single global density parameter, but rather by clusters of di�erent density,

as well as their intrinsic structure. The OPTICS algorithm [17] is a generalization

of DBSCAN. Instead of a clustering division, OPTICS outputs an ordering of the

database relative to its density-based clustering structure, containing information

for every density level up to a "generating distance" ε0, that allows for analysis of

the grouping structure (hierarchy). A graphical interpretation of the ordering is

available through a reachability plot [17], where clusters are identi�ed as "dents"

in the plot. The authors of this algorithm provide a method for automatically

determining the cluster hierarchy using the information extracted from the reach-

ability plot. However, a simpler alternative method for automatic extraction of

the clusters is described in [19], in which the most signi�cant clusters are simulta-

neously selected from di�erent density levels. Interestingly the authors also show

that reachability plots are equivalent to the dendrograms of single-link clustering

methods.
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2.4.3 Survival analysis

Survival analysis [20] models the waiting time until a given event occurs, also

referred to as survival time. Let T be a non-negative continuous random variable

representing the survival time until an on-appliance is switched o� (or an o�-

appliance is switched on); with probability density function (p.d.f.) g(t). g(t) can

follow multiple distributions depending on the problem studied, and commonly

g(t) is identi�ed with an exponential decay. In those cases, Weibull distributions

can be used to model survival time, and then:

g(t) =


k
λ

(
t−γ
λ

)k−1
e(−

t−γ
λ )

k

t > γ

0 t < γ

(2.4)

where k > 0, λ > 0 and γ > 0 are the shape, scale and location parameters of

the Weibull distribution [20]. Thus, the cumulative distribution function (c.d.f.)

G(t) = P{T < t} gives the probability of the event to have occurred by duration

t. The survival function S(t) = 1 − G(t) = P{T ≥ t} is then de�ned as the

complement of the c.d.f, and describes the probability to remain in a given state

before t:

S(t) = e−( t−γλ )
k

. (2.5)

By inverting equation (2.5), it is possible to obtain directly the duration for which

an appliance will continue (survive) in a speci�c energy state s as:

ts = γ + λ [− ln(w)]1/k , (2.6)

given a number w ∈ [0, 1) drawn randomly from a uniform distribution.
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Fitting survival times to Weibull distributions has been successfully deployed

in the past to model the times that appliances are in a particular energy state (on,

o�, stand-by or other). An illustrative example of the shape of the survival times

in our data is presented in Figure 2.1, for a group of fractional energy states.
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Figure 2.1: Exponential decay of survival times for eleven
di�erent fractional energy states. Frequency is normalised
for the distribution.

Occurrences of each event and durations are �rst extracted from the data, and

used to �t Weibull distributions, obtaining scale, shape and location parameters

λ, k and γ. The �tting process makes use of the scipy optimization package in

Python, and �ts the data to a Weibull function using a non-linear least squares

method. Interpolation between points was necessary to �t the curves more e�ec-

tively, given that the resolution of the original data (10 minutes) was not high

enough. Two examples of the �tting process are given in Figure 2.2.

These distributions are then used to calculate survival times in a simulation
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(a) State 0. (b) State 8.

Figure 2.2: Details of data �tted to Weibull distribution using
non-linear least square method.

using equation (2.6).

2.4.4 Monte Carlo simulation of fractional energy states

Monte Carlo methods may be de�ned as the representation of a mathematical sys-

tem by a sampling procedure which satis�es the same probability laws [15]. They

provide a method to arti�cially represent a stochastic process by a sampling pro-

cedure, which will be determined by the particular underlying probability distri-

bution of the given process.

For the speci�c problem posed here, the probability structure is given by either

the parameters of the Markov chain or the survival analysis. In both cases, the

purposes of the Monte Carlo simulation is to produce a time series of energy states

sk(t) for a given category of appliances. The process to obtain this sequence

depends on which of the methods is being used.
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Simulation of enegy states using a Markov chain

The sequence of energy states sk(t) = {st=0, st=1, . . . , st=n} is simulated for a cat-

egory of appliances k, employing an inverse function method, based on the prob-

abilities given by the matrix Pij. A given state s(t = 0) is assumed to be at the

start of the simulation. From that state, the transition matrix Pij gives the prob-

abilities to make a transition to the next state. A random number is drawn from

a continuous uniform distribution over the interval [0, 1) and the corresponding

interval in the c.d.f. is selected as the next state. This process is repeated for each

time step until the end of the simulation (see Figure 2.3 (a)).

This is the basic operation of all the Markov models employed in this thesis.

However, as it was explained in Section 2.4.2, clustering techniques were used

to produce more e�ective dimensioning of the Pij matrix, resulting in 5 di�erent

Markov model implementations that will be deployed and explained in the next

Chapter.

Simulation of enegy states using survival analysis

At the start of the simulation, state s(t = 0) is assumed. A random number

w is drawn from a continuous uniform distribution over the interval [0, 1) and

entered in equation (2.6) to obtain the survival time ts(t=0) until a change of state

occurs, covering a number ns(t=0) time steps. When this time is over, the next

state is calculated. In this case, transitions are not modelled. Instead, they were

extracted using a sampling following the distribution of hourly probabilities Ps(t)

of �nding each of the states. Once at the next state s(t = ts(t=0)), the process starts

again: survival time is computed, until a change of state occurs. Thus, times and

transitions between states are successively calculated for the simulation period.
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In this thesis, two survival models have been implemented, as outlined in �gure

2.3, both following the operation described above, with di�erent number of de�ned

fractional energy states:

• On/o� survival model. Two energy states, sOFF for values of fractional

energy f(t) = 0 and sON for f(t) ∈ (0, 1], corresponding to on/o� states.

Thus, switching on/o� events are explicitly modelled.

• Multistate survival model. Eleven energy states, following an arbitrary

division of 10 equidistant fractional energy states, plus the o� state: si

for f(t) = {0; 0-0.1; 0.1-0.2; . . . ; 0.9-1}, respectively. Such a division of

f(t) allows us to test the added value of re�ned characterisation of energy

states. As it was said above, transitions between the di�erent states are not

modelled, but they are calculated using an inverse function method with the

hourly likelihood of �nding each of the states.

Both approaches, Markov and survival, present strengths and weaknesses. The

main advantage of Markov chain models is that it explicitly models transitions

between states, while the survival approach is not able to do so. On the other

hand, Markov models are subject to the Markov property, by which the transition

at the current state is independent of the previously visited states. In that sense,

modelling the survival times is a more realistic approach. Another key advantage

of the survival approach is that it does not require calculations for the all time

steps while the devices remain in the same state, saving computation time.

From energy states to an energy pro�le

For category k the sequence of energy states sk(t) now needs to be transformed

back into a fractional energy pro�le fsimk(t). Thus, each energy-temporal state is
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Assume state s

Obtain s using matrix Pij t=t+1

(a) Markov models.

Assume appliance ON

Obtain nOFF using
tOFF (λ, k, loc)OFF

t = t+ 1
nOFF = nOFF − 1

Obtain nON using
tON(λ, k, loc)ON

nOFF = 0?

No

t = t+ 1
nON = nON − 1

nON = 0?

No

Yes

Yes

(b) On/o� survival model.

Obtain ns using
ts(λ, k, loc)s

t = t+ 1
ns = ns − 1

Obtain state s
using Ps(t)

ns = 0?

No

Yes

(c) Multistate survival model.

Figure 2.3: Simulation �owcharts.
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multiplied by its corresponding mean or median fractional energy F̃k(s), depending

on the strategy employed, leading to a simulated fractional energy pro�le

fsimk(t) = sk(t) · F̃k(s). (2.7)

One �nal step transforms these pro�les from fractional to actual energy values:

Esimk(t) = fsimk(t) · Ẽmaxk, (2.8)

where Ẽmaxk is a statistical measure of the maximum energy (or power P̃ as

required) for all instances of appliance in the category k. At this stage, depending

on the measure selected for Ẽmaxk, the approach can be applied to simulate the

use of individual devices belonging to a category k, or the use of the category as

a whole. When considering the �rst case, assignment of Ẽmaxk is performed using

the mean value:

Ēmaxk =
1

Nk

Nk∑
i=1

Emaxk,i, (2.9)

where Nk denotes the number of instances i in category k. The second option

consists of adding maximum energy values o� all appliances in a category for each

house, and perform a random sampling of them (values given in W in Table A.5).

In any case, the estimation or selection of Ẽmaxk (or Ēmaxk), becomes critical to

calculating accurate aggregate energy pro�les. If there is not such data available

(as it was in our case), is essential to produce robust estimation. If the data is

available, then the assignment of Ẽmaxk is trivial. In what follows then, we focus

on testing the underlying hypothesis in our modelling strategies rather than in the

�delity of predictions of aggregate energy pro�les that require a random assignment
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process.

2.5 Validation methods

2.5.1 Cross validation

In statistical modelling, cross-validation processes are used to assess how e�ectively

the results will generalize to a di�erent data set [21]. Cross-validation computes the

average error obtained from evaluation measures of di�erent partitions of the data

set. There are several methods for cross-validation, such as random sub-sampling,

leave-one-out cross validation and K-fold cross validation. In our work we favour

K-fold cross validation in which the data set is partitioned in to K sub-samples.

A single sub-sample is used as the validation set and the remaining (K-1) sub-

samples are used as the training set. This process is then iteratively repeated K

times (folds), until each partition has been used once as a validation set. A mean

performance error can then be computed as the average error:

e =
1

K

K∑
i=1

ei, (2.10)

where ei represents some error between prediction ŷi and observation yi. K-fold

cross validation is a computationally expensive method, but produces an accurate

estimation of the goodness of �t. The data set was split in 10 consecutive sub-

samples of the time series. Therefore, each partition corresponds to a di�erent

time of the year, which could potentially cause seasonality issues on the analysis.

In our study, we did not �nd evidence of such e�ects for the appliances we were

considering. Cross-validation is usually more reliable when the partitions are per-
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formed using random sampling. However, random sampling would break the time

serial dependence of the data.

2.5.2 Time series analysis

Selecting an adequate strategy for the modelling of fractional energy requires a

comparison of performance between simulation and observation data sets during

the validation period. Time series analysis provides a powerful method to compare

and understand internal structure on both temporal pro�les, extracting meaningful

statistical information. The objective is to describe the validation time series with

a set of parameters that should be replicated by the simulation time series. In

particular, it is possible to decompose the fractional energy pro�le into trend,

seasonal and irregular (or remainder) component, allowing for evaluations of each of

the components at a di�erent level. Figure 2.4 shows an example of a decomposed

time series.

The following information is used from the decomposition exercise:

• Trend component. There is no strong evidence supporting that there is trend

in the observed data, or that this component changes over the year. There-

fore, a constant value over the whole year has been assumed. This component

is thus used as an average of the fractional energy over the simulation period.

• Seasonal component. A daily variation (or seasonal component) is expected

in the use of appliances. The models are expected to reproduce this variation

correctly, and this can be studied using the cross-correlation function [22]

between two signals (Xt, Yt), which is de�ned as

ρXY (τ) =
1

N − 1

∑N
t=1 (Xt − µX) (Yt+τ − µY )

σXσY
, (2.11)
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where µk, σk are the mean and standard deviation of process k = X, Y ,

respectively, and τ is the lag or time delay between both. Equation 2.11

provides an insight into the relationship and dependence between observed

and simulated periodic components. Based on that, we examine:

� Pearson's coe�cient, as an index of the linear correlation at τ = 0

(considering both signals to be synchronised); ideally this should be

equal to 1.

� Time delay of maximum correlation, in order to determine whether the

signals are in phase with each other.

• Irregular component. After extracting the trend and seasonal components, a

residual �uctuating variation remains.

Figure 2.4: Example of time series decomposition into trend, daily
variation and remainder component.
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2.5.3 Sensitivity and speci�city analysis

Sensitivity and speci�city analysis represents a strong indicator of the model's ab-

solute aggregate performance: its ability to correctly reproduce the time dependent

properties of the process being simulated. Sensitivity or true positive rate (TPR)

is de�ned as the proportion of matching cases between simulated and observed

values, i.e.:

TPR =
TP

TP + FN
, (2.12)

where T, F, P,N represent True, False, Positive and Negative and TP is the total

number of truly predicted positive outcomes (true positives). Speci�city or true

negative rate (TNR) is de�ned as [23]:

TNR =
TN

TN + FP
. (2.13)

In an ideal case, one would have TPR = 1 and TNR = 1 (or FPR = 1 −

TNR = 0). Comparison of these indicators can be plotted in receiver-operating

characteristic (ROC) space. This analysis can be complemented with the model

accuracy

ACC =
TP + TN

P +N
, (2.14)

giving an indication on the overall performance of the model. In this thesis, sensi-

tivity and speci�city analysis relates to the modelling of multiple fractional energy

states. For multi-state systems this is a particularly exigent evaluation technique.
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2.5.4 Application of validation methods

In this work, 10-fold cross validation is performed for every approach suggested.

For each iteration, several error measures at three di�erent levels have been taken

into account:

1. At the �rst level, we are interested in evaluating the quality of the fractional

energy signal produced by our simulations. Time series decomposition has

been performed (section 2.5.2) to extract the following comparative measures:

• Relative error of the average energy usage over the period of simulation

(using the trend component).

• Pearson's coe�cient and time delay of maximum correlation of the daily

variation.

2. We are also interested in evaluating the accuracy of the averaged daily pro�le

of fractional energy, as well as the models' e�ectiveness in predicting energy

states. For this we use:

• Simulated energy states. Sensitivity and speci�city analysis is directly

applied to the simulated energy states, producing ACC values and an

ROC plot.

• Absolute state prediction. The probability of predicting each of the

states during the validation period is calculated and compared for ob-

servation and simulation. Discrepancies between both magnitudes are

represented with RMSE.

• Temporal probability of state prediction. The probability distribution

for each state over time provides insight into the temporal variation
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of each state, allowing us to identify situations when some states are

over or under-predicted, and even at which periods during the day.

Discrepancies again are calculated with RMSE.

• Fractional energy daytime pro�le. Once the energy states have been

converted into fractional energy values, it is possible to evaluate the

results for a typical day over the validation period (averaged over all

the days for which fractional energy values are available for each time

step). Residuals and RMSE are calculated to describe performance.

3. Finally, the selected methodology should perform well in calculating total

energy use. Each simulated instance is converted to an energy pro�le using

maximum energy values of the appliances present. The total energy use over

the validation period is then obtained and compared for the relevant category

of appliance.

The validation data set is a subset of the data that corresponds to 10% of the

available total time range. This subset does not contain a unique time series of

values, but a number Nk equal to the number of instances in the category k. The

simulation of energy states was performed Nk times over the validation period, in

order to perform the sensitivity and speci�city analysis for the energy states. For

the other evaluation measures, averaged values for all instances were considered

for both observation and simulation.

2.6 Summary

Stochastic methods provide a simple and powerful technique to model dynamic

electricity demand. In this chapter, we have introduced two types of them: discrete-
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time and continuous time stochastic processes, which will be deployed and tested

on real data on the following chapter.

A review of the relevant literature was given in Section 2.2. Stochastic methods,

specially Markov process had been already successfully used in the past. However,

the majority of the work was focused on determining the use of dominant appliances

and electrical devices in homes, most of the times deriving its use from related

activities. Although such task is important, in this research we go a step further

and apply the aforementioned methods to categories of low-load appliances. They

are less commonly owned and used, but its power demands are still relevant. We

believe that having access to more detailed models of electricity consumption is

valuable for building simulation.

Also, most of the current work does not consider power �uctuations when the

device is being used. Considering fractional power as the stochastic variable, allows

us to model variations in the total energy use. Section 2.4 described in detail the

methodology of these processes. Markov processes were re�ned using a state-of-

the-art clustering method that, to the best of the auhtors' knowledge, has never

been applied before for reduction of the Markov matrix dimensioning.

A series of validation methods to evaluate the goodness of �t of the models are

explained in 2.5. They pretend to cover di�erent measures of the results. First,

their temporal dependency using time series analysis. Second, their average daily

trends, with sensitivity and speci�city analysis, comparison of absolute state pre-

diction, comparison of temporal probability of state prediction and comparison of

the fractional energy daytime pro�le. Third, the total energy use is also evaluated.

In this chapter, a series of mathematical methods have been presented, neces-

sary to carry out Objectives I.1 and I.2 of this thesis. The next chapter is a direct
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continuation of this one, to demonstrate these objectives, showing the application

of the methods here described to a real dataset: the Household Electricity Survey

dataset.
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Chapter 3

Small Appliance Modelling

The mathematical methods that we deploy in the modelling and val-

idation of alternative appliance modelling strategies were described in

the previous chapter. In this chapter, we �rst present the data used in

our modelling: the Household Electricity Survey; and justify the choice

of our four categories in which we model aggregates of appliances. Sec-

ond, seven di�erent variations of stochastic model are discussed and

evaluated. From those seven, one is found to outperform the others.

Deployment and validation of this strategy is presented at the end of

the chapter.

3.1 Household Electricity Survey data set

The Household Electricity Survey [1] is an extensive monitoring survey of 250

households in the UK, carried out during 2010 and 2011. Apart from detailed

socio-demographic information, it contains data describing the appliances present

in every monitored household and their temporal electrical energy use during 1 or 2

months, with records every 2 minutes. Of the 250 households, 26 were additionally

monitored for a whole year, with a 10 minute resolution. Since the one-month data

was not measured during the same month for all households, only the data recorded

for the 26 houses during a whole year was utilised in the analysis presented here,
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in order to avoid possible seasonal e�ects on the use of appliances.

The relevant low-load appliances found in the dataset were classi�ed into four

categories, following the types of activity that relate to their use:

- audio-visual (excluding TVs, that are considered as high-load appliances

given their extensive use),

- computing,

- small kitchen appliances (excluding cookers, microwaves and ovens),

- other small appliances.

In this thesis, subscript k denotes a category, and its values correspond to the four

categories: k = {1: audio-visual; 2: computing; 3: kitchen; 4: other}.

Figure 3.1 shows the types of device available in the data set and their con-

tribution to annual energy use, with categories depicted in di�erent colours. The

height of the bars represents the mean value of annual energy use of the corre-

sponding type of appliance, whereas the width is proportional to the number of

instances observed in the 26 households for the given device. Thus, the area of the

bar indicates the total energy use of that appliance throughout the stock of houses

surveyed.

One shortfall encountered in the data set is that there is no information de-

scribing the rated power of the appliances, posing a challenge to the accurate

estimation of Emaxk,i. Consequences derived from this and the solution proposed

are discussed in section 3.1.2.

The procedure adopted in our work was to test a range of strategies to model

one appliance category, the audio-visual category, in order to identify the most

parsimonious approach, and then to deploy this to other categories of appliance.
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Figure 3.1: Annual energy use of the types of appliances considered in
the modelling, divided in four categories: audio-visual, computing, kitchen
and other. The height of the bars corresponds to the mean annual energy
use, while the width is proportional to the number of instances recorded
in the 26 houses. Combining this information, darker bars identify the
dominant types of appliance for the category.

3.1.1 Audio-visual category

In this section the nature of the data used to test the modelling techniques is pre-

sented. With respect to the notation in Section 2.4.4 of the previous Chapter, we

introduce here the subscript j referring to the type of appliance in a category k.

Subscript i denotes now the instances of an appliance of type j. Ultimately, all

appliances in a category k are modelled using the same parameters (independently

of j), but in this and the following sections it is necessary to distinguish between
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Type of appliance (j) Number instances (Nk=1
j )

AV receiver 1
Audio-visual site 33

DVD/VCR 28
HiFi 14

Set top box 17
Video-game console 9

Table 3.1: Types of appliance available in the audio-visual cate-
gory (k = 1), and the number of instances (devices recorded in
the data set through all the houses).

types, for the sake of the explanation. Table 3.1 displays the total number of in-

stances of each subcategory of appliance considered in the audio-visual category,

Nk=1
j , present in the 26 houses, leading to a total of 102 instances for the cate-

gory. Our �rst step was to extract fractional energy values from the electricity use

records, as

fk,j,i(t) =
Ek,j,i(t)

Emaxk,j,i
, (3.1)

where k is the category, j the type of appliance and i the instance (one device in

a speci�c house).

Given an estimate of Emaxk,j,i this transformation outputs a normalised pro�le

for each appliance in each house with values in the interval fk,j,i(t) ∈ [0, 1], that

can be combined now with other instances or other types of device, allowing the

category to be modelled. It is also possible to explore how these pro�les vary

during the period of a day, in order to identify patterns or dominant behaviours.

