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Abstract

Understanding the use of electrical appliances in households is doudraproving the accuracy of electricity and energy loads
forecasts. In particular, bottom-up techniques provide a powerful noblpnly for predicting demands considering socio-
demographic characteristics of the occupants, but also to better resdlm@ement demand side management strategies in
homes.

With this purpose, a study of the temporal energy use of lowdpatiances (meaning those whose annual energy share is
individually negligible but relevant when considered as a group)des ¢arried out, with the longer term objective of finding a
parsimonious approach to modelling them, and which considers @opaiate aggregation of appliances. In this work, a
discrete-time stochastic process has been implemented for a specific eléssifaf low-load appliances. More precisely, a
time-inhomogeneous Markov chain has been used to model ersgigtjons over time for four different categories of applemn

and its prediction capabilities have been tested and compared.

© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the CENTRO CONGRESSI INTERNAZIONALE SRL.
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1. Introduction

In predicting energy demands in buildings, electrical loads caused hys¢hef appliances play an important
role. However, modelling the use of appliances is a complex task, thigetiversity of appliances available and the
variability of their use from one user to another. Broadly speakiegtrical appliances may be modelled using top-
down strategies- modelling their aggregate use, possibly dependent on-time using bottom-up strategies
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modelling their time-dependent use, one by one. In this papearenaterested in the latter, since our longer term
objective is not only to predict aggregate temporal power demands corgidedimidual household socio-
demographic characteristics, but also to test demand-side management strategies.

Thus far, the bottom-up modelling of electrical appliances has focusedosa tlevices that are commonly
owned and used in households and which are individually relevant is tdrtheir share of annual energy use.
Examples include cold appliances, cooking appliances, washing maehthdshwashers. But households also use
a diverse range of low-load appliances in their everyday lives. Whilst thes@ndividually use a negligible share
of annual energy, their contribution is relevant when considered asup gov groups), with consequent
implications for aggregate power demand profiles.

This paper describes the first from a range of strategies to be emplogetkinto model the use of low-load
appliances, in the search for a parsimonious approach. The stratdgynenfed thus far is based on a time-
inhomogeneous Markov process, for a given aggregation efdagvappliances, which is conceived to dynamically
model transitions in fractional energy use [0,1], wheref is the ratio of energy use to the maximum permissible
(meaning it is limited by the appliance power rating) during a timefstepgiven appliance.

As implied above, the work presented here will be followed by the studthef different modelling strategies
that consider various aggregations (and aggregation levels) of low-lpdnaps. This research will supplement
previous efforts in modelling the use of high-load appliances amrdhgwith appliance ownership modelling, will
supprt improved prediction of buildings’ thermal and electrical energy demands as well as the design and control
of low voltage networks and the testing of demand side managiestrategies for those devices that may be
(partially) regulated autonomously.

The remainder of the paper is organized as follows: Section 2 presents reldt¢auh e topic; the dataset used
and the mathematical tools implemented are described in Section 3; it is follpviled tesults and discussion of
other techniques that could be applied; finally, Section 5 concludes with a summary.

2. Background

Many different approaches have been considered in modelling the ekeetoical appliances, with applications
in several research areas. Focusing on the bottom up techniques, diffetleodiafogies have been studied so far
One option is to relate the energy loads due to the use of electrical appliance®mtecsnomic characteristics,
such as that described in [3]. An alternative method was adopted by Pag¢3], where the occupancy model
developed is linked with the usef appliances. On the other hand, Time Use Survey datasets (TUS) where
participants complete diaries of their daily activities have been widely employtite occupancy patterns and
power use profiles [4]7]. Although the modelling of activities can be generated using static patterms [5]
dynamic models [6], usually fixed power conversion schemes amgnadsdepending on the type of appliance in
order to obtain power consumption values.

A more refined methodology is studied by Jaboob et al. [8], wheveral approaches to model the use of
appliances are testedpart from considering switch on events, the duration of use whipdiaages are on is
modelled taking into account conditional probability to a related activibye importantly, this modelling approach
differentiates from those presented above in the capability of resolvindyfamic power variations whilst the
appliances are being used by implementing Markov processes.

In our quest for parsimony our work is focused on identifyidch of the above tasks needs to be modelled
explicitly in the case of low-load appliances, finding also a suitable agfipagof appliances to which apply the
modelling strategies.

3. Methodology
3.1.Household Electricity Survey dataset
The Household Electricity Survey is an exhaustive monitoring of electrigsty carried out by the UK

government, in which 250 households were recorded between&@1@011. Twenty-six of those houses were
monitored for a whole year with 10-minute energy use data, whereas tbé esseholds were monitored for one
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month with 2 minutes resolution. The study covers electricity qopsan at appliance level, with a total of 254
different appliances, and a variety of typology and socio-demoigraparacteristics.