Interesting characteristics of the data set include that:

i. The data set contains over 4.2 million data points.

ii. 33.9% of the data are zero values (fk,j,i(t) = 0), suggesting that appliances
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are o� for around a third of the time.

iii. The o�-state exhibits temporal dependency, reaching maximum values in

the early hours of the morning (39%) when most people are sleeping, and

a minimum (29%) between 20h and 22h, when most people are present and

awake.

iv. 15% of the entries have fractional energy lower than 0.1, which likely corre-

sponds to a stand-by state, a common feature of audio-visual devices.

v. As with iii., a concentration of stand-by states is found during the early

hours of the day, whereas appliances are most often used at maximum power

during the late hours of the evening.

A preliminary visualization of the two-dimensional space created by the time period

of a day and the fractional energy values {t, f}, is depicted in �gure 3.2. Dark

areas represent denser regions of the data set, showing common values recorded

during certain times of the day. Values of fk,j,i(t) = 0 were excluded to help with

the interpretation.

3.1.2 Data preprocessing: outliers and maximum energy es-

timation

As previously mentioned, our data set does not include appliance name plate

(power) ratings. The fractional energy modelling approach, however, is dependent

on the values of Emaxk,j,i and requires this input at two speci�c stages. Firstly in

using equation (3.1) to extract fractional energy pro�les for each instance. Sec-

ondly after the simulations have been performed, to compute an energy pro�le

from a simulated fractional energy time-series for the category.
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Figure 3.2: Distribution of audio-visual category
data, for the values of fractional energy over a day
(normalised values). A sample of 50000 entries is plot-
ted. Since the data set contains a large amount of
values with fk,j,i(t) = 0, these data were excluded to
facilitate comparison between other values.

In order to estimate Emaxk,j,i from the data, the maximum energy record for

each pro�le was used. The existence of discrepant entries for the same type of

appliance suggested that a data cleaning process was necessary. In many cases,

excessively high spikes were found, which corresponded to erroneous entries. Al-

though in some cases this could be due to the fact that each data point represents

the energy corresponding to the mean power drawn by an appliance over a period

of ten minutes. Since this may �uctuate between 0 and the nameplate rating it

could be that the selected value of Emaxk,j,i results from an appliance that has been

working at higher power during a shorter period of time (e.g. a kettle that never

takes 10 minutes to boil). This problem was overcome by obtaining maximum

energy values from the 2-minute data (also subjected to a cleaning pre-process),
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with the purpose of selecting consistent entries. However, the data needed a clean-

ing process (�ltering) to reject false spikes (outliers) which could lead to erroneous

selection of Emaxk,j,i.

A Seasonal Hybrid Extreme Studentized Deviate test (S-H-ESD) [24] was em-

ployed to detect anomalies. S-H-ESD is based on the generalized ESD algorithm to

detect one or more outliers in a univariate data set that follows an approximately

normal distribution, and is applicable to time-series data. Its main feature is that

it is able to predict both local and global anomalies, taking into account long-

term trends on the temporal pro�le to minimize the number of false positives. In

other words, the conditions to detect an outlier vary depending on local temporal

windows. When no trend is identi�ed, the algorithm works as an ordinary outlier

�lter. The algorithm is part of the AnomalyDetection package in R [25].

This outlier �lter is applied to all the time series, corresponding to each instance

i, of each type of appliance j of each category k, in order to obtain a better estima-

tion of their individual maximum energy Emaxk,j,i, detecting anomalous spikes in

the measured data. Individual maximum energy values are then averaged to cal-

culate maximum energy for the type of appliance Ēmaxk,j. Table 3.2 presents these

values before and after applying the �lter, for the audio-visual category, k = 1. For

other categories, the value of Ēmaxk,j after the exclusion of outliers can be reduced

up to a 300% with respect to the value before applying the �lter.

3.2 Results and discussion

In this section we �rst explain the application of the techniques presented in 2.4.1

and 2.4.3, respectively, to the data set introduced in section 3.1. Then, simula-

tion results are described and evaluated for each of the strategies tested to model
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Type of appliance Ēk=1
j,before (Wh) Ēk=1

j,after (Wh)

AV receiver 86.4 86.4
Audio-visual site 42.4 34.9

DVD/VCR 8.2 5.41
HiFi 33.1 29.4

Set top box 5.2 5.2
Video-game console 19.9 16.7

Table 3.2: Outlier �ltering for appliances in the audio-visual cat-
egory (k = 1): mean maximum energy for the type of appliance,
before (Ēk=1

j,before) and after (Ēk=1
j,after) applying outlier �lters.

fractional energy use of audio-visual appliances, justifying the selection of one of

them. Finally, the selected strategy is applied to the other appliance categories,

and a �nal evaluation of the model is given.

3.2.1 Application of Markov model

As a �rst approach, the {t, f} space was arbitrarily divided withm = 11 (11 energy

states: one for the o�-state plus ten of 0.1 fractional energy width) and r = 24

(one temporal state per hour), leading to 264 subdivisions.

Clustering techniques were then applied to the audio-visual appliances data

set. Excluding entries when the appliances are switched o� (i.e. fk,j,i(t) = 0.0),

there are over 2.8 · 106 data points (from a total of over 4 · 106), which is still large

given the computational expense of the clustering algorithms used. In order to

overcome this problem, a random sampling process [26] was carried out, selecting

50,000 points that roughly represent 2% of the total size of the data set.

Implementations of the DBSCAN and OPTICS algorithms were tested, corrob-

orating that the unique global density parameter of DBSCAN was not e�ective at

�nding a satisfactory partition of the data set into clusters; since we are interested

in �nding clusters of di�erent density.
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(a) Data (b) Cluster identi�cation (c) 2× 4 Markov matrix

Figure 3.3: From the data: (a) clusters are identi�ed by the algorithm allowing
rectangles ranging from the 1st to 99th percentiles to be extracted (b); the rest of
the space will be divided into noise cells. From that, a grid is de�ned, (c) whose
partitions will be the dimension of the matrix (taking into account the o� state
fk,j,i(t) = 0), associating with each cell the median value of fractional energy F̃ of
the data points it contains.

Subdivision of {t, f} space The objective of applying a density-based clus-

tering algorithm (OPTICS) is to produce an e�cient subdivision of the two-

dimensional space {t, f}, as described in section 2.4.1. As summarised graphically

in 3.3, the process works as follows:

1. Find parameters that produce a good clustering structure.

2. Adjust the clusters found to �t a cell of rectangular shape. In order to avoid

overlapping of cells, data points between the 1st and 99th percentile are

selected for each cell. Points identi�ed by OPTICS as noise are grouped into

noise cells that will �ll the empty space not covered by the clusters.

3. De�ne the grid established by the edges of the rectangles.

4. Associate with each cell a fractional energy value F̃ corresponding to the

median value of the points it contains.

OPTICS requires two parameters to produce the ordering of the points: �rst,

the generating distance ε0, referring to the largest distance considered for clustering
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(clusters will be able to be extracted for all εi such that 0 < εi < ε0); second,

the minimum number of points that will de�ne a cluster MinPts. However, the

algorithm used to automatically extract the clusters from the ordering of the points

and their reachability distance makes use of a further 7 parameters [19], upon which

the clustering structure obtained will vary. For this work, the OPTICS algorithm

was implemented in Python1.

After a systematic search for a well performing solution, a set of successful

parameters was identi�ed2. These values lead to a hierarchical solution, with four

incremental nested partitions, from two clusters at the top level of the hierarchy,

to eleven at the leaves. The four di�erent levels (summarized in Table 3.3) lead to

four di�erent divisions of the {t, f} space and four Markov matrices with di�erent

dimensions. The relative performance of these di�erent structures is evaluated in

the following sections.

Name Hierarchy level Clusters Noise cells {t, f} dimension
OPTICS - 5x15 IV 11 9 5x12

OPTICS - 4x14 III 10 5 4x12
OPTICS - 3x11 II 7 4 3x11
OPTICS - 1x3 I 2 None 1x3

Table 3.3: Hierarchical levels of clustering considered for {t, f} space par-
tition, with number of clusters and number of noise cells identi�ed.

3.2.2 Application of Survival analysis

The two alternatives considered for the survival models are a simple two-state

(on-o�) model and a multistate model with 0.1 divisions in f(t), so that there are

1Aided by script provided in https://github.com/amyxzhang/
OPTICS-Automatic-Clustering.git

2Parameters found following description in [19] are: ε = 0.08; MinPts = 50; minClustSizeRatio

= 0.03; minMaximaRatio = 0.001; signi�cantMin = 0.003; checkRatio = 0.8; maximaRatio =
0.87; rejectionRatio = 0.8 and similarityThreshold = 0.6.

https://github.com/amyxzhang/OPTICS-Automatic-Clustering.git
https://github.com/amyxzhang/OPTICS-Automatic-Clustering.git
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eleven states in total (cf. 2.4.3). This multistate model encapsulates temporal

variations since the transitions to the following state are computed based on the

temporal probability of �nding each of the states. Weibull parameters (shape, scale

and location) introduced in equation (2.4) are estimated from the data points for

each of the energy states. Once obtained, the simulation runs as depicted in �gure

2.3.

3.2.3 Approach selection

The fractional energy use of the audio-visual category of appliances was modelled

using a range of strategies. The goodness of �t of the models is evaluated from

di�erent points of view, following the description in section 2.5.4.

Fractional energy time series

Decomposition of the time series over the validation period allows for the extraction

of statistical information from the structure of the observed and simulated data

and to compare their di�erent components: trend, daily variation and remainder

(see section 2.5.2).

Trend The trend component has been assumed to be constant over the whole

year of observed data, so there is no need to �t a function. It gives an estimation

of the average value of the fractional energy over the simulation period, given that

the daily variation has been removed.Values are shown in table 3.4.

Daily variation The daily variation components are shown in �gure 3.4, plotted

for several days. There are two models, OPTICS-1x3 and Survival, for which an

inadequate handling of dynamics is clearly apparent. For the other cases, those
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with larger numbers of temporal states produce an understandably more accurate

pro�le of the daily variation (11x24-SHESD, OPTICS-5x14, with 24 and 5 temporal

states, respectively). Also, the Survival Multistate model represents surprisingly

well the daily variation, considering that the temporal dependency is included only

in the transitions between states, but not in their duration.

Table 3.4 complements those results with numerical values for Pearson's coe�-

cient and temporal lag at maximum correlation. Again, the best value for Pearson's

coe�cient and time lag is achieved using the models with a larger number of tem-

poral states 11x24-SHESD and Survival Multistate, followed by OPTICS-4x12 and

OPTICS-5x14.

Figure 3.4: Comparison of daily variation components.

Evaluation of average daily pro�le

In the previous section the signal simulated over the whole period was compared;

but we are also concerned with how well the averaged daily pro�le is represented,

in terms of the predictive power of simulated energy states and the consequent

fractional energy pro�le.
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Rel. error trend Pearson's coe�. lag
Arb - 24x11 2.35% 0.989 0.0

OPTICS - 5x14 5.08% 0.9501 −0.0278
OPTICS - 4x12 4.91% 0.960 −0.0486
OPTICS - 3x11 5.40% 0.854 −0.0625
OPTICS - 1x3 3.83% −0.446 −0.424

Survival 0.831% −0.0896 0.236
Survival multistate 5.61% 0.983 −0.0208

Table 3.4: Summary of validation time series decomposition.
From left to right: error on the average value of the trend; Pear-
son's correlation coe�cient and time delay (lag) of daily varia-
tion. "Arb" refers to the arbitrary subdivision of the data into
24 time states and 11 fractional states.

Fractional energy states prediction Figure 3.5 shows the dependency of the

RMSE (calculated for every 10-minute timeslot) with time for the probability of

�nding the system in each of the de�ned energy states. The on/o� Survival

approach gives RMSE values an order of magnitude larger than for the Markov

models, indicating a poor overall estimation of the two states considered. Since

there are only two states de�ned, their probabilities of being simulated are com-

plementary, Ps=0(t) = 1 − Ps=1(t); therefore, a poor estimation of Ps=0(t) implies

a poor estimation of Ps=1(t).

Furthermore, the shape of the curves for Survival and OPTICS-1x3 models

implies that the temporal dependency of the system is not well encapsulated. The

former exhibits an increase in error during the late hours, suggesting a worse

prediction of the on-state; while the RMSE in the latter increases both in the

evening and during the night, revealing an under performance for both the o�

state and the maximum energy state.

Temporal dependency is well represented in the Survival Multistate model, al-

though the overall error in energy state prediction is higher than with the Markov
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approaches. This could suggest that the speci�c energy states are better repre-

sented when clustered energy values have been considered.

The total RMSE for temporal and average daily state predictions are presented

in table 3.6. In both cases, OPTICS-5x14 outperforms the other strategies, sug-

gesting that the larger the number of energy states (14 in this case), the more

accurate the probability prediction.

Figure 3.5: Temporal dependency of RMSE, calcu-
lated for each 10-minute time slot, for all states of
each approach.

As noted in section 2.5 the accuracy of the modelling of states can also be eval-

uated using ROC parameters, as shown in table 3.5; although this is a particularly

onerous test when applied to multi-state systems, so that TPR is not expected to

be high. Once again the OPTICS 5x14 and Survival Multistate models outperform

their counterparts.
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TPR TNR ACC
Arb - 24x11 0.173 0.917 0.483

OPTICS - 5x14 0.160 0.935 0.487
OPTICS - 4x12 0.172 0.925 0.485
OPTICS - 3x11 0.178 0.918 0.483
OPTICS - 1x3 0.339 0.669 0.456

Survival 0.499 0.499 0.450
Survival multistate 0.189 0.919 0.484

Table 3.5: Accuracy of model.

Fractional
energy f(t)

Absolute state
prediction

Temporal state
prediction

Arb - 24x11 2.056 · 10−2 2.00 · 10−2 1.76 · 10−2

OPTICS - 5x14 2.32 · 10−2 1.86 · 10−2 1.56 · 10−2

OPTICS - 4x12 2.54 · 10−2 2.06 · 10−2 1.73 · 10−2

OPTICS - 3x11 2.70 · 10−2 2.23 · 10−2 1.89 · 10−2

OPTICS - 1x3 4.66 · 10−2 1.84 · 10−2 4.85 · 10−2

Survival 4.22 · 10−2 1.13 · 10−1 1.63 · 10−1

Survival multistate 2.53 · 10−2 3.55 · 10−2 3.50 · 10−2

Table 3.6: RMSE values of the daily pro�le results, in terms of
the fractional energy pro�le, absolute state prediction (without
temporal dependency), and temporal state prediction.

Fractional energy averaged daily pro�le The residuals in fractional energy

for an average day tend to increase towards the boundaries of the day (Figure 3.6),

where users are more active in switching devices and regulating them. Nevertheless,

the results suggest that even with temporally crude models, dynamics are well

encapsulated (with the exception of OPTICS-1x3 and Survival); particularly in

the case of the model with the largest number of temporal states, Arb.-24x11, as

re�ected in table 3.6.
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Figure 3.6: Daily pro�le residuals of fractional energy.

Total energy prediction

For the total energy prediction over the validation period, a sampling process of

maximum energy values is performed following the procedure described in section

2.4.4.

In order to compare the results, a box plot is presented in �gure 3.7, and the

residual error in energy use prediction is presented in table 3.7. Whilst the median

residual error is in all cases relatively low, the simulated values are consistently pos-

itively skewed, overestimating the upper quartile in total energy use. This is caused

by a loss of information during the modelling process. Errors compound from the

modelling of fractional states, through the assignment of maximum energy values to

the subsequent prediction of energy use for the relevant appliance category. Also,

appliances in the same category may still have di�erent behaviours, which this

modelling technique cannot distinguish. The mean energy overestimation could
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Mean Residual
(kWh)

Median Residual
(kWh)

Arb - 24x11 −13.5 −1.83
OPTICS - 5x14 −13.5 −1.76
OPTICS - 4x12 −12.7 −1.43
OPTICS - 3x11 −12.5 −1.48
OPTICS - 1x3 −11.8 −1.68

Survival +1.13 +1.80
Survival multistate −11.6 −1.44

Table 3.7: Residual error between observation and
simulation, for mean and median of the total energy
use over the validation period.

come from the fact that some appliances may have high power ratings, but be

used in seldom occasions; on the contrary, those devices actively use may have

low power ratings. Our approach is not able to capture that. Thus, even though

each task in our modelling process faithfully reproduces reality, errors inevitably

arise when using models estimated from aggregate data of the four typologies of

appliance to the prediction of speci�c device behaviours; errors that will reduce

in magnitude as the size of the stock of appliances simulated increases. This is

reasonable considering that our goal is to estimate communities of buildings and

the appliances contained within them.

Summary

The complexity of the di�erent approaches can also be used for comparison, based

on the type and number of parameters that the models need. They are summarised

in table 3.8. For the Markov based approaches, the parameters needed are those

that build the Markov matrix, and are dependent on its dimension. Addition-

ally, the clustering process requires 9 extra parameter values, which are not easily

extracted, as the clustering algorithm requires a trial and error process which is
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Figure 3.7: Boxplot comparing observed and predicted total
energy use over the validation period.

Number of
parameters Type

Arb - 24x11 24× 11× 11 Markov matrix
OPTICS - 5x14 5× 14× 11 + 9 Markov matrix and clustering
OPTICS - 4x12 4× 12× 11 + 9 Markov matrix and clustering
OPTICS - 3x11 3× 11× 11 + 9 Markov matrix and clustering
OPTICS - 1x3 1× 3× 11 + 9 Markov matrix and clustering

Survival 3× 2 Weibull parameters
Survival multistate 3× 11 + 24× 11 Weibull and states' probability

Table 3.8: Number and type of parameters needed for the dif-
ferent type of model.

complicated and time-consuming. The parameters needed in the survival models

are those that describe the Weibull distribution, plus the hourly probability distri-

bution of each state to occur (trivial to obtain and which can be simpli�ed using

less time slots.)

To inform our selection of the most parsimonious modelling strategy the relative

performance of each of the models tested is qualitatively summarised in �gure 3.8,

using a color coded diagram. From this it is apparent that the Survival Multistate

strategy outperforms its counterparts: its predictive power is comparable to that of
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Figure 3.8: Summary of validation results between the approaches
tested, qualitatively represented as good (long green bar), average (yel-
low medium bar) and poor (short red bar).

the more re�ned Markov models, but is considerably simpler in formulation, both

in the estimation of its coe�cients and in subsequent implementation. It performs

well in the time series analysis, temporal state prediction and fractional energy

pro�le, acceptably well in absolute state prediction, accuracy and total energy use.

For these reasons, the Survival Multistate approach has been deployed to model

the other categories.

3.2.4 Application of Survival Multistate approach to other

categories

In this section results for the simulation of the energy use of computing devices

(k = 2), small kitchen appliances (k = 3) and a category of other appliances

(k = 3) is presented, following the Survival Multistate approach.
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Discussion on modelling a diversity of appliances

Modelling categories of appliances prevents from the analysis of di�erent behaviours

from speci�c devices, which are in a large range of total time of use (between

commonly-used and seldom-used appliances) and peak demand values (low-rated

and high-rated appliances). At the extremes of this range two types of behaviours

have been identi�ed: dominant appliances (commonly-used and high-rated) and

infrequent appliances (very rarely used over the course of a year, independently of

their rated power). In both cases, these behaviours are undetected by our mod-

elling approach, with corresponding implications for predictive accuracy.

In the case of the kitchen category, preliminary results as described in 3.1 led

to the elimination of the kettle as part of the category. As a high-rated appliance

that is commonly owned and used, its behaviour is dominant, misleading the ex-

traction of parameters of the model. Figure 3.9 shows the results for the survival

multistate model applied to the kitchen category with and without the kettle. In

this particular case, the total energy use was underestimated by the model, due

to its inability to discriminate between the power use pattern of this particular

appliance and the other small kitchen appliances3 Once removed, the result shows

a very good �t with the observed data.

3Note that the small appliance modelling strategy is predicated on the modelling of appliances
with potentially complex dynamic behaviours, expressed in variations in fractional power demand
whilst in use. The kettle is a considerably simpler case, having a constant power demand but for
a short duration depending on the temperature and quantity of water to be boiled. A detailed
usage model of the kettle is presented in [27].
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Figure 3.9: E�ect of a dominant appliance (kettle) on the ob-
served and simulated data for the kitchen category.

The category of other appliances, on the other hand, is biased by the e�ect of

infrequent appliances, which were monitored in the survey but are very rarely used:

several being used only for less than 1% of the total recorded time. Consequently,

the total energy use predicted was overestimated.

Performance of the model

The performance of the model has been evaluated in a similar fashion to that for

the audio-visual category, and is summarized in table 3.9. In general, the model

performs comparably to that of the modelling of audio-visual appliances. The

results are remarkably good for the case of the kitchen devices, once the kettle

was removed, proving that the strategy is very powerful for modelling relatively

homogeneous type of appliances. Larger errors in energy prediction are found for

the other two cases, related again to the diversity of behaviours present on the

dataset, as explained in 3.2.3. Notwithstanding this, the average fractional energy

use is well predicted, as are the states (table 3.9).
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Error measure Computing Kitchen Other

Time series analysis Relative error trend 15.7% 0.429% 8, 49%
Pearson's coe�cient 0.967 0.946 0.927
Lag −0.014 −0.0005 −0.014

ROC curve TPR 0.205 0.842 0.783
TNR 0.920 0.984 0.978
ACC 0.485 0.517 0.514

Daily pro�le (RMSE) Fractional energy (f) 4.44 · 10−2 2.23 · 10−3 1.27 · 10−2
Absolute state prediction 5.48 · 10−2 6.16 · 10−3 1.77 · 10−2
Temporal state prediction 4.08 · 10−2 1.06 · 10−2 1.70 · 10−2

Total Energy (kWh) Mean Residual −26.4 −0.318 17.7
Median Residual −19.0 −0.160 −20.6

Table 3.9: Summary of results on application of Survival Multistate approach to
other categories for: time series analysis, sensitivity and speci�city, RMSE of daily
pro�le and total energy.

Appliance type Rated Power (W)

Audio-visual Set top box 30
Audio-visual site 43.2
DVD/VCR 12.6

Kitchen Bread maker 97.2
Toaster 720
Extractor 16.8

Computing Laptop 48.6
Computer equipement 3.6
Desktop 108
Monitor 30
Router 7.2

Other Housework 1248
Various 54.6

Table 3.10: Available appliances in house "103028"
and their rated values, extracted from the data set.
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3.2.5 Global performance and application of the model

The application of the model is shown in this section in two ways: the �rst in-

volves a single day simulation for a speci�c household (labelled in the dataset as

"103028"), presented in �gure 3.10. It contains 13 di�erent low-load appliances,

which are described in table 3.10. Figure 3.10 displays the output of the model,

for the four categories, when using the listed appliances. As expected, the model

predicts usages of di�erent duration and it is able to capture the spikes in the pro-

�les. But, as expected, the model does not resolve for the speci�c characteristics of

the individual appliances, and it does not represent di�erent behaviours between

them, as the parameters inside the model have been de�ned to describe aggregates

of appliances.

A more suitable use of the model is presented in Figure 3.11, where the one-day

simulation has been carried out for the categories as wholes, aggregating devices in

Table 3.10. In this case, simulated and observed series are plotted for comparison.

For the audio-visual and computing categories the simulated pro�le shows a more

dynamic behaviour than the observed one, with more predicted on/o� switches.

The observed data, on the other hand, is showing one or more devices that remain

switched on but with low variations during the day. On the contrary, the kitchen

and other category predict well the sporadic use of these devices.

The third includes the averaged daily energy usage arising from all the de-

vices in the di�erent categories of appliances over the year, when aggregated to

a community of 20 households (�gure 3.12). This situation is much more repre-

sentative of the intended usage of the model than for the modelling of individual

appliances in a single household. In this case, the total energy use for each cate-

gory (adding up all the available devices in each household) is averaged in order
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(a) (b)

(c) (d)

Figure 3.10: Example of one-day simulation for individual low-load
appliances, by category: (a) computing, (b) other, (c) kitchen, (d)
audio-visual. They correspond from upper to lower as indicated in
table 3.10.
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Figure 3.11: Example of one-day simulation for aggregates of appliances.

to create a typical day pro�le for the community. Then observed and simulated

data are compared. Simulated audio-visual appliances describe temporal variabil-

ity, although its dependency is not as strong as in reality. Again, the choice of

category maximum energy values for appliances with di�erent behaviours impacts

the total energy use predicted by the model. This e�ect is more clear in the high

values of energy use at night hours, and lower values than the observed during the

evening peak. Something similar occurs for the computing appliances, although in
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Figure 3.12: Averaged daily total energy usage from the di�erent categories.

this case, its energy use is consistently overestimated, but still captures variations

during the day. The use of kitchen devices is underestimated, and the opposite

happens with the other category; this could be related to the amount and type

of devices available for this particular group of households, given that their use is

reduced. One way of improving these consistent over/underestimations would be

to make a correction after the simulation to the total energy use or to the maxi-

mum energy value employed. To conclude, although we are modelling exclusively

aggregates of appliance and in a generalised way, realistic magnitudes for the elec-

trical energy use with respect to time can still be obtained. The parameters used

in both cases are those detailed in Appendix A.

3.3 Conclusion

As the integrity of the envelope of both new and existing houses improves, so

the proportion of energy that is used by household electrical appliances, which
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are becoming increasingly ubiquitous, is likely to increase. It is important then

that modellers have at their disposal reliable models of appliance energy use, if

they are to accurately predict the thermal performance and energy use of future

homes. Furthermore, there is increasing interest in the concept of smart grids, to

better regulate the distributed supply, storage and demand of electrical energy.

This places increasing onus on the ability to predict the dynamic behaviour of

household electrical appliances. Whilst good progress has recently been made in

the modelling of relatively large appliances: those whose prevalence and cumulative

energy use supports the estimation of device-speci�c models. Poor progress has

been made in the modelling of relatively small appliances: those whose cumulative

energy use is individually small, but signi�cant when considered as aggregates

by typology. To this end we have tested a range of strategies for the modelling

of small appliance categories; �rst predicting discrete states in fractional energy

demand, then converting these into absolute energy demand, given an estimate of

the corresponding maximum power demand.

In this we deploy (as described in Chapter 2) both discrete (Markov) and

continuous (survival) time random processes; for the former also utilising cluster

analysis to e�ectively partition the state transition probability space.

From this process of model developments, application and validation we draw

the following conclusions:

• Modelling appliances by their typologies presents many advantages: it pro-

vides a straightforward solution for modelling the range of types of appli-

ances, it reduces the amount of input data needed to estimate the model and

the risk of over�tting, and it avoids the time-consuming process of modelling

appliances individually, simplifying dynamic energy simulation.
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• The model predicting time varying fractional power demands is surprisingly

robust, given that it is modelling aggregates. In particular we �nd that:

� Finer discretisation of temporal states improved predictive power, but

these improvements are modest beyond 5 temporal states.

� Appropriate estimation of the number of fractional energy states is not

as in�uential as the number of temporal states.

• Clustering techniques have been e�ectively deployed to objectively search

for a parsimonious form of model: minimising the size and partitioning of

state transition probability matrices. The methods presented can be used

for many other areas of research.

• Based on three types of evaluation measure (time series analysis, model accu-

racy and aggregated energy use), the survival multistate approach, in which

survival times are estimated for selected bins of fractional energy demand,

clearly outperforms its Markov process counterparts.

• However, analysing categories can compromise the �delity of predictions of

aggregate energy use, particularly if modelling small numbers of households.

In our case, a successful strategy consisted of allocating maximum energy

values with a random assignment process. The survival multistate approach

has been e�ectively deployed to model low-load appliances in four categories:

audio-visual, computing kitchen and other. The pro�les output by the model

have been satisfactorily compared to those of a community of households.

As previously noted, this work forms part of a larger programme of research to

reliably predict appliance energy demand using bottom-up techniques for commu-

nities of households, and to test strategies for the management of these appliance
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demands to improve community energy autonomy. The proposed Low Voltage

network model and the testing and evaluation of these Demand Side Management

strategies are reported in the following chapters.
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Chapter 4

Generalisation of multi-agent

stochastic simulation architecture to

support Demand Response

There exist a multitude of di�erent mathematical approaches to de�ne

the Demand Response problem, and maybe more ways to computation-

ally implement the optimal operation of devices and resources. Having

reviewed the pros and contras of candidate strategies, we have opted for

a Multi Agent Simulation (MAS) approach, for the following reasons.

First, the landscape of microgrids and community energy concepts is

intrinsically represented as a system of multiple actors (agents) which

are technologically ready to employ varying degrees of intelligence to

pursue an objective (make individual decisions), and enabled commu-

nication with other actors in the network (agent interaction). Secondly,

the architecture of No-MASS lends itself to the ready extension from

modelling occupants as agents to devices as agents, with potential in-

teractions between the two typologies. In this chapter, we present ideas

for testing DR, such as load shifting and battery operation, in a MAS

framework. Our general methodology, including Q-learning for system

optimization, is explained here.
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4.1 Introduction

The power system at the distribution level is evolving towards decentralised mon-

itoring, supply and control. Small-scale renewable energy generation and storage

devices are increasingly incorporated into the network, which in turn needs intel-

ligent management and information communication systems to ful�ll local power

demands. Such an evolved distribution grid is part of a broader concept, the Smart

Grid. There is no uni�ed de�nition of Smart Grid in the literature1. Common con-

cepts among the multiple de�nitions cover: bidirectional communication between

supply and demand, use of monitoring technology, asset utilisation optimization,

integration of renewable power sources and intelligent management of all the actors

involved in the transmission and distribution systems. Thus, the Smart Grid is

bringing new challenges at technical, regulatory and policy levels.

As a consequence of political regulation to reduce carbon emissions, such as the

2◦C scenario (2DS)2 or the 2008 UK Climate Change Act (80% reduction), the up-

take of Low Carbon Technologies (LCT) is growing. Power sector decarbonisation,

leading to the electri�cation of heat and transport through greater penetration of

heat pumps and electric vehicles among other technologies, is predicted to have a

great impact on power demands, which are expected to signi�cantly increase in fu-

ture years, despite of e�ciency improvements. In 2015 over 1 million electric cars3

were on the roads [30], with this �gure expected to increase in the following years

(�gure 4.1a). The IEA Photovoltaic Energy Roadmap [31] envisions 4600GW

of installed capacity by 2050 (�gure 4.1b), with PV system prices reduced to a

1A compendium of de�nitions from di�erent institutions can be found in [28].
2The 2DS targets the energy-related CO2 emissions to reduce by more than half in 2050

(compared to 2009) and to fall thereafter [29].
3Including battery electric vehicles, plug-in hybrid electric, and fuel-cell electric vehicles

(BEVs, PHEVs and FCEVs).
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(a) EV sales targets forecast worldwide. Note: A 20% annual growth
rate is assumed for countries without speci�c sales target. Source: [33]

(b) Regional production of PV electricity envisioned. Source: [31]

Figure 4.1

third since 2008. The 2DS vision estimates 310GW of additional grid-connected

electricity storage needed in Europe, China, India and United States (80GW ap-

proximately were available in 2011) [32]; but a more intense deployment would be

achieved with a cost reduction breakthrough in the technologies.

In this landscape, Demand Side Management (DSM) and Demand Response
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(DR) measures have been identi�ed as key components of the proposed infras-

tructure [34, 35]. This is because they represent a core and a�ordable technology

to better allocate resources, without the need of costly upgrades to the current

power distribution system. It is important to clarify the di�erence between the

two. DSM is understood as �the planning, implementation and monitoring of any

activity designed to encourage consumers to modify patterns of energy usage, in-

cluding the timing and level of electricity demand�[36]. DR refers to strategies and

technologies that modify consumption patterns in response to signals (e.g. sup-

ply conditions or electricity price). In this sense, DSM is a broader concept that

includes Demand Response and Energy E�ciency (EE).

Electricity �exibility in industry and the high volume/high capacity customer

segment has been important in balancing and matching demand and supply for

a long time, playing a key role in system reliability measures (dispatchable DR).

Due to the capacity increase of Distributed Generation (DG) of Renewable Energy

Sources (RES), demand �exibility is increasing its value in lower-volume/lower-

capacity end-users.

At this level, the application of DSM and DR measures is not only trying

to propose technical solutions, but it requires close interaction and involvement

of stakeholders. At domestic level, previous studies [37] have consistently shown

the relevance of behavioural interventions in the overall e�ectiveness of DSM pro-

grammes. However, the underlying determinants for energy-related actions is not

clear yet, and there is a lack in consistency between di�erent DSM programmes in

the assessment of their e�ectiveness. A set of scales that can be used for evaluation

of behavioural interventions is presented in [38], as part of the IEA DSM Task 24
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collaboration4. It proposes a range of metrics, with the aim of standardize pro-

gramme e�ectiveness evaluation5. The need for such standardization implies that

experts cannot compare clearly the e�ectiveness of di�erent programmes. Con-

sequently, existing programmes could not be designed to target the engagement

of speci�c sectors of the population, reducing the possibilities for achieving their

maximum potential. There is great scope for simulation software to help bridge

this gap, as it allows to test di�erent strategies and scenarios using computer sim-

ulation.

In summary, DR is expected to have a major impact on domestic energy ef-

�ciency and energy-related behaviours in the coming years, but there are still so

many open questions: what control strategies work best?, are tari� structures the

right incentive for behavioural change engagement?, do they have di�erent impact

on di�erent type of consumers? We are interested in support the design of success-

ful DR programmes using computing simulation to model and optimise di�erent

strategies and scenarios. To carry out such task, we have identi�ed a set of re-

quirements that we acknowledge a DR simulation platform should satisfy; they

are articulated in Section 4.2. Background information and major developments

in the area are described in Section 4.3. Section 4.4 introduces the software tool

developed and used: No-MASS. The methodology for DR simulation is detailed in

sections 4.5 to 4.7. Finally the chapter concludes in 4.8.

4http://www.ieadsm.org/task/task-24-phase-1/ and http://www.ieadsm.
org/task/task-24-phase-2/

5Based on norms (e.g. motivation to engage or energy literacy), practices (behaviours and
intentions), material culture (appliance ownership), context (e.g. physical properties of dwelling
or demographics) and user experience (ease of use, engagement, trust and satisfaction).

http://www.ieadsm.org/task/task-24-phase-1/
http://www.ieadsm.org/task/task-24-phase-2/
http://www.ieadsm.org/task/task-24-phase-2/
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4.2 Formulation of DR software requirements

In our research, we have identi�ed the need of simulation software that is capable

of modelling and optimising Demand Response (DR) strategies. To this end, we

can articulate some key requirements R that a DR simulation platform should aim

to satisfy. It should be capable of:

R1. Simulating demands for four appliance archetypes:

i) switched on, regulated by and switched o� by the user (e.g. cooker),

ii) switched on by the user and o� when a programme is complete (e.g.

washing machine),

iii) switched on and o� according to some programme or schedule (e.g. hot

water system),

iv) continuous cycling (e.g. refrigerator).

The user-interaction should be stochastic.

R2. Drawing power to satisfy demands from:

i) local generation capacity,

ii) local storage devices,

iii) the local microgrid and/or the national grid;

similarly of diverting locally generated power to either local demand and

storage devices, or to the local/national grid.

R3. Deciding, to satisfy some objective function, where power should be drawn

from/diverted to; rescheduling demands (or the provision of energy related
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services), given some pre-de�ned constraints related to service delivery (e.g.

a washing machine may be activated after having been enabled, but must

complete the wash by a prede�ned time).

R4. Presenting information to the user and emulating the users' decision making

rationale regarding the rescheduling of user-controlled devices.

R5. Accounting for diversity in the extent to which users' are willing to relinquish

control and to actively engage in behavioural change.

R6. Facilitating the above for communities consisting of buildings with numerous

demand devices and potentially numerous supply and storage devices which

can communicate within and between buildings to achieve individual home-

owners' requirements; potentially also those of the local low voltage network

to which they are connected (e.g. in terms of network stability and safety).

4.3 Literature Review

Distinction between DSM and DR was explained in Section 4.1, and it is depicted

in Figure 4.2. A broad classi�cation of DR programmes distinguish between event

based (dispatchable) and non-event based (non-dispatchable) programmes. Dis-

patchable DR concerns responses to emergency reliability events and/or peak load

reduction events. They are usually triggered by the appropriate system operator

(after previous agreement with end-users). In most of the programmes in this cat-

egory, the decision to activate a certain DR service relies on contingency events,

and users are obligated to respond. In some other cases (such as demand-bidding),

the users follow dispatch instructions from a third party in response to some form
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of pricing signal. Alternatively, non-dispatchable methods allow the end-user to

choose to activate DR, following some form of time-sensitive pricing.

Vehicle for implementation

Demand modification measuresDemand Side 
Management

Demand Side 
Management

Demand 
Response
Demand 
Response

Energy
Efficiency
Energy

Efficiency

DispatchabilityDispatchableDispatchable Non -dispatchableNon -dispatchable
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Figure 4.2: Demand Response categories. Source: [39].

Solutions for both dispatchable or non-dispatchable DR can be classi�ed into

price-based and incentive-based schemes [40, 41]. Price-based programmes concern

the modi�cation of the electricity pro�le in response to price variations. Di�erent

tari� structures and regulation contribute to load-shifting in peak times. Exam-

ples of those are Time Of Use6 (TOU) tari�s, Critical Peak Price7 (CPP) and Real

Time Pricing8 (RTP). Incentive-based programmes, on the other hand, are related

to �xed or time-varying �nancial incentive plans. They have been commonly im-

plemented at industrial end-user level for a long time now, however, they are less

common in domestic trials. Some examples include direct load control9, interrupt-

6Demand rates for peak and o�-peak hours. In the UK, it corresponds to Economy7 tari�.
7Uses real-time prices for cases of extreme peak.
8Considers (half-)hourly prices in the same day or day ahead.
9The DR operator can remotely control user equipment.
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ible/curtailable services10, demand bidding11 or emergency programmes12.

4.3.1 DR methods and techniques

The problem of identifying optimal DR strategies can be formulated as an opti-

mization problem, in which the objective function F (x) must be optimised under

certain constraints. The formulation of the function F (x) can take di�erent forms,

such as the daily cost of the energy bill or the fraction of renewable energy use on

a given period of time [40], constituting the DR objective. Depending on the case,

the optimization will involve maximizing or minimizing F (x). For complex cases,

in which x represents a set of parameters and functions, this optimization problem

can be di�cult to solve analytically. In this scenario, there are various algorith-

mic formalisms that enable the parameter space to be explored in the search for a

global optimum.

The following section include more detailed information of the most commonly

used methods for DR algorithms.

Optimization methods employed in DR

The mathematical formulation for the optimization algorithms will depend on the

type of objective function F (x), the parameters and functions considered in x, and

the speci�c DR mechanisms considered (such as load shifting or thermostat regu-

lation). Consequently, there are various techniques available for DR optimization.

They range from traditional calculus methods to heuristic optimization [40]. Some

speci�c and widespread optimization techniques for DR are listed in Table 4.1,

10Curtailment options are integrated into the contracts with the users, who can be penalised
if they fail to reduce demand during critical periods.

11Large customers bid to curtail demand, based on wholesale electricity market prices.
12Incentives are o�ered during reserve shortfalls.
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with considerations and examples for each one. Each of the methods presented in

the table is linked to a speci�c problem, and formulated under certain considera-

tions. It is not the purpose of this table to rank the di�erent techniques, but to

provide an overview of those available, and how they are adapted to a given DR

problem. If F (x) is linear, linear programming can be a good option; when F (x) is

a convex function, convex optimization is available. Linearity and convexity, how-

ever, are restrictive properties, di�cult to formulate in complex scenarios. Other

approaches consider time-varying parameters, for which dynamic programming,

stochastic programming and Markov decision methods provide better options.

Method Considerations Examples

Linear programming
Including Integer/Mixed Linear/Non-linear
programming. Challenging for complex scenarios.

DemSi [42]

Convex optimization
Basic approach to DR. Challenging for complex
scenarios.

[43]

Game theory

Useful to study interactive decision-making processes,
with the potential to address interactions between
di�erent actors in the network. Restricted to rather
simple constrained problems.

[44]

Particle Swarm
Optimization

Bio-inspired heuristic approach, to tackle challenging
optimization problems. Other options consider neural
networks, genetic algorithms.

[45]

Dynamic programming
Basic approach to deal with time-varying parameters,
such as power generation or price.

[46]

Stochastic programming
Addresses time-varying parameters whose probability
distributions are known. It is a special type of dynamic
programming.

[47]

Markov Decision Problem
Specially addresses time-varying parameters. Usually
solved with a combination of dynamic programming
and reinforcement learning.

[48], [49], [50]

Table 4.1: Examples of optimization problems and methods in DR.
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Centralised and decentralised DR With respect to the implementation of

such algorithms, two groups arise: centralised or decentralised programmes [40,

41], and they relate to which component(s) in the system is (are) allowed to react

to stimuli. In the former, decisions on load re-scheduling or power dispatch are

made by a central controller, informed by the operation of each individual element

in the network. Optimization methods used in these cases range from traditional

calculus methods [43] to heuristic optimization [51]. However, these approaches

become challenging when large and complex networks are considered. In the case

of linear programming or convex optimization problems, they attempt to provide

with a de�nite optimal solution; when a large number of customers or devices

are considered for DR, such problems become increasingly complex and heuristic

or other methods capable of �nding near-optimal solutions are necessary. When

applied in real life situations, centralised systems sometimes may raise consumer

privacy protection concerns, as they require a central authority to collect data and

information for decision making.

On the other hand, decentralised DR schemes incorporate the ability of dis-

tributed decision-making, assuming a certain degree of intelligence of the devices

involved (such as smart meters and appliances, power electronics and so on), which

ensures direct communication between the elements in the network. End-users can

directly access indicators of the state of the grid, or of other points of the network,

and react based on them. Certain software architectures, such as object-oriented

and agent-based programming, are naturally con�gured to deal with decentralised

algorithms. And for such architectures, some optimization algorithms are more

suitable; for instance, game theory methods (adequate for relatively constrained

problems, not highly complex typologies), or Markov decision problems are easily
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adaptable to distributed approaches (see Table 4.1.).

DR and Multi-Agent Simulation Multi-agent systems are inherently a suc-

cessful way of designing distributed DR programmes, with the option of employing

agent learning for optimization. Multi-agent simulation (MAS) systems have been

proposed in di�erent power engineering applications [52], from marketplace sim-

ulations to operation and control methods of the power system. They have been

exploited in di�erent ways such as monitoring and diagnostics, distributed con-

trol [53], fault protection and modelling and simulation. Particular interest is

posed in multi-agent systems being used for Demand Response [51, 54, 55]. Being

inherently decentralised, they present a highly �exible and extensible modelling

approach for simulating Device-to-Device (D2D) communication between supply,

storage and demand devices: systems are de�ned in terms of agents which ful�l

individual and collective goals, being able to compete, collaborate, negotiate and

learn behaviours.

Multi-agent systems can be found extensively in the literature to tackle DR

modelling [46, 48, 49, 56]. The implementation of machine learning techniques

allow for agent learning, meaning that di�erent agents can learn to optimise their

behaviours. Reinforcement learning is a popular choice for agent learning, and in

particular Q-learning has been proved e�ective for DR applications, from explicit

Vehicle-to-Grid control [48], to microgrid coordination [56]. A useful mathematical

description of the Q-learning algorithm in a device-centric approach is presented in

[46], and applied to a single household. Finally, the Q-learning algorithm is taken

a step forward in [49], adding another "learning layer" to design a �distributed-

W-learning� algorithm, in which agents learn how their local actions a�ect their

neighbours' performance. Although the formulation is promising for migrogrid
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studies, it has only been put into practise for the case of maximising energy use of

electric vehicles from wind-generated electricity.

4.3.2 Application into DR simulation software tools

The previous section reveals that there are multiple modelling strategies and algo-

rithms available for DR simulation. Although many interesting candidate models

and ideas are found in those studies, usually they are focused on developing certain

aspects of DR, or testing speci�c algorithms. They do not have the potential to

address all the requirements articulated in section 4.2. However, we are interested

in developing �exible, scalable and extensible software for DR simulation. In that

sense, this section provides an insight on those studies aiming to be DR simulation

tools, which in our view, should target to address the range of these requirements

in a comprehensive way.

DRSim [55] is a simulator for DR, which mainly focuses on R1, R4 and R5

requirements. They use an agent-oriented approach, de�ning house, human and

appliance agents, which makes DRSim a highly modular software, capable of in-

corporating new models easily, and to confer di�erent behaviours to its agents.

Demand in appliance agents (R1) is inferred using conditional probabilities, com-

bining information of the correlated distribution of type of occupant and house,

rooms in the house, set of appliances in each room, activity taken place and the use

of an appliance during that activity. More interestingly, user behaviour is incorpo-

rated into human agents, de�ning a responsivity parameter (how agent reacts on

receiving a signal) to perform a DR action. Both responsivity and action are mod-

elled using three parameters: price, perception and communication sensitivities.

This way, users' decision making (R4) and its engagement (R5) are sophistically
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parametrized. Two types of DR mechanisms are allowed to the human agents: re-

duce load and shift load; but �the speci�c algorithm (R3) used to create a revised

schedule is left unspeci�ed as many candidates can be used.� On the downside,

there is no attempt on this study to consider supply agents (R2), or to involve

network operation in any way (R6).

Another DR simulator called DemSi [42], �aims at providing a �exible tool to

analyse DR actions and schemes� by developing �a software application that can

be used by DNO's [Distributed Network Operator] and consumers to optimize

their resource management.� DemSi focuses on distributed generation issues (R2),

covering a broad range of renewable energy technologies (photovoltaic, wind, co-

generation, fuel cells, small hydro and biomass), and its e�ects on the electrical

network and energy market elasticity (R6). To do so, they use PSCAD13 software

for network simulation. Their objective is to simulate a variety of DR methods

that minimize the costs of a generation shortage situation: minimizing the total

cost that the DNO and the suppliers have to pay for non-supplied loads, which is

implemented as a mixed-integer linear model in (commercial) software MATLAB

and GAMS14 (R3). The case of an isolated microgrid with only available electricity

from DG gives some hints on how to simulate DR for network faults. It presents

some interesting ideas for DR from a DNO perspective, however, energy use is con-

sidered with typical pro�les, making this simulator incapable (and inextensible) of

dealing with R1, R4 and R5 in its present form.

SMASH (SiMulated Adaptable Smart Home) [57] is claimed to be a demand

side focused simulation platform, �speci�cally built to provide insights on the e�ect

of di�erent approaches to consumers, in terms of discomfort and decreased elec-

13https://hvdc.ca/pscad/
14https://www.gams.com/
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tricity costs.� It mainly addresses R4, proposing an interesting DR programme:

consumer-centric load control (CLC). It is an incentive-based programme similar

to Direct Load Control (DLC), but with maintained freedom and comfort to con-

sumers. The authors formulate a power reduction request sent by the DSO, and

the home management system performs a load control action based on policy rea-

soning and extended �nite-state machines15. The user will receive a reward based

on the energy reduction, and a penalty fee in case of rejection. The objective is

to minimise times of reduced comfort through the modi�cation of space heating

(R3). However, the other requirements are poorly ful�lled: only space heating

and electric water heating (shower) are included (R1); it does not consider local

generation or storage so far (R2); the interaction between end-users and the home

management system is unclear (R5) and there is not intention for a multi-building

simulation.

4.3.3 Proposed modelling framework

Although good progress has been made in the development of DR software, with

interesting initiatives available in the literature, there remains no comprehensive

framework capable of addressing R1 to R6 requirements.

The remainder of this chapter describes the extension to an existing Multi-

Agent Stochastic Simulation platform (No-MASS), with the aim of comprehen-

sively address the shortfall in DR simulation capability. We present a tool capable

of dealing (completely or partially) with R1, R2, R3 and R6, and with potential

to incorporate R4 and R5 in the future.

No-MASS was initially developed to model the presence, activities and related

15Decisions are made based on a set of possible states and a set of transitions or outcomes
from each state.
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behaviours of synthetic occupants (agents) of buildings that are co-simulated with

EnergyPlus using the Functional Mockup Interface standard [58]. In this way

it is straightforward to model occupants, interactions between them, (person-to-

person: P2P) and their impacts on the energy performance and indoor comfort of

the buildings they occupy, in contrast with most DR tools, which were designed

to address Device-to-Device (D2D) interactions (see Figure 4.3).

Figure 4.3: Device-to-device and
person-to-person interaction.

Interestingly, the architecture of No-MASS is readily extensible to also consider

D2D communications. Thus creating a platform that has the capability to simulate:

• Occupant-agents' behaviours and interactions between them (P2P, the prior

No-MASS).

• Device-agents' behaviours and interactions between them (D2D).

• Interactions between occupants and devices (D2P and P2D).

In this thesis we focus on developing the second one of these capabilities. Next,

the fundamentals of No-MASS are described in more detail, its work�ow and the

models that have been incorporated. The algorithms implemented to support

load re-scheduling and battery operation in a multi-agent representation are then

explained. In the next chapter we illustrate the application of this new prototypical

platform to estimate the e�ects of appliance load shifting and electrical storage with

the objective of maximising the use of locally generated renewable energy of a) a

domestic building and b) a group of buildings.
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Figure 4.4: No-MASS �owchart.

4.4 No-MASS background

As noted earlier, No-MASS (Nottingham Multi-Agent Stochastic Simulation) is a

platform that was originally developed to model the presence, activities and related

behaviours of occupants of buildings, or groups of buildings, and the energy and

indoor comfort consequences of these behaviours. To this end No-MASS employs

four complementary modelling strategies:

1. Data driven stochastic models predicting occupants' presence [59] and

associated metabolic heat gains, their activities whilst present [60] from which
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location is also inferred, and their use of lights [61], windows [62] and shading

devices [63].

2. The processing of votes for multiply-occupied spaces to emulate agents' ne-

gotiation mechanisms (e.g. agents' in�uence-weighted votes to open [1]

or close [0] a window; the outcome receiving the greatest number of votes,

weighted by in�uence, being e�ected).

3. Use of a Belief-Desire-Intention (BDI) framework to emulate agents' be-

haviours that are simple in character (e.g. closing curtains when it is dark,

the closing of a window whilst bathing) but for which data is scarce.

4. Agent learningmechanisms to emulate agents' behaviours that are complex

in character (e.g. choice of heating set-points) and for which data is also

scarce.

The architecture of No-MASS (and its coupling with EnergyPlus), the data-

driven (Strategy 1) models and their application to the simulation of both domestic

and non-domestic buildings are described in [64]. The extension of No-MASS to

model agents' negotiations and the data scarce modelling of both simple and more

complex behaviours (Strategies 2-4) are explained in [65].

To facilitate the extension of No-MASS to handle DR simulation and opti-

misation (and indeed the more complete modelling of the impacts of occupants'

behaviours), our Strategy 1 models have been complemented with models of occu-

pants' ownership and use of large [60] and small [66] electrical appliances. These

models have themselves been complemented with models and data of electrical

storage (an electric battery) and supply or conversion (a photovoltaic panel) de-

vices; and of a low-voltage network model.
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4.4.1 No-MASS work�ow

Figure 4.4 illustrates the newly extended No-MASS architecture. First (upper left)

a population generator creates a household of a size and demographic composition

that is suited to the house being simulated [67]. Next the conventional No-MASS

modelling tasks are executed.

Household member agents are assigned archetypal properties (room associated

with activities, clothing and activity characteristics which randomly assign unique

behaviour probabilistic models). Activities are then computed for the length of the

simulation in a pre-process (for activities are not dependent upon environmental

inputs); likewise electrical appliances are assigned to the household.

A loop then commences in which indoor/outdoor environment parameters are

parsed from EnergyPlus to No-MASS for the present time step. From the pre-

processed activities, agents' location, activity and clothing level are set, from which

metabolic heat gains are calculated.

A series of models predicting interactions with windows, shading devices, heat-

ing systems and lights are then called. For heating interactions, agent learning

is employed to determine the transient setpoints that minimise a cost function

that combines heating costs and discomfort costs. In the case of multiply-occupied

spaces, social interactions are considered at this stage through the vote processor to

determine the negotiated outcome. Finally, BDI rules are used for straightforward

interactions, for which data is scarce.

The work�ow proceeds with the prediction of demands for small and large

appliance, supply from energy conversion systems (only PV being enabled at this

stage) and storage (only from batteries at present). Appliances are also shifted

at this stage, again using agent learning, to maximise a cost reward function (of
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which more later). A LV network model has been developed (see Chapter 6) and

integrated with No-MASS. The user can choose to enable it for simulation.

The calculation then proceeds to the next time-step, exiting this loop at the

end of the simulation period.

The corresponding physical models (for D2D modelling) are described below.

4.4.2 No-MASS for Demand Response

The extension of No-MASS will, once complete (for this thesis describes a par-

tial proof of concept), address the range of requirements outlined earlier. In its

present form No-MASS/DR addresses requirements R1 (demand models), R2 (var-

ious power �ows) and R3 (DR optimisation), further explained in this section.

Progress on R6 is explained in Chapter 6. The strategies for achieving this are as

follows:

• Develop mechanisms for D2D communications between energy conversion,

storage and demand devices represented using the models described below.

• Implement strategies for load-shifting and optimal charge/discharge of a bat-

tery using agent learning algorithms. This will re�ect whether or not multi-

agent simulation and machine learning are e�ective approaches to test dif-

ferent DR strategies on di�erent socio-demographic groups16.

• Extract or quantify di�erences when simulating residential electrical self-

consumption / autonomy (or other DR objectives) for di�erent socio-demographic

groups.

16Socio-demographic considerations are not included in the work reported.
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Thus, No-MASS could potentially (given available data) be used to evaluate

scenarios involving human interaction and behaviour change (R4 and R5) and to

support tari� design, using for instance BDI rules and/or agent-learning. For in-

stance, we could assess to what extent active engagement of users increases electri-

cal energy autonomy, or to what extent price signal impacts on behaviour change.

The following sections, explore in more detail the methods and algorithms used.

4.5 Methodology I: models and data in No-MASS/DR

There are a broad range of available technologies for Distributed Energy Resources

in residential areas. In regard to supply technologies there is: solar PV, micro-wind

turbines, CHP plants (that can be disaggregated into fuel cells and fuel combus-

tion), small-hydro power or biomass plants. For small-scale electrical storage there

are di�erent battery technologies available (chemical), supercapacitors (electrical),

�ywheels (mechanical); other electrical storage options are available for larger sys-

tems, such as water pumping or compressed air storage. Additionally, electric

vehicles can be considered as storage systems.

Within this landscape, for our proof-of-concept, we are selecting solar PV for

power generation and electric batteries for storage systems.

4.5.1 Electricity demand models (R1)

The demand forecast models developed for No-MASS are based on stochastic meth-

ods. Devices have been classi�ed in large appliances (high-load and commonly

owned) and small appliances (range of low-load appliances), and follow two di�er-

ent modelling methodologies.
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Large Appliances

Large appliances include the cooker, TV, microwave, washing machine and dish-

washer. They have been modelled as a three-step process [60]. First, the probabil-

ity of switching on is predicted using a time-dependent Bernoulli process. Second,

the duration for which devices will remain on is predicted using survival analysis.

Finally, transitions between categories of fractional power demand (the fraction of

maximum possible) are predicted as a Markov process, at 10 minute resolution.

Probabilities of switching on are depicted in Figure 4.5.

Figure 4.5: Switch on probabilities of large appliances.

Small Appliances

Small appliances are modelled as aggregations of appliances, following four cat-

egories: small appliances in the kitchen, audio-visual appliances, computing ap-

pliances and other appliances [66], extensively explained in Chapters 2 and 3. A

multi-state survival model is used: eleven fractional energy (ratio to maximum

energy) states are de�ned f = {0; 0-0.1; 0.1-0.2; . . . ; 0.9-1}. The survival time

that the appliances remain in one of those states is calculated using a Weibull dis-
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tribution (see section 2.4.3). A simpli�ed �owchart of this process is represented

in Figure 2.3(c).

Heating

Electrical demand for heating can be obtained thanks to the coupling of No-MASS

with Energy Plus.

Water heating is not considered for these simulations.

4.5.2 Supply and power �ow (R2)

Photovoltaic data

For the current purpose of demonstrating the proof of concept of our proposed

modelling approach, we are using measured performance data that characterise PV

systems' output in-lieu of a predictive model. In the future a suite of predictive

energy conversion system models will be integrated.

Electric Battery Storage System

Electric storage technologies provide valuable services in most energy systems.

Small-scale systems are becoming (nearly) cost-competitive in certain situations,

such as remote or o�-grid scenarios [32]. Common applications for the use of small-

scale electric storage are arbitrage (response times >1h), demand shifting and peak

reduction, variable supply resource integration (response times <15min), frequency

regulation (response times 1min) or voltage support (response times: 0.001s to

1s).

In No-MASS/DR, an approximated model has been implemented for the charge

and discharge of the battery, which considers the State Of Charge (SOC) of the
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battery independent of its open circuit voltage VOC . Conversion e�ciency is �xed

to η = 0.98, leading to constant conversion losses of 2% with respect to SOC.

Given a nominal capacity of the battery Qn, a maximum charge/discharge rate of

Pn and a current capacity Q(t), the SOC(t) is de�ned as

SOC(t) =
Q(t)

Qn

. (4.1)

The variation in SOC in each time step ∆t (usually ∆t = 1min ), is determined by

the variation in capacity, from Q(t) to Q(t+ ∆t). For the discharge of the battery,

it is given by

Q(t+ ∆t) = Q(t)− ηP (t)∆t, (4.2)

where P (t) ∈ [0, Pn] corresponds to the requested power by the appliances. For

the charge of the battery,

Q(t+ ∆t) = Q(t) + ηP (t)∆t, (4.3)

where P (t) is the available power generated locally. So far, a fairly primitive (dis-)

charging strategy is de�ned, which only considers (dis-)charge from the PV panel

(Figure 4.6). We plan to re�ne this strategy to also consider (dis-)charging from

the grid (dashed lines in Figure 4.6) in the future.

Low Voltage network model

The operation and modelling features of the Low Voltage network implemented

is fully described in Chapter 6. A forward/backward sweep solver has been used

for power-�ow analysis. It has been implemented as a recursive algorithm. In the

case of a distribution network, recursion constitutes a method to e�ciently solve
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Figure 4.6: Power �ows.

branched networks. During the forward sweep, the currents and voltages at each

node depend on the currents and voltages at the child nodes connected to them

(one if linear network, several if branched); whereas during the backward sweep,

currents and voltages depend on the parent node.

4.6 Methodology II: Software orchestration with

Agent Representation

4.6.1 Agent representation

In the initial methodology of No-MASS, household occupants were identi�ed as

software agents. In extending No-MASS to No-MASS/DR to handle D2D in-

teractions, electrical appliances and energy systems are represented as an agent

sub-class. Each agent has an ID, a peak power (either for demand or supply)

and a priority of service. The priority of service is used for demand agents, and
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it allows to rank all energy requests based on their priority, and it is activated

when restrictions in supply are considered. This would be useful, for example, for

simulations of an islanded network, to account for situations when not all services

can be delivered. Also, the operation starting time and pro�le can be calculated

(type of prediction depends on the type of device), given that information of the

associated model is entered in the agent de�nition.

During each time step, each device communicates the amount of energy (power

integrated over the duration of the time step) to be requested or delivered. First,

energy from our PV panel is allocated to appliances based on their priority. Any

shortage is provided (perfectly) by the upscale grid. When an electrical storage

device is unavailable, any surplus is exported to the grid. When it is available, the

battery can be charged using excess PV energy, and can be later discharged to run

electric appliances when price conditions favour this strategy.

4.6.2 Type of agents

Every actor in No-MASS/DR is con�gured as an agent. Thus, there are seven types

of regular agents: LargeAppliance, SmallAppliance, PV, Battery, Grid, CSV and

FMI agents. FMI agents are those linked to another software through Functional

Mock-up Interface (FMI) for co-simulation; in the case of No-MASS this software

is EnergyPlus. CSV agents o�er the posibility to enter .csv data �les as input,

instead of speci�c models, giving �exibility to add demand or supply devices for

which models are not available yet.

Additionally, two of these agents have been conferred with learning capabil-

ities: LargeApplianceLearning and BatteryLearning. The speci�c details of the

mathematical formulation for their operation is presented in the following section.
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4.7 Methodology III: Agent Learning for

DR optimisation (R3)

In its present form, No-MASS/DR combines the following components (in relation

to Figure 4.7):

A. Price-based strategies are considered: a cost signal based on indicative prices

for electricity import is used as a driver stimulus to modify demand patterns.

The speci�c tari� structure can be de�ned and modi�ed for each simulation

scenario. The current demand/supply status in�uence as well the response.

B. Two DR mechanisms are implemented: load shifting (through appliance

reschedule) and optimal electrical battery operation. A reinforcement learn-

ing algorithm is incorporated into learning agents: a) LargeApplianceLearn-

ing or shiftable appliance agents, that can be regulated autonomously: wash-

ing machines and dishwashers, and b) BatteryLearning agents, that learn

optimised discharge operation.

C. The selected DR mathematical formulation consists of a Q-learning al-

gorithm for the optimization of the objective function.

D. In this thesis, we have focused on the improvement of renewable energy self-

consumption using cost minimization as our objective function. This cost

is de�ned inside the reward function for each case, and consist of a combi-

nation of electricity tari� price, available renewable energy and intensity of

the energy demand. We aim at �nding a formulation for the reward function

such that minimization of the objective measure leads to an indirect increase

of self-consumption.
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All these four elements are explained in more detail in the following sections.

Improve renewable 
energy self-consumption 
by minimising cost

B.
D.

Demand Response 
mechanisms

Appliance 
reschedule

I )

2 ) Battery 
discharge

Achieve 
objective

C. Q-learning 
algorithm

Reward 
function

Mathematical
formulation

Figure 4.7: DR methodology.

4.7.1 Q-learning algorithm

There are multiple algorithms available for Reinforcement Learning (RL). Q-learning

algorithms [68] are one of the most widely used RL methods, with its major advan-

tage being their great simplicity. They require a minimal amount of computation

and, on its basic formulation, they can be expressed by single equations [69], and

easily implemented in computer programs.

Q-learning algorithms [68] allow agents to learn a response from a reward, to

an action. This allows agents to develop an understanding of their preferences

over time. An agent learns the best action in a given state by trying every ac-

tion in a state and updating the expected reward with the actual reward for that

action. This is particularly useful, compared to other machine learning methods,

for modelling appliance shifting, as the appliances can test di�erent strategies for

maximising their reward where there is a clear link between an action and a driving

stimulus. For example, does a chosen action (turn on at a later time) reduce peak
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power demand over a time-period. This is a quick and e�ective methodology that

would be di�cult to model through rules due to the complexities involved, espe-

cially when considering multiple shifting appliances. Each appliance would need

its own set of rules to ensure they would not turn on at the same time, whereas

Q-learning allows them to learn their own preferences, considering other appliance

demands.

In Q-learning algorithms, an agent chooses an action at a given state based on

a Q-quantity, which is a weighted reward based on the expected highest long term

reward [68]. The Q-quantity is de�ned for each state-action combination, creating

a Q-table. The values in the Q-table are updated each time an agent selects an

action. Let st express the agent's state at time step t, and at a chosen action.

Using this information, the Q-value for the corresponding combination of (st, at)

is updated:

Qt(st, at) = Qt(st, at) + α [Rt + γ ∗max(Q(st+1, a))−Qt(st, at)] , (4.4)

where Rt is the reward observed for the current state and the action taken. For

each combination of (st, at), Rt can be a single value or it can be a function

depending also on other variables. α ∈ (0, 1] is the learning rate and γ ∈ (0, 1]

is the discount factor. The term max(Q(st+1, a)) is an estimate of the optimal

future value; thus, the discount factor speci�es how soon the agent cares about the

reward: near terms goals when γ ∼ 0 (myopic agent), otherwise long term rewards

when γ ∼ 1. In summary, at time-step t, when the agent at state st is taking

action at, the Q-value is updated using: its former value Qt(st, at), the reward Rt

and an estimate of the optimal future value max(Q(st+1, a)). The e�ectiveness of

the learning process is highly dependent on the selected parameters α, γ and ε.
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Once the Q-table is updated, the next state is set as the current state, and

the agent will select a new action. The selection of an action is not completely

deterministic (using the Q-table), but uses an epsilon-greedy approach: the best

action is selected with 1− ε probability, and a random action is selected otherwise.

For instance, if ε = 0.1, the (currently) best action will be adopted 90% of the

time. This randomness is introduced so that the agent explores more in order to

discover the best action over the whole period of time.

Reward function

The reward function Rt can consider di�erent variables of interest, such as cost,

power demands or voltage stability, allowing to use the same methodology to ex-

plore a range of objectives. An advantage of Q-learning over other black-box

machine learning methods such as neural networks, is that the de�nition of the

reward function allows to tune the algorithm in a explicit way, using knowledge of

the system. Convergence of the learning process is achieved when the change in

values of the Q-table no longer a�ects the results.

The reward function is di�erent for each learning agent type. Thus, it needs to

be formulated for each case study.

4.7.2 DR mechanisms

I. Load shifting optimisation

The core idea for appliance-reschedule is depicted in Figure 4.8. For each time

step, the switch-on model is run. When a switch-on event is predicted, the pro�le

of use and the new starting time are calculated. The temporal window within

which appliances may be shifted has a maximum extent of 24h, but this may be
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reduced to meet pre-de�ned delivery time constraints.

day i day i+1

Activate profilePredict turn on
Predict use profile
Compute shifting time

Start running 
appliance model

defined 
delivery time

9am 2pm 7am

24h window to shift

Figure 4.8: Appliance re-schedule diagram. In this example,
state is st = 9(h), and action at = 14(h).

Q-learning for load shifting For a LargeApplianceLearning agent, we map the

state (hour of the day) to an action (future hour of day to initiate the appliance).

This creates a mapping of 24 hours to 24 hours, making the Q-table space of

576 combinations in size. An example of a pro�le shift might involve calculating

whether at state st the appliance is required to be turned on (e.g. the dishwasher

is loaded and ready). If so the appliance demand pro�le should be calculated using

the large appliance model. However this should not yet be initiated. Instead the Q-

table should be used to retrieve a time (action) at which the appliance programme

should be initiated (see Figure 4.8).

A graphical example of a 24× 24 Q-table for appliance reschedule is presented

in Figure 4.9a, in which each pixel is false coloured according to the q-value of an

action from its state sj to sj+1. Shifting to peak times (7-9h and 16-21h) has a

smaller reward (darker pixels) than shifting to sunshine hours, or o�-peak (23-7h)

times. Scope of reduce dimensionality should be explored, either visually or using

cluster analysis, as it could allow a faster learning period.
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Figure 4.9: Q-tables. The units of the legend correspond to reward
values, derived from the corresponding reward function.

Reward function. The reward function R for appliance reschedule consists of

two components:

1. The inverse of a cost signal (e�ectively then an income signal), based on

indicative prices for energy imports. A Time-Of-Use (TOU) tari� can be de-

�ned (speci�ed for each case study). Values of the tari�s have been normal-

ized [0, 1], since only relative di�erences are useful for the learning algorithm.

2. Negative reward (punishment) when the service is not satis�ed on time (the

washing cycle is not complete within the delivery-time-constrained window).

II. Battery discharge operation

Our battery has been implemented to charge whenever there is a surplus of PV

power available (supply > demand), before it is exported to the grid (whilst storage

capacity is surpassed). For the discharge process, Q-learning is used.
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Q-learning for battery discharge For a BatteryLearning agent, we map the

state (hour of the day) to an action (either discharge [1] or not discharge [0]). It

leads to a mapping of 24 hours to 2 actions, and a Q-table space of 48 combinations

in size.

A graphical example of such 24×2 Q-table is presented in Figure 4.9b, in which

each pixel is false coloured according to the q-value of the action a(1) of discharging

and a(0) for not discharging, for each hour of the day.

Reward function. The reward function R for the discharge process is dictated

by either one or both of these two considerations:

1. Alleviate energy intense periods. The battery has been con�gured to relieve

peaks of high demand that require electricity imports. The battery learns

when the highest hourly peak demand Pgrid_import_MAX is and when imports

from the grid exceed some threshold δ (e.g. 70% if δ = 0.7) of this demand:

Pgrid_import > δ Pgrid_import_MAX . (4.5)

Otherwise, it learns to turn itself o� in that hour, storing the remaining

energy for peak periods.

2. Minimise high-cost grid imports. The battery can also recognize favourable

price conditions. It will learn when to discharge based on the price signal,

discharging in high-price periods and not discharging during cheaper periods.

This mechanism is commonly known as arbitrage.

The activation of such considerations is de�ned in the reward function for each case,

which needs to be tuned accordingly. The speci�cities of the reward functions used

for this work are described in the corresponding case studies.
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4.7.3 Self-consumption maximization

Self-consumption (SC), also referred to as a load matching index [70, 71], can be

de�ned as the ratio of energy use from on-site generation to the total energy used,

as expressed in equation 4.6. It is inversely related to the amount of PV (or other

sources) power exported to the grid.

Self Consumption(%) =
Edemand fromPV

Edemand
(4.6)

Although maximising self-consumption is our goal, this is not formally opti-

mised by our Q-learning algorithm (eq. 4.4), as it is not explicitly expressed in our

reward function. But this is indirectly achieved through the tari� signal, (Figure

5.1), through which we pay a low price whilst using o�-peak centrally-generated

energy and close to zero for locally generated energy. In this way, smart appliances

learn to turn on during low-cost periods.

4.8 Summary

In this chapter, we have described a methodology extending the multi-agent stochas-

tic simulation platform No-MASS to support the simulation of demand response

strategies. The prior focus of No-MASS was on the integration of models of occu-

pants' behaviours with building simulation software, in particular with EnergyPlus.

The hypothesis is that No-MASS's underlying software architecture, and many of

the modelling techniques already utilised within it, are readily extendible to handle

DR simulation (simulating device-agents in addition to occupant-agents).

A set of six requirements have been formulated (Objective II.1 of this thesis)

that we believe should be supported by any DR simulation tool. They include
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modelling power loads from various type of devices, and managing demand with a

combination of local generation, stored electricity and traditional supply systems,

using mathematical optimization. Apart from this device-to-device interaction,

we also suggest person-to-device interactions as a signi�cant functionality for DR

software. Various interesting mathematical formulations and model candidates

were found in the literature search, but none of the simulation platforms studied

aimed at addressing all of the requirements in a comprehensive fashion.

The proposed framework, No-MASS/DR, has the potential to do so. The

details of No-MASS/DR and its methodology have been presented here, and allows

to address objectives II.2 and II.3, which will be demonstrated in the next Chapter.

Key components include the use of agent reinforcement learning to simulate two

di�erent DR mechanisms (load shifting and battery discharge) to improve energy

use of renewable local sources. In the next Chapter, two di�erent scenarios are

evaluated: a single house and a community of houses.
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Chapter 5

Application of the extended

No-MASS/DR framework

The previous chapter introduces ideas to solve the DR problem using

Multi-Agent Simulation. A speci�c software architecture has been pre-

sented. Machine learning algorithms, in particular Q-learning, have

been proposed as good candidates to handle load shifting optimisation

of automated appliance use, as well as the discharge process of electric

storage. Its mathematical formulation requires a reward function which

will be key to achieve the corresponding DR goals. In this chapter, all

those concepts are put into practice. First, we present the application of

the framework to a single-building case study, comparing improvements

in the rate of renewable self-consumption when load shifting and storage

capabilities are introduced. Second, we proceed to model a community

of buildings synthetically populated, which brings new software design

and computational challenges. Again, we test the e�ects in electricity

self-consumption when new technologies are introduced.

5.1 Improving Self-Consumption

The two case studies presented in this Chapter consider the application of the

No-MASS/DR framework for the study of renewable energy self-consumption, SC

(see Section 4.7.3). Two main arguments support the e�orts in improving on-
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site power consumption. First, SC increases the economic value of distributed

generation [72]. In a context of constantly increasing retail electricity prices, and

declining investment costs for renewable technology, improving the rates of use of

self-generated electricity contributes directly to achieve grid parity1. For the case

of PV, which has the highest share in DG, grid parity has already been achieved

in di�erent European countries, and this is expected to become more widespread

in the coming years [74].

Second, SC can lower the stress on the electricity distribution grid, caused

by high levels of penetration of DG. Integration of intermittent power sources is

intrinsically challenging, due to the disparity between power generation and power

demands. Moreover, it can cause power faults such as voltage rise due to the

peaks in generation during low-demand periods. Increased rates of SC can help to

mitigate such e�ects, as well as reducing transmission losses.

However, the pro�tability of SC is unavoidably attached to the existing regu-

latory framework of grid-connected systems, which is di�erent in each country. In

the EU, there is not a speci�c regulation or legislation on self-consumption [75].

Subsidies or attractive policies are necessary that make SC �nancially bene�cial

for prosumers. Some models that consider remuneration for on-site electricity use

are Feed-In-Tari�s (FIT's)2, net-metering3 or Feed-In-Premiums (FIPs)4. All these

policies support SC directly.

1For PV, grid parity is de�ned as �the coming of age moment, when electricity from PV will
be cost competitive with that from conventional generation sources, without subsidies so that
deployment will take o� driven by economic fundamentals�[73].

2Prosumers pay the retail price for the power they use from the grid [75], and the supplier
pays a generation tari� for any electricity generated and, where applicable, an export tari� for
any surplus electricity exported to the grid [76].

3Prosumers feed excess electricity into the grid and consume it later when they need to, paying
only for the net di�erence [75].

4Remuneration for RES generation, which introduces short-term market exposure of RES
electricity [75].
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On the other hand, SC is supported indirectly through the promotion of DR

and electricity storage technologies [75]. SC is limited without technical enhance-

ments of these two technologies. An average �gure between 17% and 44% SC is

suggested by [71] without any additional technology, depending on household size

and irradiation exposure. To reach the full potential of on-site electricity use, we

need to look into solutions that include demand response and electricity storage.

Self-consumption and community energy

SC can be further achieved in a community energy framework. Becoming popular

in the UK5, community energy projects �cover aspects of collective action to reduce,

purchase, manage and generate energy�[77]. Distributed generated electricity, from

collective or individually-owned resources, can be used for demands across the

community, instead of being fed directly into the grid, enhancing the use of on-site

generation. This idea, can be extended also to storage devices. In a community

energy model, storage systems could be charged or discharged with generation

surplus or demands from multiple households.

In this chapter, we test our tool for self-consumption maximization of i) a single

building and ii) local neighbourhood (not necessarily detached from the city), that

can operate as a community. In this, we assume that occupants are willing to

adopt new technology and/or to modify their energy-using practices to improve

upon their energy performance (albeit expressed through �nancial rewards).

5Interesting source to develop community energy projects: http://www.planlocal.org.
uk/

http://www.planlocal.org.uk/
http://www.planlocal.org.uk/
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5.2 Case study I - maximise self-consumption for

a single building

5.2.1 Scenario description

In this section we present the results of simulating a household with a single pro-

fessional resident occupying a detached house using No-MASS. Our objective is to

maximise the utilisation of energy converted by a 3.8kW-peak PV panel installed

on the roof by a set of large6 and small appliances7, including electrical heating,

connected to a 2kWh electric storage system (with a power limit of 1kW). Fol-

lowing notation in equations 4.1, 4.2 and 4.3 for the battery model: Qn = 2kWh,

Pn = 1kW and η = 0.8.

To this end we use price-incentive based DR control strategies to: a) re-schedule

autonomously controlled washing machine and dishwasher appliances; b) discharge

the battery. A Time-Of-Use (TOU) tari� is tested, with three di�erent pricing pe-

riods: on-peak (between 7-9h and between 16-21h), o�-peak (at night between

23-7h), and mid-peak for the rest of the day. In Figure 5.1, the TOU signal is

related to an averaged Real Time Price (RTP) signal8. Values of the tari�s have

been normalized [0, 1], since only relative di�erences are useful for the learning

algorithm. For both DR mechanisms, device operation can be tuned using this

tari� signal as a driver, that fosters the switch on of autonomous appliances whilst

sunshine is likely, and the discharging of the battery whilst there is no PV gen-

eration. This operation is aimed at maximising self-consumption over time, while

6Cooker, dishwasher, washing machine, fridge and TV.
7Set of audio-visual appliances, small kitchen appliances, computing appliances and other

appliances. The set size depends on the simulation, in which they are allocated following a
Monte Carlo sampling.

8Data available from http://bmreports.com/bsp/bsp_home.htm

http://bmreports.com/bsp/bsp_home.htm
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reducing on-peak demand (as de�ned in Figure 5.1).
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Figure 5.1: Reward function uses price signals.

5.2.2 Reward functions

As in other machine learning algorithms, a trial and error process is necessary

to identify suitable algorithm parameters. In Reinforcement Learning, this is the

case for the de�nition of the reward function. However, in contrast with other

black-box machine learning algorithms (such as neural networks), Q-learning al-

lows the modeller to incorporate "expert knowledge" about the operation of the

system, through the explicit formulation of the reward function. Thus, di�erent

formulations lead to more or less e�cient learning. Two ways of evaluating this

are: to look at the relative reward values, which should increase with time, as

the agents learn the more pro�table actions (example in Figure 5.2); or to look at

the expected behaviour of the system (for instance, checking when the appliance

switch on events occur).

Appliance re-schedule

The reward function for load shifting was explained in Section 4.7.2-I; being a

combination of the inverse cost signal (from the TOU) and a punishment when

the service is not satis�ed within the de�ned delivery time tD (scheme in Figure
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4.8). tD is speci�ed for each appliance in the simulation con�guration �le. The

value for the delay punishment p ≥ 0 is also input through the con�guration �le.

For this simulation, we have set p = 1.

Ra(t) =


−Ccycle, t < tD

− (Ccycle + p) , t ≥ tD

(5.1)

where Ccycle refers to the cost of running once the appliance a starting at time t,

and depends on the electricity use and price.

An example of the learning period is presented in Figure 5.2. It shows a moving

average of the reward values for the actions taken by the washing machine agents

(5.2a) and the dishwasher agents (5.2b), and their standard deviation. In both

cases, reward values increase at the beginning of simulation and the standard

deviation reduces, meaning the agents are learning. This trend is more severe up

to approximately the �rst 1000 actions; after that, it becomes more steady. For

this work, we have selected 1000 actions as a minimum recommended value for the

appliance re-schedule learning process. For each particular case (depending on the

number of devices or households considered), the number of learning actions can

be increased to 1500-2000 actions.

Battery discharge

The battery discharge in this case study takes into account the �rst mechanism of

those de�ned in Section 4.7.2-II: alleviation of demand-intense periods. Following

equation 4.5, we de�ne χ as:

χ =
Pgrid_import

Pgrid_import_MAX

. (5.2)
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(a) Washing machine

(b) Dishwasher

Figure 5.2: Appliance learning: improvement of reward.

For each hourly time-step, χ gives the ratio between current grid imports Pgrid_import

and the highest peak demand Pgrid_import_MAX . For this case study, we select the

threshold for χ to be δ = 0.7 (see Section 4.7.2-II). Again, a trial and error process

was performed to obtain the parameters values.

Depending on the action taken at each time step, either a(1) for discharge or a(0)

for not discharge, the reward R varies. Therefore, the reward when discharging is:

Ra(1) =


χ, χ ≥ δ

−χ, χ < δ

(5.3)
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and when not discharging:

Ra(0) =


−χ, χ ≥ δ

χ, χ < δ.

(5.4)

When the reward is set to a negative value, −χ, it will act as a punishment, oc-

curring when discharging at low-demand periods (eq. 5.3) or when not discharging

at high-demand periods (eq. 5.4).

5.2.3 Results and discussion

Three scenarios are presented for comparison: �rst, the base case, where the models

and systems are run without shifting demand and without considering a battery.

Second, appliance re-scheduling capabilities are added to the base case. Third, a

battery system is also considered. These three scenarios are simulated for winter

and summer (heating not necessary).

Each simulation runs for a period of one week. To account for stochasticity

in the calculations, results are presented as a distribution from a set of replicates;

100 for each scenario. Where agent learning is involved, the Q-learning algorithm

requires training to populate the Q-tables. For the work presented here, a learning

period of 125 weeks was necessary (learning process was explained in the previous

section). This may seem long, but it is understandable and in accordance with

the previous section, given the nature of the events: a turn-on of the washing

machine or dishwasher will seldom occur more than once a day, and very rarely

more than twice. E�cient learning needs a large sample of events (as was shown

in Figure 5.2), and will thus need a relatively long learning period. However,
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this period could be reduced by de�ning fewer states and actions, thus reducing

the dimensionality of the Q-table. In relation with the number of actions in the

previous section, considering roughly 10 switch on events per week, around 1250

actions were taken into account.

One day of a winter simulation is presented in Figure 5.3. The electrical de-

mand consists of large appliances, small appliances and heating (delivered by an

electric heating system). Demand arising from shifted devices (washing machine

and dishwasher) and heating demands are indicated by shading. It can be seen

that the total load is comparable to the amount of energy generated on-site in win-

ter. However, occupants' schedules and their main use of electrical devices does

not always occur during sunshine hours. Nevertheless, it can be seen that part of

the �exible load has been shifted to the middle of the day where it can operate

using locally converted power.

When a battery is available, the excess of solar energy is stored. Thus, the

charging power (limited to 1kW) is shown in the middle of Figure 5.3.

As a consequence of the introduction of the TOU tari�, we can simulate how

the DR algorithm adjusts when electricity is consumed from the grid. For our

three-case scenario, results of the weekly energy grid import at the di�erent tari�s,

as well as PV export, are represented for summer and winter in Figure 5.4 (the

bars represent average values for a set of 100 simulations). The �rst observation

is the dramatic di�erence between winter and summer, due to the amount of solar

energy available in summer, which visibly increases PV exports. The introduction

of the tari� scheme with appliance and battery technology is e�cient in reducing

on-peak and mid-peak grid imports, in both summer and winter periods. The

e�ect of load shifting is to reduce on and mid-peak imports by increasing the use



114 Chapter 5. Application of the extended No-MASS/DR framework

0h 4h 8h 12h 16h 20h 24h
0

500

1000

1500

2000

2500

3000

P
ow

er
 (

W
)

load
heating load
shifting load
PV

0h 4h 8h 12h 16h 20h 24h
0

200

400

600

800

1000

P
ow

er
 (

W
)

battery charge
battery discharge

0h 4h 8h 12h 16h 20h 24h
0

20

40

60

80

100

S
O

C
 (

%
)

State Of Charge

Figure 5.3: 24h of simulation for a winter day. PV pro�le and electrical demand
on top; battery charge and discharge in the middle; SOC level at the bottom.

of cheaper electricity during o�-peak hours (at night). This is specially relevant in

winter, as solar energy may not be enough to run the complete programme, ending

up paying high prices. As a consequence, the smart appliances learn to switch on

predominantly at night. Furthermore, a mean of around 7kWh of solar energy is

exported in winter when there is no storage system available. A dramatic reduction

close to 98% is obtained when the battery model is introduced. This shows that

storage systems can play a signi�cant role when considering the electrical autonomy

of distribution networks. In summer, there is not such reduction on the PV exports,

suggesting that the algorithm for discharge learning needs some revision.
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Figure 5.4: Import and export for the three scenarios, for summer and winter.

Also, although the algorithm employed is relatively simple in its formulation,

it is nevertheless e�cient in reducing on-peak and mid-peak grid imports, whilst

maintaining cheaper o�-peak imports and optimizing the use of solar energy.

Improvements in self-consumption (equation 4.6) are specially relevant in win-

ter (in summer this e�ect is neutralized as solar energy is highly available in the

basecase as well), with an increase of 52% with respect to its initial value, as

presented in Figure 5.5. This �gure in summer represents 8.1% increase in SC.

However, the di�erence obtained only with the shiftable appliances is negative in

summer. This is partly because the shifting occurs to night time hours, and partly

because the two appliances considered represent a small proportion of the total

energy demand, suggesting that further shiftable autonomous devices should be

considered to better understand the potential for this strategy, and/or that new

tari� structures are explored that encourage this behaviour.
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This �rst case study was particularly useful for understanding the application

of the algorithms and their behaviour with the tari� structure. Re�nements to

them, in terms of the reward functions for the battery discharge process, are thus

applied and tested in the next section.

10 20 30 40 50 60
Self Consumption (%)

summer

winter Basecase
Load shifting
Load shifting + battery

Figure 5.5: Self consumption index for the scenarios, for summer and winter.

5.3 Case study II: community of buildings

5.3.1 Scenario description

A small residential neighbourhood of 6 households is considered for this case study.

Four of them have installed 3.8kW-peak PV panels on their rooftops, and two have

installed 1.9kW-peak panels, following a smaller investment. As a community, they

are willing to adopt smart appliances (washing machine and dishwasher) and in-

dividual electrical storage in their homes. No-MASS/DR enables to simulate the

e�ects of the introduction of these technologies for this neighbourhood, includ-

ing an estimation of the improvements in self-consumption, both individually and
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collectively.

5.3.2 Implementation: multilevel coordination

When generalising No-MASS/DR from a single building to a multi-building sim-

ulation, new software challenges arose. There were limits in computational speed,

data storage and data exchange, which had to be overcome, using data compression

methods, or by incorporating parts of the post-process analysis into the simulation,

so that less data had to be written. In that sense, although the multi-building sim-

ulation did not involve major conceptual changes, the software architecture had to

be revised and enhanced.

The current operation of No-MASS/DR for multi-building simulation requires

three-level coordination. The agent interaction and negotiation occurs then in

three steps (see Figure 5.6):

1. Local level. Each house individually attempts to match power demand and

supply.

• Appliance agents request power for their operation.

• If solar power is available:

� PV agents supply power to the appliances (following their priority

of use, de�ned in the con�guration �le), until all the demands are

ful�lled.

� The excess of PV is used to charge the battery.

� After charging the battery, any surplus of PV is made available for

the neighbourhood level.
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• If solar power is not available, or it is not enough to ful�l appliance

power demands, the battery discharge algorithm is run, and a decision

to discharge or not discharge is taken.

� If discharging, appliance demands are satis�ed by the battery.

� If the battery supply is not enough to ful�l the appliance power

demands, information on the power shortage is communicated to

the neighbourhood level.

2. Neighbourhood level. At this level, information is available for each house

concerning: any appliance demand shortage, any PV surplus and any battery

which is uncharged. A second process of power matching occurs.

(a) Demand shortages are satis�ed by solar energy from the neighbourhood.

(b) PV power surplus is used to charge the uncharged batteries (which were

not used for discharging during the same time step).

3. Global level. Unsatis�ed demands are supplied by grid power imports. Excess

solar power is exported to the grid.

5.3.3 Reward functions

Appliance re-schedule

Shiftable appliances follow the same reward function as for Case Study I, explained

in Section 5.2.2, formulated as:

Ra(t) =


−Ccycle, t < tD

− (Ccycle + p) , t ≥ tD

(5.5)
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Local negotiation
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Neighbourhood negotiation
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Global negotiation
All buildings with grid
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Import from neighbourhood

Export to neighbourhood

Import from grid

Export to grid

Figure 5.6: Multilevel coordination.

where p and tD are speci�ed in the simulation con�guration �le.

Battery discharge

Battery discharge considers the two mechanisms de�ned in Section 4.7.2: a com-

bination of alleviation of demand-intense periods and an arbitrage strategy. Thus,

the reward values depend on the variable χ (de�ned in equation 5.2) and the time-

varying cost of grid electricity Cgrid. Analogous to the case of a single-building,

the reward function when discharging is:

Ra(1) =



2χ+ Cgrid, χ ≥ δ1

χ+ 2Cgrid, δ1 > χ ≥ δ2

3Cgrid, χ < δ2

(5.6)
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and when not discharging:

Ra(0) =



1/(3χ), χ ≥ δ1

1/(χ+ 2Cgrid), δ1 > χ ≥ δ2

1/(3Cgrid), χ < δ2,

(5.7)

where δ1 = 0.8 and δ2 = 0.7. In the discharging process speci�ed in equation

5.6, bias towards Cgrid increases as χ decreases: when there is a peak in demand

(high χ), the cost of the grid Cgrid is less important, therefore the battery sees a

greater reward the greater the peak if it chooses to discharge, independently on

the cost of the grid imports Cgrid, learning to alleviate peaks. On the other hand,

when power demand is not as intense (low χ), the battery obtains greater reward

for discharging the higher the grid cost Cgrid. These processes are similar for the

non-discharging reward, in equation 5.7, but in this case, rewards are inversely

proportional to Cgrid and χ values.

As mentioned earlier, Q-learning is a �exible approach to model adaptable

behaviours. In this case, a variety of options for the Equations (5.6) and (5.7)

were implemented and tested, with di�erent weights for χ and Cgrid, leading to

di�erent learning behaviours for the discharge process. Equations (5.6) and (5.7)

were found to function satisfactorily for the battery.

Figure 5.7a shows the selected grid tari�, and the consequent reward values for

each of the batteries in the six buildings. The other two �gures, 5.7b and 5.7c, are

plotted here to show the e�ect of the tari� signal in the learning process of the

battery. Without needing to de�ne a new reward function, the discharge process

shows sensitivity to the price signal, while taking into account the intensity of the
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power demands. For the reversed tari� in Figure 5.7c, discharge during the day is

not triggered, as it will be more advantageous to satisfy demands with grid imports

and save stored energy for later.

In all cases, the reward seems to be shifted with respect to the tari� values by

one time step. This is because the e�ect of the action at taken at time step t, is

evaluated at time step t+ 1, but stored at t, when the action took place.

(a) Tari� I.

(b) Tari� II.

(c) Tari� III.

Figure 5.7: Reward associated to the discharge (black) or not-
discharge (green) actions, taken by six batteries in six buildings.
The shape of the curves depend on the tari� signal (in bars, on
the right y-axis) and the demands in each case. Tari� I has been
selected for the case study.
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5.3.4 Results and discussion: Improving community

self-consumption

In this section we present the simulation results for the 6-building neighbourhood

detailed above, again considering three operation scenarios: the base case, the

introduction of smart appliances in all houses and the additional introduction of

electric storage, evaluated for a winter and a summer week. For each case a set of

100 week simulations9 is considered, and the averaged results are presented here.

Figure 5.8 presents the weekly energy imports/exports from/to the grid. It

shows results for winter (on the left) and summer (on the right), and for the

three scenarios: base case on top, load shifting in the middle and load shifting

plus battery in the bottom. The results are disaggregated for each building, with

averaged values presented in table 5.1.

Winter (kWh)
on-peak mid-peak o�-peak PV export

Base case 34.6 28.6 15.6 4.30
Load shifting 27.6 14.9 25.1 7.60

Load shifting & Battery 22.3 12.5 25.4 0.013
Summer (kWh)

on-peak mid-peak o�-peak PV export
Base case 6.13 9.11 12.7 56.4

Load shifting 3.14 4.79 13.1 59.6
Load shifting & Battery 0.31 0.689 11.8 50.2

Table 5.1: Average weekly import/export.

For the sake of comparison, the PV pro�le for the summer case corresponds to

a bright and clear day, when solar energy is abundant. This is re�ected in Figure

5.4, with large di�erences between the PV exports in summer and winter.

In winter, the top left graph shows that for the base case, grid imports occur

9The number of simulations considered takes into account when new simulations do not vary
average values.
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Figure 5.8: Imports and exports from the grid for winter (on the left) and summer
(on the right), and for the three scenarios: base case on top, load shifting in the
middle and load shifting plus battery in the bottom. Buildings 5 and 6 are those
having 1.9kWp solar panels.

at peak and mid-peak times. The introduction of the load-shifting algorithm has

two e�ects. Firstly, energy use is shifted to o�-peak times. Secondly, PV exports

increase a 77% when appliance re-scheduling takes place. This is due to the shift-

ing process: smart appliances, learn that can be more bene�cial to operate during

cheap night time hours than during sunshine hours, as limited winter solar gener-

ation may not be enough to power the whole cycle, leading to expensive on-peak

grid imports. When batteries are introduced in the community, practically no solar

power is exported to the grid. In addition, total imports reduce to almost 24%,
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with its main use being o�-peak. The improvements in on-peak to o�-peak shifting

are maintained. This represents a success of the algorithm, as it achieves our two

goals: alleviating energy intense periods and minimising high-cost grid imports.

In summer, the e�ect of the large amounts of PV available is clear, leading to a

situation where grid imports are a third of the winter value. Also, total demands

are lower, due to heating being switched o�. Another consequence is that shifting

appliances learn to switch to sunshine hours (slight decrease in PV exports) as well

as to o�-peak night periods (increase in o�-peak imports). On average, on-peak

and mid-peak imports are reduced over by 48% with load shifting alone. Again,

a signi�cant impact is achieved with the introduction of storage systems: local

generation exports are cut by a 11%, and imports are shifted to o�-grid periods

even more, with a reduction over 93% for on- and mid-peak periods.

Results for summer and winter show that the reward functions used work well

in shifting demand from expensive grid imports towards locally generated energy.

This has been achieved by imposing a grid import tari�, which proves to be suc-

cessful for our purposes. A powerful potential of the Q-learning technique used is

that we could try a di�erent price structure, and the system would adapt to make

the necessary changes to achieve a relatively optimised operation.

Figure 5.9 shows the boxplots for the distribution of self-consumption for each

simulation of each building. In this case, we di�erentiate SC at two levels: local

and neighbourhood. They relate to the energy use arising from local resources

(their own PV/battery system) and from their neighbours' resources (PV/bat-

tery systems owned by neighbours), representing individual and collective self-

consumption. Mean values for the di�erent groups are given in Table 5.2.

Winter values for individual SC in the base case average to 13.6%. This �gure
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Figure 5.9: Self-consumption index for the three scenarios, in winter and summer.

increases to 17.1% for the neighbourhood case. For the reasons explained above,

there are not major changes in local and neighbourhood SC when the load shifting

algorithm is applied: local SC is slightly larger and collective SC is slightly smaller,

although buildings 5 and 6 are bene�ted from their neighbours resources. One way

to improve SC more dramatically with load shifting would be to consider a more

expensive o�-peak tari�, so that appliances learn to shift to sunshine hours, even

if grid imports are necessary. As expected, the introduction of batteries has a

signi�cant impact, doubling the value of local SC. On the other hand, individual
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Winter Summer
Base case Local 13.6 48.0

Neigh. 17.1 61.9
Load shifting Local 14.1 55.7

Neigh. 16.0 67.8
Load shifting & Battery Local 26.4 77.5

Neigh. 26.4 81.0

Table 5.2: Average self-consumption (%).

batteries available for all buildings neutralizes the positive e�ect of collective use,

as the excess of solar energy is individually stored for later use instead of shared.

Allowing the batteries to discharge to other houses' appliances could be useful for

improving neighbourhood SC, given an appropriate business model.

In summer, SC increases in all cases. When the load shifting algorithm is in

use, local SC increases from 48.0% to 55.7%, and neighbourhood SC from 61.9%

to 67.8%. Maximum levels of SC are achieved with the storage systems in place

during summer, reaching values of over 75%. With respect to the base case, this

represents a 61% and a 31% increase in individual and collective SC respectively.

In both summer and winter, households achieve larger values in SC when al-

lowed to share their resources (except in winter battery case, that same results are

obtained). This suggests the need for a new way of looking at tari�s. Di�erent

pricing systems could be put into practise, which regard not only the interaction

with the electricity grid of each individual customer, but also the interaction be-

tween customers, creating for example some sort of incentive structure to share

power resources between members of the same neighbourhood. For example, in

our simulation, households 5 and 6 made a smaller investment in their PV system,

reducing their local self consumption. However, the base case and the load shifting

scenarios in Figure 5.9 show how strongly they bene�t from participating in the
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community, with comparable collective SC values.

As it was mentioned above, SC is not explicitly maximised in our DR formu-

lation, but it is indirectly a�ected by the price signal considered. Another way to

evaluate the e�ectiveness of the Q-learning algorithm is looking at the cost reduc-

tion for the di�erent scenarios. Figure 5.10 shows the total weekly cost of running

appliances and devices. It shows a boxplot for each scenario with averaged cost

for the 6 buildings. In both cases, for winter and summer, the algorithm predicts
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Figure 5.10: Cost reduction when load shifting and battery are introduced. Values
based on unit tari� signal proposed.

reductions in cost. In the case of summer, when there is more PV energy available,

costs are cut in half. The graph allows for comparison between the scenarios, but

given that the cost is calculated using a normalized tari� signal, it is not possible

to understand it as monetary price.

5.4 Conclusion

In this chapter, we have demonstrated the integration of price-based Demand Re-

sponse strategies to optimise for load-shifting and the charging and discharging of
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a battery, by incorporating learning abilities into our device agents. Q-learning has

been proven to be a successful candidate for that task. Di�erent reward functions

have been explained and put into practise. Single and multi-building case studies

have been presented; the latter requiring an extended negotiation logic.

More speci�cally, the learning algorithms have e�ectively: shifted demand

from on- and mid- peak periods to o�-peak periods, particularly when combin-

ing shiftable demand devices with battery storage; increased remarkably the self-

consumption percentage (the fraction of energy demand that is satis�ed by on-site

generation). The multi-building approach demonstrates the positive e�ects in SC

when communities of buildings are able to share their resources.

Regarding the Q-learning approach, it is important to note that the current

implementation used in this thesis is unable to respond to irregular events (e.g.

weather) or to act well with extreme values caused by particular situations. Being

able to handle such circumstances would be possible if speci�c �extreme� state-

action pairs are de�ned.

Although we believe that we have successfully demonstrated this proof-of-

concept there is considerable scope for improvement to this framework. In partic-

ular with respect to (and still only considering requirements R1 to R3):

1. The battery model should be improved to model state-of-charge dependent

losses.

2. In this work, battery and heating demand have been combined to reduce on-

peak grid imports. In a more realistic situation, the heating system can be

considered as an additional learning device in its own right, that contributes

to the global goals.
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3. The negotiation for the multi-building system should be upgraded to consider

battery discharge to appliances in neighbouring households. Battery agents

would need to take into consideration not only the operation status of their

own local system (household), but also the global system (other households).

Di�erent reward structures would be necessary. Another upgrade could be

to allow the batteries to charge from the grid. This could be achieved by

providing the battery agents with the ability to learn charging strategies.

4. For islanded scenarios in which power cannot be drawn upstream of the

mains network, a formal bidding mechanism needs to be integrated, favouring

devices of relatively high priority when reserves are limited (e.g. emergency

lighting, or freezers that have undergone a long delay since the compressor

was last enabled).

5. Alternative tari� structures should be explored that better favour self-consumption.

Looking further to the future (R4 to R6):

6. No-MASS/DR should be generalised to solve for multiple buildings inter-

connected via our LV network model. That way, the above tari�s might also

consider local network integrity, when the LV model is utilised as intended.

The next chapter follows this premise.

7. Empirical evidence from DR �eld trials should be used to predict the extent

to which users are willing to: a) devolve control to autonomous devices, and

b) adjust their behaviours in response to information (e.g. tari� and/or CO2

emissions) feedback.

Finally, �eld trials to test the validity of this new more general multi-agent

stochastic simulation framework would be of considerable value.
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Chapter 6

Low Voltage Network modelling

Previous chapters have elaborated on methodologies for describing en-

ergy use in homes, and potential e�ciency improvements through DR,

included application to a small energy community. An explicit model

of the Low Voltage (LV) network has been developed which can be

coupled with the DR framework. It could potentially enable the eval-

uation of network operation e�ects due to the integration of renewable

sources; it could also be added as a control variable for the DR algo-

rithms. In this chapter, the proposed model for power-�ow analysis

of a general low-voltage distribution network is presented, which uses

an electrical circuit-based approach, implemented as a novel recursive

algorithm, and can e�ciently calculate the voltages at di�erent nodes

of a complicated branched network.

6.1 Introduction

The goal of the electricity transmission and distribution system is to e�ciently and

stably transport energy from a generation site to consumers. To do so, they use

a network of networks, operating at di�erent voltage levels (see Figure 6.1). At

the highest level, the national high-voltage transmission network works at 400 or

275kV (using higher voltages results in lower transmission and distribution losses).

In the UK, this network is owned and maintained by Transmission System Oper-
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ators (TSO): National Grid for England and Wales, Scottish Power and Scottish

Hydro-Electric in Scotland. The transmission network connects power stations and

major substations, and has connections with France, the Netherlands and North-

ern Ireland. It feeds Grid Supply Points and major substations that step down the

voltage [78], 400/132kV or 275/132kV, to the regional distribution systems. The

132kV circuit feeds the Bulk Supply Points (BSP), which step the voltage down to

66kV or 33kV. The primary distribution circuit, operating at 66 or 33kV, is con-

nected to primary substations of 66/11kV or 33/11kV, leading to the secondary

circuit. The 11kV network is radially connected to a set of secondary substations

that transform voltage to the Low Voltage (LV) network, usually 400V1.

The LV network is generally arranged as multi branched radial feeders and

consists of underground cables and overhead lines (although underground cable

are used for new connections). According to [78], a maximum of 100 customers

are connected to each LV circuit. As mentioned, individual domestic users have

a single phase supply, and these connections are evenly distributed across the 3

phases, in order to avoid creating an unbalanced system. Blocks of �ats have a

three-phase service installed centrally and lateral connections are provided to �ats.

Commercial and industrial buildings are supplied with a three-phase service.

Correct operation of the power system involves engagement from di�erent en-

tities. A list of the actors taking part in the transmission and distribution grid is

presented in Table 6.1; together with the roles they play and the main services they

provide. Such services describe the interconnections among the di�erent actors,

con�guring a complex system of technical, economic and regulatory bodies. Table

6.1 incorporates an independent aggregator, as part of a future smart grid formula-

1Note that these are line-line voltages for a 3-phase distribution system, and the line-neutral
commonly seen at household level is 400

√
3 i.e. 230V
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Figure 6.1: Power system

tion, whose function is to facilitate �exible demand for consumers and prosumers

(producing-consumers).

The Distribution System and Demand Response

Distribution networks are gaining increasing relevance in the energy transition

landscape. They make up to 90% of the total electricity system network length

[35] and a large percentage of all electrical demand, and they accommodate a

growing penetration of Distributed Generation (DG) and Renewable Energy Sys-
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Actor Role Main associated services

Transmission System Operator

(TSO)

Responsible for provision of

infrastructure, information and

operation on the main high

voltage electric networks.

Data provider Sharing market information in a transparent way.

Grid operator Transmission grid maintenance and expansion through
investments, while securing operation.

Grid access
provider

Stablish conditions of fair access to parties connected;
administration and maintenance of access points.

System operator

Responsible for stable operation; de�nition of technical
requirement; data exchange for forecast; capacity allocation
and congestion management; maintain balance through
frequency control.

Market operator* Setting market energy price and imbalance price; reserve
allocation.

Distribution System Operator

(DSO)

Responsible for operating, maintaining

and developing the distribution system,

and for ensuring long-term ability

for the system to meet electricity

demands.

Grid operator Distribution grid maintenance and expansion through
investments, while securing operation.

Grid access
provider

Connecting between producers and consumers.

System operator*
Responsible for stable operation; de�nition of technical
requirement; data exchange for forecast; capacity allocation
and congestion management; maintain balance through
frequency control.

Market operator* With increasing DG and DR, DSOs gain new roles in
balancing local markets.

Meter responsible* If not held by an independent aggregator, responsible for
meter operation and data collection.

Independent aggregator

New actor needed in smart grids.

Coordinates between market and

grid, administrating �exibility.

BSPa
Provides balancing services to TSO, as consequence of
di�erences between metered consumption / generation and
actual bought / sold electricity.

Meter responsible Sends signals to customers and demand changes to TSO.

Party connected Provides �exibility to customers connected.

Supplier, retailer,

Contractors for residential customers

to buy and sell electrical energy.

trader

Manage generation plants and

demand acquisition for retailers.

BRPb Financial and legal responsible for imbalances between
nominated and consumed / generated electricity.

BSP Provide balancing services to TSO.

Resource provider Providing raw materials and electricity generation;
maintenance of power plant.

Party connected* Transfer of electricity to the grid at accounting point.

Meter responsible* Administrative aspects of electricity supply to customers.

Technology
provider*

Responsible for setting price to customers: high in�uence on
the success of DR.

Regulatory authority

Independent institution to develop

competitive markets.

Control function
Guaranteeing a secure, cost-e�ective, e�cient and customer
oriented system, regulating decisions applied by grid ,
market and system operators.

Customer

Consumers and prosumers,

becoming a more active actor.

Party connected Receive electricity they need; can provide �exibility through
DR.

Table 6.1: Actors and roles in the transmission and distribution power system.
Sources: [34, 79].

*Under certain circumstances.
aBalancing Service Provider
bBalancing Responsible Party
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tems (RES). As discussed in previous chapters, DR is proposed as a bene�cial and

a�ordable technology to help address the challenges of intermittent supply.

As suggested in [34], DR use cases appear at di�erent parts of the distribution

system and at di�erent scales, ranging from individual households (nano level),

residential areas (micro level: LV-microgrid), operational areas of DSOs (meso

level: MV-grids), through to nationwide areas (macro level: HV-grid). Thus, the

value of DR and DG-RES applications is seen by all the actors involved in the

electricity system at the di�erent scales.

• For the markets: introduction of �exibility aggregators could raise compe-

tition, especially in real-time markets, for example for imbalance settlement.

• For the TSO: the cost and volume of generation/consumption that needs to

be balanced depends on the Balancing Responsible Parties (BRP's). DR al-

lows BRP's to balance themselves, requiring less intervention from the TSO.

On the other hand, load-shifting can e�ectively increase available capacity,

reducing grid investment costs.

• DSOs can also bene�t from reduced grid investment costs due to lower peak

loads and improved security of supply by means of DR. Moreover, DSOs can

cut down costs due to network losses, as these are also dependent on peak

loads.

• Customers are o�ered the possibility to participate actively in their energy

use, becoming aware of their electricity consumption, and engaging with e�-

ciency measures, lowering their electricity bill. Also, the uptake of DG-RES

technology allows users to become less grid-dependent, reducing capacity

costs.
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6.2 LV network modelling

The modelling described in this chapter is concerned with the domestic scale, at

individual and community levels. In a power system, this corresponds to the LV

network, the circuits streaming down from the secondary substation.

Previous chapters described a methodology for DR simulation, modifying local

demand and generation patterns. This variation has an impact on the electricity

grid. At the same time, the performance of the grid should shape part of the DR

solutions applied. For instance, voltage rising over statutory limits may trigger DG

curtailment. For this reason, we consider it very important for a DR simulation

software to have the means to describe the operation of the network. Ideally, the

operational state could be fed back into the optimisation procedure of the DR.

To achieve this a load-�ow algorithm has been developed and coded, that can

be used as stand-alone software for power �ow simulations or integrated within

the No-MASS/DR framework. This load �ow model can calculate the voltage at

all of the nodes of a complex network. For the No-MASS case, the load-�ow simu-

lation is performed at each time step as a post-process, using demand and supply

power values through the network (calculated using the corresponding models).

This means that resulting operation is not fed back into the simulation, but only

saved for later analysis. Future forms of No-MASS/DR will integrate in-the-loop

functionalities for the LV network.

The rest of the Chapter is organised as follows. The next section contains a

review of major load-�ow analysis methods, and the requirements for temporal

granularity based on the electrical phenomena studied. Then the proposed algo-

rithm is presented, based on recursive circuit analysis, and its applicability in a

multi-building network, containing over 120 homes is demonstrated. The chapter
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ends with remarks and conclusion.

6.3 Load-�ow analysis

Power-�ow or load-�ow analysis is a well known problem that consists of deter-

mining the steady state behaviour of a power system, �nding steady state voltage

and current values throughout a network. Power �ow is a fundamental calcula-

tion for the analysis of any power system, largely used for planning and operation

applications.

The power-�ow problem is based on Kircho�'s Laws, by which the sum of all

the currents or powers �owing in every node of the network are equal to zero:

m∑
k=1

Ik = 0, (6.1)

for a node with m branches. When power-�ow equations are expressed in terms

of power magnitudes (as the loads are considered to be constant power loads), it

becomes a non-linear problem. For a single line distribution network with n nodes,

modelled as an electrical circuit (see Figure 6.2), the load currents I = [I1, . . . , In]

are written as 
I1
...

In

 =


Y11 . . . Y1n
...

. . .
...

Yn1 . . . Ynn



V1
...

Vn

 , (6.2)

for which each of the terms Ykj of the admittance matrix [Y] relates to the line

impedances between nodes j and k as Ykj = 1
Zkj

. When a power load is connected
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to the i node, load current is given by

Ii =

(
Si
Vi

)∗
, (6.3)

considering the following notation:

Vj node voltage.

Iline,j current between nodes j and j − 1.

Ij current �owing towards/from load/source.

Sj apparent power2 �owing towards/from load/source.

Zj cable impedance between nodes j and j − 1.

Combining equations 6.2 and 6.3, the power-�ow problem is expressed as a set of

2n non-linear equations (for complex magnitudes have real and imaginary parts).

Solving this problem, thus, requires approximate numerical solutions.

The �rst algorithms to solve power �ow appeared with the introduction of

digital computers, with initial automatic digital solution dating from 1956 [80].

Developments for industry in load-�ow analysis led mainly to studies in trans-

mission networks. They usually have parallel lines in a meshed structure with

multiple redundant paths from generation to load areas. In these types of net-

works, traditional numerical methods, such as the Newton-Raphson methods and

its variants became popular, as they had powerful convergence properties [81].

These techniques rely on an admittance matrix (in equation 6.2) inversion process,

and therefore, they were speci�cally developed towards e�cient processing of large

matrices.

2Real and reactive components.
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However, the distribution network generally presents a very di�erent structure,

with a weakly meshed radial topology and highly resistive impedances (high R/X

ratio). This leads to a sparse (or even ill-conditioned3) admittance matrix and the

traditional methods (Newton-Raphson, Gauss-Seidel) become ine�cient, unstable

or divergent [82, 83]. Alternative algorithms have been proposed to deal speci�cally

with distribution networks, the most popular ones being forward/backward sweep

methods (also called ladder network methods) that use basic circuit theories to

calculate power-�ow. Their basic operation process for a network with n nodes,

using the notation speci�ed above, works as follows:

1. Terminal node voltages Vn are approximated to the slack bus voltage Vs:

Vn = Vs, if j is the terminal node. (6.4)

2. Terminal load and line currents are calculated using equations 6.1 and 6.3:

Iload,n =

(
Sn
Vn

)∗
(6.5)

Iline,n = Iload,n (6.6)

3. From there, all voltages, and currents are subsequently calculated towards

the slack bus:

Vj = Vj+1 + Iline,j+1Zj+1 (6.7)

Iload,j =

(
Sj
Vj

)∗
(6.8)

Iline,j = Iload,j +
∑
k 6=j

Iline,k (6.9)

3In ill-conditioned systems the output is highly dependent on the input arguments.
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4. Calculated and known slack voltages V0 and Vs are compared with a preset

convergence tolerance value. If the di�erence is smaller than the selected

tolerance, the algorithm stops: convergence has been achieved. Otherwise,

node voltages are recalculated during the backward sweep, taking the known

voltage value Vs instead of V0, from the slack bus towards terminal nodes:

Vj = Vj−1 + Iline jZj (6.10)

5. The process continues until Vs and V0 di�er by less than the given tolerance.

The advantages of these methods include: they have a simple formulation,

are less sensitive to R/X ratio and they are robust to heavy loads, re�ecting the

dependency of the node voltage on the load level. The main limitation of these

methods is that they are not suitable for meshed layouts in their fundamental

formulation, because they consider there is a unique path from any given bus to

the source. Extensions to them have been proposed to overcome this problem, for

instance, using a combination of ladder network and Newton-Raphson analysis or

a compensation method [82].

Figure 6.2: Description of circuit-based methods. Source [83].

For this thesis, a ladder network approach has been implemented to represent

a low voltage distribution network.
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6.3.1 Time granularity for load-�ow simulation

Power grid dynamics occur at a large span of temporal scales (Figure 6.3), from

the µs interval of operation of solid-state switching devices [84] to the tens of years

in which long-term strategic planning takes place. In this range, myriad physical

phenomena are in�uenced, where each needs to be analysed and understood for a

safe and stable operation of the power grid.

Figure 6.3: Power grid time-scales. Source: [84].

When simulating power-�ow in a network, the selected time granularity should

balance the required description of the system dynamics and computing weight

[85]. Load-�ow analysis can be used for studies in energy balance, short-circuit

fault analysis, transient stability studies or economic dispatch, and each of them is

characterised with a speci�c time scale. Moreover, selecting the wrong time-step

for simulation could lead to major errors in the calculations.

In this work, the focus is on energy analysis more than in network system in-

tegrity, which dictates a target range of candidate temporal resolutions. Several

studies [85�87] on the e�ects of time-resolution for energy modelling and renewable

energy integration propose one minute resolution as a good trade-o� between com-

puting weight and an accurate description of the energy �ows in the network. A

one minute time step simulation allows the calculation of voltage and power values
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through the nodes; higher resolution phenomena such as transients or harmonics

are out of the scope of this project.

It is worth mentioning that the temporal granularity for power �ow analysis is

also constrained by the resolution of the models and data available for loads and

generation, which in turn is dependent on the time resolution of the data available

to build such models.

6.4 Load-�ow analysis as a recursion algorithm

A forward/backward sweep solver has been used for power-�ow analysis. It has

been implemented using Object Oriented Programming (OOP) and more specif-

ically, as a recursive algorithm. The details of the model and the algorithm are

explained in this section.

6.4.1 The model: pre-requisites and assumptions

As explained in Section 6.3 there are multiple techniques and solving methods

when addressing the load-�ow problem. The selection of one method over another

is highly dependent on the characteristics of the network under consideration, and

on the particular objectives of the modelling process.

When selecting the appropriate method, there were two main modelling objec-

tives:

1. Describe a residential distribution network (potentially around 100 houses),

which typically follows a radial layout. The aim is not to solve for a single

speci�c layout, but to solve a general case.
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2. The availability of source code, as the aim is to implement the selected load-

�ow algorithm with the building simulation software. This remark makes the

use of existing power systems software more challenging, especially for those

which are not open source.

A single line distribution network is modelled as an electrical circuit (see Fig-

ure 6.2), and solved using an iterative forward/backward algorithm, following the

method describe in previous section 6.3. Apparent power �ows Sk to/from load-

s/sources are represented as ideal current sources, and the cable losses are entered

with values for cable impedance.

Finding a solution for the power �ow requires that one nodal voltage (slack bus)

Vs is known and constant during the time-step simulation, acting as a reference

value for the iterations. It corresponds to the feeder in the network, represented

as an ideal voltage source, which connects the LV area with the rest of the grid.

6.4.2 The load �ow algorithm

The forward/backward sweep algorithm has been implemented as a recursive algo-

rithm. In Computer Science, recursion is a method employed when the solution to

a problem requires the solution of smaller instances of the same problem. In prac-

tice, it is implemented by de�ning functions that are allowed to call themselves. In

the case of a distribution network, recursion constitutes a technique to e�ciently

solve branched networks, as it eliminates the need for any iterative loop.

During the forward sweep, the currents and voltages at each node depend on

the currents and voltages at the child nodes connected to them (one if a linear

network, several if branched); whereas during the backward sweep, currents and

voltages depend on the parent node (see �gure 6.4 for clari�cation).
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Vs

nodej

parentNode

childNode

nodej

Vs

Iload,j

Sj

Iline,j

Zline,j

Figure 6.4: Diagram of network, relating parent and child nodes. An object nodej has
attributes: voltage Vj , complex power (drawn or injected) Sj , load current Iloadj , line
current Ilinej towards the parent node and cable impedance Zline,j through this line.

A Node object (�gure 6.4) has �ve variables attached, two of them are input

arguments given to the algorithm: Vj, Ij, Iload,j, Sj (input variable) and Zj (input

variable), following the de�nitions used in the section above. De�ning Zline,j as

part of the node object may seem confusing, but it is required as the network

has to be a series of identical node units. Power �ow analysis is carried out in

order to determine Vj, Iload,j, and Iline,j throughout the network. The pseudo code

description of the implementation is presented in Section 6.4.3.

This approach presents some advantages:

• The main feature of implementing the forward/backward loop as a recursive

algorithm is that it provides a very e�cient procedure for analysing branched

layouts of the network. Using for-loops instead of recursion would make the

process of de�ning an arbitrary multi-branched network and attaching child

nodes to parent nodes extremely tedious. With recursion, this process is

simple and fast for any multi-branched (not meshed) network.

• Evaluation of complex magnitudes. If values of active/reactive power and

resistance/reactance are input into the model, the algorithm will determine

the magnitude and phases of all variables.
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• Flexibility to de�ne speci�c line impedance values between nodes. As the

nodes are de�ned individually, it is trivial to simulate a network with di�erent

impedance values between houses (due to di�erent lengths or cables).

• Nodes can represent speci�c devices or aggregated loads (at household level,

for example), thanks to the �exible line impedance (see bullet point above).

This property allows for the impact that a single device (either an appliance,

a generator or a storage device) has in the network to be evaluated.

Although the method proposed has been proved to �t the requirements and

modelling objectives set for this work, this approach has limitations: the algorithm

so far is not able to deal with meshed layouts; other elements of the power system

and their e�ect on the network are ignored (such as transformers, converters, etc.);

it cannot consider higher temporal resolution phenomena occurring in the network

(such as transients).

6.4.3 Pseudo-code

The pseudo code of the implementation is presented in algorithms 1, 2 and 3.

Algorithms 1 and 2 present the forward and backward sweep, respectively; whereas

Algorithm 3 is the code run for converging to a solution. In order to set the

tolerance value in Algorithm 3, a sensitivity analysis was carried out, and the

selected value corresponds to the one for which the converged solution does not

vary when decreasing the tolerance.
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1: for ∀nodek do
2: ForwardSweep(nodek) . Use of recursion

3: end for

4:

5: if nodej is terminal and it is �rst iteration then

6: Vj = V0 . Asume V0 at terminal nodes.

7: else

8: Vj = Vj+1 + Ilinej+1 × Zj+1

9: end if

10: Iloadj =
(
Sj
Vj

)∗
11: Ilinej = Iloadj +

∑
k 6=j

Ilinek

Algorithm 1: ForwardSweep()

1: Vj = Vj−1 − Ilinej × Zj
2: for ∀nodek do
3: BackwardSweep(Vj) . Use of recursion

4: end for

Algorithm 2: BackwardSweep(Vj−1)

1: while Error = ‖V0 − Vslack‖ > tolerance do

2: ForwardSweep()

3: BackwardSweep()

4: end while

Algorithm 3: PowerFlow
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6.5 Application to a case study

The proposed algorithm can deal with any branched network (without mesh). To

test its e�ectiveness, a portion of a real low voltage network has been selected, sit-

uated in the area of the Meadows, in Nottingham (Figure 6.5). An approximated

topology of four branches coming from the Wilford Crescent East Meadows sec-

ondary substation is selected. The four branches power 23, 54, 24 and 22 domestic

buildings, respectively, coming to a total of 123 homes.

Figure 6.5: Meadows network layout.

A network scheme is presented in Figure 6.6. The 123 nodes are spread into

branches A, B, C and D. The two latter ones connect buildings after a long cable

stretch, that will be re�ected in the power �ow simulation. Each of the nodes,

corresponds to the power load coming from a single building. Power demands

coming from appliances and heating are calculated using No-MASS, as described

in the previous Chapter 5. In this case, No-MASS/DR is used as a tool to generate

demand pro�les, including also the capabilities for load shifting. The stochastic

energy pro�les output from No-MASS/DR are then input to the LV network model.
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PV technology has been deployed for all the households, with 80% of them

owning a 3.8kW-peak system and the remaining 20% a 1.9kW-peak system. As

in the previous Chapter, it is out of the scope of this thesis to develop models for

solar generation, even though the platform would bene�t from having them; this

will be addressed in the future. Until then, solar power generation data is used as

the generation sources.

1 2 3 ... 18 19 20 21 22 23

24 25 26 ... 74 75 76 77

... 100 10178 79 80

...102 103 104 120 121 122 123

11kV-0.23kV

Branch A

Branch B

Branch C

Branch D

Figure 6.6: Network scheme.

The algorithm is �exible for de�ning cable impedance values, which in turn de-

pend on the characteristics (material, con�guration) and dimensions (cross section

and length) of the cable. For this work, cable impedance is roughly approximated

to 0.15394 Ω/km, following [88], considering a 185mm2 aluminium core LV cable

(cable reactance assumed to be negligible). For more detailed calculations, the

values of the exact type of cable in the area can be input into the load-�ow algo-

rithm. Using Open Maps and Q-GIS software, the approximated distance between

the buildings is measured and speci�ed as given in Table 6.2.

With this con�guration, a 24h load �ow simulation for a winter day and a

summer day has been carried out, with 1-minute time resolution. The results are

presented in Figure 6.7, showing the voltages at steady-state for the terminal nodes
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Node LA(m) LB(m) LC(m) LD(m) Node LB(m) cont.

1 69.0 39.7 287.0 53.5 (+287.0) 28 6.03
2 4.35 5.93 6.54 6.26 29 6.03
3 4.35 4.06 6.54 6.26 30 6.03
4 4.35 4.06 6.54 6.26 31 6.03
5 4.35 4.06 6.54 6.26 32 6.03
6 4.35 4.06 6.54 6.26 33 6.03
7 31.9 4.06 6.54 6.26 34 6.03
8 5.16 4.06 6.54 6.26 35 6.03
9 6.41 4.06 6.54 6.26 36 6.03
10 6.41 4.06 6.54 6.26 37 6.03
11 6.41 4.06 6.54 6.26 38 6.03
12 6.41 4.06 6.54 6.26 39 6.03
13 6.41 4.06 6.54 6.26 40 6.03
14 6.41 4.06 6.54 6.26 41 6.03
15 6.41 4.06 6.54 6.26 42 6.03
16 6.41 4.06 6.54 6.26 43 6.03
17 6.41 18.8 6.54 6.26 44 6.03
18 6.41 6.11 6.54 6.26 45 6.03
19 6.41 6.11 6.54 6.26 46 6.03
20 6.41 6.11 6.54 6.26 47 6.03
21 6.41 6.11 6.54 12.5 48 6.03
22 6.41 6.11 6.54 15.0 49 6.03
23 6.41 6.11 6.54 - 50 6.03
24 - 219.9 6.54 - 51 6.03
25 - 3.90 - - 52 12.3
26 - 12.1 - - 53 31.5
27 - 47.5 - - 54 10.7

Table 6.2: Cable lengths on four branches.

of each branch: 23, 77, 101 and 123. The graphs also include a dashed line the

voltage statutory limits4 over and under 6% of 230V [78].

In both cases, winter and summer, the most a�ected branch in terms of voltage

levels is B, followed by C and D. The power demands and micro generation in each

node are fairly homogeneous (even though they are stochastic demands coming

from similar types of appliances), which leaves the topology of the network as

the main factor in creating the di�erences between branches. Firstly, branch B is

4Voltage regulation from LV busbars of the HV/LV transformer to any service cut-out shall
not exceed: 6% of 230 volts when supplied from Standard 11kV Feeders; 4% of 230 volts when
supplied from Long 11kV Feeders, de�ned as extending beyond the 15km radius of a Bulk Supply
Point or Primary Substation.
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the longest one, with twice as many nodes as the other branches. Secondly, the

connection to buildings in branches C and D has a long cable stretch across a bus

depot on the same street, with consequential power losses.

Voltage pro�les in winter and summer also show di�erences. In winter (Figure

6.7a), there is the clear e�ect of heating systems (there has not been a stochastic

model applied to them, but they follow a deterministic schedule). They cause

voltage drops in the morning and also in the evening. Again, these drops are

deeper for those branches more intensely loaded or with larger losses.

On the other hand, the same network has to deal with a very di�erent voltage

pattern on a summer day (Figure 6.7b). The absence of heating is visible in

the summer pro�le. With longer periods of more intense solar irradiation, there

are clear over-voltage issues, exceeding the upper +6% limit on several occasions

between 10h and 18h.

The issues described above, could be addressed with DR solutions. Load shift-

ing and electricity storage can help to mitigate peak demands, and optimise the

use of renewable energy generation to avoid curtailment measures. In any case,

information of the steady state operation of the network (such as that presented

in this section) should be taken into account, and provided to the DR algorithm

to enable it to take more informed actions.

Simulation performance

A key feature of the load-�ow algorithm presented here is its ability to deal with

multi-branch networks in a very e�cient way, given the simplicity of the method

used. To prove this, the original network topology in Figure 6.6 has been rede�ned,

reconnecting its nodes in a more complex layout, depicted in Figure 6.8. Both
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(a) Winter.
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(b) Summer.

Figure 6.7: Voltage levels through a day in winter and a day in
summer, for nodes at the end of the lines in each branch.

topologies, the original and the new modi�ed one, given a tolerance = 10−5 (as

used in Algorithm 3), require a low number of iterations, between 2 and 4, to

achieve convergence. Thus, the increased complexity in the topology does not

involve extra iterations for convergence.

The simulation time, however, is slightly larger in the case of the modi�ed

layout, with an increase of 3% in the simulation time of a single time-step, from an

average of 6.265 · 10−2s to 6.458 · 10−2s. This value corresponds to the execution
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Figure 6.8: Imaginary modi�ed topology for performance comparison.

time of the load-�ow algorithm for a single time-step. The distribution of time

values is presented in Figure 6.9.
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Figure 6.9: Distribution of simulation times to achieve convergence in one
time-step, for both topologies.

6.6 Conclusion

In this chapter a low-complexity algorithm to e�ciently solve radial distribution

networks has been shown. Based on iterative forward/backward sweep methods,
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and coded using object-oriented programming and recursion, the power-�ow algo-

rithm can solve branched systems for any (non-meshed) topologies.

To show the potential of the model, a network containing over 120 demand

nodes (from homes) and its corresponding generation nodes (PV panels) has been

simulated. In total, the network was de�ned with 246 nodes.

The model and algorithm are highly �exible. Although aggregated demand

coming from homes has been used, it would be straightforward to connect to power

demands from individual appliances. This could be relevant if simulating in detail

a smaller groups of houses, or even a single home, with all its electrical devices

connected to it, given precise information on the cable impedances.

Losses in the case presented here are very roughly modelled in terms of cable

impedance, but more detailed models or real data could be used instead. The only

thing required is a .csv �le containing impedance values between the nodes.

Even though it was not used here, the algorithm is ready to deal with complex

magnitudes, and therefore to calculate reactive power as well as real power. For

that, impedance values should have a reactance terms as well, and the demand

and generation models should include some form of power factor measure.

When executing the algorithm, it provides information on the network accord-

ing to the demand and supply conditions. The main di�erences between the two

seasons are found on the voltage rise during a summer day, and the intense morning

and evening power loads on the winter day.

Those events re�ected here in a one-day simulation, the need for this informa-

tion to be part of the control algorithm in any DR software. Information on the

operational state of the grid should be fed into the optimization process. Including

feedback of the grid is a priority for the future development of No-MASS/DR.
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It was also shown, that increasing the complexity of the network layout, leads

to a slight increase of the order of just 3% in the algorithm's execution time for

the same number of nodes. However, the number of iterations for the backward/-

forward sweep remains the same, for a tolerance of 10−5.

It has also been shown that No-MASS/DR is able to simulate demand and

supply, and also load shifting mechanisms, for over 100 buildings. The major

limitation in running No-MASS/DR for such large networks is writing and saving

data of the results. If the saved data is limited to a minimum required, it can solve

for multiple buildings simultaneously.
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Chapter 7

Conclusions

7.1 Introduction

This thesis aimed to develop better uni�ed modelling of Demand Response strate-

gies, that required integrated modelling of energy systems, with a particular focus

on the study of maximising locally generated renewable energy. Section 1.2 of the

opening chapter of this thesis outlined a set of objectives to contribute to this

endeavour. Those objectives are reviewed in this �nal chapter, followed by some

recommendations to continue this line of research.

7.2 Achievements

7.2.1 Objective I

The individual goals of objective I have been satis�ed as follows:

I.1 A range of modelling strategies were tested and evaluated. They considered

two di�erent types of stochastic approach. In the �rst, states of the fractional
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power demand were considered to be a discrete-time random process, and

were modelled with a Markov chain approach. In the second, they were

considered to be a continuous-time random process, and survival analysis

was employed to model them. For these two approaches, seven di�erent

models were evaluated.

I.2 Data clustering techniques were deployed, to search for a parsimonious model

structure, by minimising the dimensionality of state transition probability

matrices.

Supported by a comprehensive validation procedure, a survival multistate model

was selected, which satis�es our modelling objectives:

a. It describes temporal dependency of the electricity demand, as demonstrated

in Figure 3.4 and table 3.4.

b. Small appliances are modelled by their typologies, following four categories:

audio-visual, computing, kitchen and other appliances.

The novelty of this work lies in the e�ectiveness of the methodology to model

groups of small appliances, even those of a di�erent type. The mathematical

formulation to reduce Markov's transition matrix' dimensionality, uses a state-of-

the-art density clustering algorithm, with potential applications beyond the energy

modelling �eld.

7.2.2 Objective II

II.1 A comprehensive set of requirements to be met by DR software were articu-

lated in section 4.2.
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II.2 Multi Agent Simulation has proven successful in encapsulating the multi-

faceted nature of the DR problem. Appliances, generation units and storage

systems were modelled as software agents that are able to communicate and

negotiate with each other to achieve energy matching objectives at every

time step. Moreover, it was shown that a Multi Agent Simulation approach

could be easily extended in scope, from a single household to a small com-

munity. Computational limitations in running No-MASS/DR arise from the

amount of data that needs to be written out (which can be selected in the

con�guration �le). As long as the number of columns is well selected and

kept to the minimum necessary, No-MASS/DR can be used to consider larger

neighbourhoods.

II.3 For handling DR strategies, machine learning is useful. In particular, Q-

learning algorithms have been shown to be both computationally simple and

highly e�ective for DR optimisation, with system information easily inte-

grated in its reward function.

II.4 A proof of concept of No-MASS/DR was demonstrated for the case of a

single building and a community of buildings. Our algorithms are e�ective

in simulating the e�ects of technology uptake (smart appliances and electric

batteries) on the self-consumption of electric energy.

No-MASS/DR constitutes a novel contribution as a simulation framework that

can simultaneously handle i) stochastic power demands, ii) device-to-device in-

teractions for energy balancing and DR of electrical equipment and iii) load �ow

analysis. It complements the existing functionality to handle iv) occupants' be-

haviour and v) human-to-human interaction, and sets the foundations to consider
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vi) human-to-device interactions.

7.2.3 Objective III

A model for the Low Voltage network was developed and presented in Chapter 6.

In this we have shown that:

III.1 The source code is available, and successfully implemented with No-MASS/DR.

III.2 The algorithm e�ciently simulates a branched radial network containing over

100 nodes. Increasing the complexity of the branched layout leads to a slight

increase in the simulation time.

III.3 The nodes may be de�ned either for the aggregated demand of the household,

or for the PV solar panels. However, it is trivial to consider the nodes as

individual appliances, if a more detail simulation was required.

III.4 The network model is highly �exible, and can include di�erent types of local

generation or storage.

A novel implementation to perform load-�ow analysis with a forward/back-

ward sweep method is put into practise. It uses Object Oriented programming

and recursion in an algorithm that e�ciently handles branched radial networks

and is speci�cally developed to be integrated into a Demand Response simulation

framework.

7.3 Further work and recommendations

As part of objective II, a set of six requirements for DR software were identi�ed

and formulated in Section 4.2, brie�y repeated here:
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R1. Simulating stochastic demands of appliances.

R2. Satisfying demands from local generation and storage, and the local or na-

tional grid.

R3. Optimizing the decision of where power should be drawn from/diverted to,

in order to satisfy an objective function.

R4. Presenting information to the user and emulating the users' decision making

rationale regarding the rescheduling of user-controlled devices.

R5. Accounting for diversity in the extent to which users are willing to relinquish

control and to actively engage in behavioural change.

R6. Facilitating the above for communities of buildings which can communicate

to achieve individual homeowners' requirements and also low voltage network

requirements.

Of those, we have contributed, to a greater or lesser degree, to R1, R2, R3 and R6,

providing the foundations for such software. However, there is scope for improve-

ment both in terms of the success with which these requirements are met and how

the remaining requirements could also be comprehensively addressed.

Ideas to improve R1-R3

R1. Considerable e�ort has been invested in modelling appliance use in a way

that describes the stochastic nature of power loads. The contribution of this

thesis to R1 consisted of small appliances modelling, which complemented

existing models of large appliances.

Such models have been exploited in this work to study the e�ect of Demand

Response programmes, whose primary focus is on a speci�c type of large
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appliance, those under category ii) switched on by the user and o� when

a programme is complete, as their shifting imposes little disruption for the

user (washing machine, dishwasher and tumble dryer). However, there is no

reason why DR mechanisms (load shifting or others) couldn't be extended

to other types of device and appliance in the future. In particular, small

appliances could play a more evident role here. Although the practicability

of using small appliances for load shifting is arguable, there are available

options. For instance, users could be asked to charge computing and audio-

visual equipment with an incorporated battery at certain times of the day,

knowing when they are more/less likely to be used, and when they need to

be fully charged. To be able to simulate this, available models of use of small

appliances are necessary. The challenge here would be to develop a strategy

that models DR responses to appliances that are represented as an aggregate

(that information describing the composition of the aggregate typology is

represented).

Finally, extensions to this work should consider the e�ects of electric vehicles.

The amount of energy needed to charge car batteries may be comparable

to the energy required to run household appliances. Considering the likely

increase in EV uptake, DR scenarios need to take into account the growing

penetration of electri�ed transport.

R2. A software architecture has been developed that handles the distribution

of power from local sources and the grid to satisfy demands. Information

regarding generation and storage has been obtained with simpli�ed models or

directly with data, and only considered local generation of solar energy. This

was su�cient for the demonstration of our poof-of-concept. Nevertheless, for
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a robust operation of DR software, the following is necessary:

• A more comprehensive palette of local generation technologies should

be modelled, including wind turbines and co-generation plants. Build-

ing simulation software include radiation models and weather data to

facilitate this, and inverter models are also sometimes available.

• The electric battery model is highly simpli�ed. Storage losses with

time are not explicitly handled. If they were, the discharge algorithm

should penalise long term storage. Likewise, re�nements of the model

should take into account battery degradation over time, as it may have

important cost impacts.

R3. No-MASS/DR would bene�t from an exhaustive investigation of alternative

learning algorithm candidates. On promising candidate is a Distributed W-

Learning (DWL) algorithm [49]. Other options for reinforcement learning,

such as genetic algorithms, could also be explored. As explained in [89],

di�erent type of algorithms do not necessarily consistently outperform their

counterparts, so that hybrid solutions are sometimes more robust.

Ideas to address R4 and R5

A large part of the motivation for adopting and extending No-MASS, lies in its

ability to model users' behaviours and their interactions with energy systems.

In that sense, some of the modules in No-MASS already contain models that

relate socio-demographic characteristics of occupants with their activities (cooking,

washing, sleeping, etc.), their actions on the building envelope (opening/closing

windows and shading devices) or the social interactions between occupants and

the corresponding energy implications.
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An obvious next step would be to model of the interactions between people

and devices, as expressed in R4 and R5. Properly informed by empirical evidence,

this would provide invaluable support in testing the viability of alternative DR

schemes. So far, the only attempt to model human intervention available in No-

MASS/DR is through the de�nition of a delivery time of re-scheduled appliances.

This is �xed for the duration of the simulation, and assumes that the users always

agree with the new schedule. A more re�ned setup of the selection of the delivery

time would be appropriate. For example, when a re-schedule event is predicted, the

user could make a decision either to accept, modify or refuse the action, based on a

pre-de�ned level of engagement in the DR scheme (informed by the corresponding

rewards).

This level of engagement could be put into numbers with a linear parametriza-

tion of the probability of reaction dependent on the (�nancial) incentive, as in

equation 7.1:

P (x) = ex+ g, (7.1)

where e relates to the �exibility of the user to change its behaviour (elasticity),

and ranges from inelastic behaviours when users do not want to relinquish control,

to elastic behaviours, when users are relatively easily in�uenced by incentives. The

intercept g is related to "green awareness", a willingness to change behaviour even

when no incentive is guaranteed. This simpli�ed linear model is depicted in Figure

7.1.
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Figure 7.1: Linear behavioural model.

Ideas to improve R6

R6 was only partially addressed in this work, leaving scope for improvement. Al-

though the model was implemented into No-MASS/DR, the real potential in mod-

elling the LV network comes from integrating its results in the DR algorithm as

a driver variable. This means that for each time step, the steady-state conditions

of the distribution network are known, and actions can be taken accordingly, for

network stability and safety. One way of doing this could be to absorb network

information into the existing reward functions of the learning appliance agents and

battery agents. Another possibly more e�ective way, could be to add a new learn-

ing grid agent. It could learn about situations that compromise network safety

and be able to force corrective action from other agents when such events occur.

The existence of the explicit grid agent could be useful for upscaling the model

to consider a group of LV networks and its connection to a primary substation.

The operating point of the slack bus, which connects the LV to the rest of the

grid, considered in our simulations has to be constant during the iteration process
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at each time step. However, it can change during the simulation, opening the

possibility of simulating the varying state of the grid with time, allowing for a

more realistic simulation.

Finally, No-MASS/DR could be extended to also consider a detached islanded

(e.g. remote rural) network. If a grid agent is not de�ned, or for any reason is

not able to provide the required power, appliances may have a priority of service

de�ned (this feature is already available in No-MASS/DR), allowing the modeller

to specify a (time-dependent) hierarchy of services to be followed in the case of

a state of limited supply. Associating a degree of discomfort every time a service

is not provided, No-MASS/DR could be used to explore the impacts of di�erent

options for such hierarchical representations .
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A Small Appliance Modelling parameters

For purposes of implementation of the model, tables A.1, A.2, A.3, A.4 and A.5

contain the values of the parameters obtained from the dataset. The survival

multistate model is presented in Algorithm 4 as pseudo-code.

1: s = 0 . Asume initial state s0.

2: t = tSTART

3: while t < tEND do

% Calculate duration at state s

4: R1 = random(0, 1)

5: λ, k, γ = λs, ks, γs . Use table A.1.

6: ts = γ + λ [− ln(R1)]1/k

7: t = t+ ts

% Calculate next state

8: R2 = random(0, 1)

9: s = MinIdx [(cdfP (t)−R2) > 0] . Use table A.3 and A.4.

10: Append s to sarr

11: end while

12: %Transform into fractional energy array.

13: farr = F̃s × sarr . Use table A.2.

14: %Transform into energy use array.

15: Earr = Ẽmax × farr . Use table A.5.

Algorithm 4: Simulate Small Appliance Usage ([λ, k, γ]s, P (t, s))



166 Bibliography

Energy state
Audio-visual Computing Kitchen Other
γ k λ γ k λ γ k λ γ k λ

s0 8.92 0.743 10.74 7.52 1.529 12.52 7.80 1.37 4.29 7.46 0.930 9.61
s1 8.29 0.916 7.52 7.29 1.110 4.87 8.93 1.17 6.57 8.25 1.148 5.20
s2 8.38 1.096 9.82 8.03 0.889 5.37 8.39 1.25 4.29 8.83 1.147 7.16
s3 8.33 0.965 6.95 8.83 0.607 20.14 8.13 1.06 5.35 9.34 1.201 9.03
s4 8.95 0.648 12.20 8.52 0.977 6.19 8.02 1.26 4.50 8.86 0.872 7.34
s5 9.45 0.980 15.59 8.13 0.870 6.36 8.34 1.27 4.20 9.03 1.148 13.35
s6 9.02 0.747 13.06 8.68 0.790 7.76 8.72 1.12 5.21 8.89 1.070 6.92
s7 9.03 1.065 11.72 8.76 0.854 10.97 8.22 1.33 4.01 8.23 1.046 5.32
s8 8.40 1.005 7.25 8.95 0.657 13.82 7.63 1.28 4.58 8.39 1.214 4.47
s9 8.79 0.805 13.93 8.70 0.872 15.63 8.01 1.24 4.36 8.64 0.989 6.30
s10 8.24 1.051 5.56 8.30 1.093 5.72 8.73 1.16 7.12 8.65 0.963 8.62

Table A.1: Survival distribution parameters (γ: location, k: shape, λ: scale) for
four categories.

Energy state F̃Audio−visual F̃Computing F̃Kitchen F̃Other
s0 0.0000 0.0000 0.0000 0.0000
s1 0.0402 0.0333 0.0007 0.0265
s2 0.1429 0.1297 0.1382 0.1587
s3 0.2500 0.2222 0.2473 0.2513
s4 0.3333 0.3500 0.3570 0.3684
s5 0.4667 0.4286 0.4494 0.5000
s6 0.5525 0.5581 0.5495 0.5450
s7 0.6660 0.6526 0.6597 0.6565
s8 0.7708 0.7717 0.7463 0.7500
s9 0.8750 0.8462 0.8405 0.8333
s10 0.9571 1.0000 0.9684 0.9167

Table A.2: Median fractional energy for transforming energy states into fractional
energy pro�les.
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House Audio-visual Computing Kitchen Other

1 1.8 0 0 0
2 18.0 0 0 0
3 27.0 0 0 0
4 30.0 0 0 0
5 43.2 6.0 0 0
6 50.4 58.8 0 0
7 54.0 63.0 0 0
8 85.8 99.0 0 0
9 97.2 105.0 0 0
10 98.4 135.0 0 0
11 145.2 138.0 0 0
12 148.8 139.2 0 0
13 153.6 143.4 9.6 0
14 210.0 150.0 91.8 0
15 297.6 151.2 258.0 0
16 312.6 156.6 267.6 0
17 430.8 197.4 580.8 0
18 459.0 228.6 580.8 2.4
19 518.4 417.0 691.2 30.0
20 657.0 424.2 723.0 45.6
21 754.2 628.8 834.0 241.2
22 892.2 816.6 1416.0 915.0
23 1037.4 1119.6 1662.6 1213.8
24 1499.4 1495.8 1755.6 2861.4
25 2035.2 2625.0 2850.0 3811.8

Table A.5: For each house in the dataset, sum of max-
imum powers (W)

∑Nk
i P

(k)
max i for all low-load appliances

Nk in each category k. Cases where power is 0.0W are
households with devices that have been removed from the
modelling (for reasons speci�ed in the text) or households
that do not own any of these appliances.
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