For the following reasons, only the annual data regarding the@&hold monitored for a whole year has been
used. Firstly, the monthly data available for the other 224 householdsotva®nitored during the same month of
the year, leading to possible seasonal effects on the use of appliecasdly, since the use of small appliances is
difficult to measure accurately, having ten-minute resolution minimizes tis¢eege of inconsistent entries and
outliers. However, the number of different appliances present in the 1@esisubset of the data is reduced,
potentially leading to loss of information. For this reason, future resealicinvelve the consideration of the
complete dataset, therefore modelling at a five times higher resolution.

The low-load appliances available to model are classified into four categorieslbagmliances: audiovisual
appliances, computing appliances, kitchen appliances and a miscellanether aimall appliances. The variety of
appliances considered in each category, together with information aboutdhgilbution to annual energy is
depicted in Figure 1. The height of the bars corresponds to the mearofalinual energy of the corresponding set
of grouped appliancethe width is proportional to the number of instances recorded 26theusesg.g.the kettle
is a popular appliance present in 26 houses, while the AV receiver wasdiolyrid one household).

3.2.Modelling technique

As it was previously indicated, this paper describes one particular strategg fdyrthmic modelling of groups
of low-load appliances, aggregated as specified above, by means of imahom®geneous Markov chain. It is
relevant to mention that the first idea was to model variations in poweandermowever, given the resolution and
the nature of the data used, containing averaged energy use over tées mieniods, it was found to be more
significant to directly model the energy use variations.

The mathematical techniques adopted during the modelling process areeskpleliow.

3.2.1 Modelling fractional energy demand

Fractional energy refers to the fraction of maximum enérthat is being consumed by a given appliance at
certain period of time. This approach allows the comparison of the ensegffuctuations of appliances that may
have different maximum rated power and consequently different ilemenmaximum energy use. The data is
therefore transformed to temporal profiles of fractional energy, wiiex¢0,1].

Energy states result from the discretization of the fractional enerdileprdleven states were consideredaas
first approximation: ten linearly spaced states of 0.1 fractional eneidjia,wplus a state corresponding to an off
state of the device (fractional energy equal to zero). The modelling will aessdd on the simulation of the
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Figure 1. Annual energy use of the types of appliarmmmnsidered in the modelling, divided in four categoraudiovisuzs
computing, kitchen and other. The height of the arsesponds to the mean value of annual energy focahespondin
group, while the width is proportional to the numbgétimes that the appliance was recorded in the dataset
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transitions between these energy states. A time-inhomogeneous Meskegsis employed to do this.

In order to be able to obtain values of energy performance, thofraicenergy states simulated must be
converted first to a fractional energy profflaising the mean fractional poweyof each state, and second to the
energy value using the maximum energy of appliances. Given that we aidedogsa group of appliances with
different maximum rated powers, one simple approach is to multiplyrbgan maximum energy.

However, in our case rated power values were not available on the dataset, teadiogy estimation of the
maximum energy values and consequentlyiofor this reason, the capabilities of the model to forecast energy use
are dimnished, as will be shown below. Nevertheless, in a general case, magineugy should be accurately
known from the rated power of each of the appliances allocated.

3.2.2 Discrete-time Markov process

A Markov process is a memoryless stochastic process that fulélisignkov property, by which predictions for
the future of the process is only based on its present state and notheonprevious history:
P (1) = p(X(t+1)=j[X ([)=i). The probability of transition between a present stat a future stat¢ can be
formulated as the ratio of transitions that occur to gtatem i and the total number of transitions occurring from
statei, as indicated in equation (1).
m; (1) (2)

z m; (1)
j

Therefore, a transition probability matrix is defined as

Py (1) =

P P o Pm(D
R () = pz?(t) ngz(t) pzn (® @
pml(t) pm2(t) pmm(t)

for a set ofm possible Markov chain states, givingnax m dimension of the matrix in the case of a homogeneous
Markov process, where transition probabilities does not have dependéghdime. Alternatively, inhomogeneous
Markov chains can be used to describe dependencies in the probability tnansittotime; in this case, the matrix
described in equation (2) will require a third axis that contains a nuofib@es mmatrices equal to the number of
time slots desired.

In the case we are concerned with, 11 energy states and 24 temporalretédken into account, leading to a tensor
of dimensionllx11x 240ne of the challenges when using Markov processes is to determine thenexiste
redundant calculationsvhen more states adfined than required or hourly matrices do not describe different
behaviours. A procedure to deal with this is the use of clustersimadchniques, in order to find the number of
steps and time slots strictly needed for the modelling.
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Figure 2 Graphical representation of a inhomogeneous Markosotefor the category relevant to audiovisual apgksn It show
transitions between eleven energy states at timetirard+1; the tensor is composedl@matrices, one for each hour of half a ¢
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4. Results and discussion

In this section the main results are presented for the modelling apprgaaimed above. The construction of the
model was based on approximately 92% of the available annual data, leaving aro@% to evaluate the
technique, which corresponds to one complete month of validation data.

4.1.1.Time-inhomogeneous Markov matrix

As explained in section 3.2.2, it is possible to extract a tensor sucle ang¢hdefinedn equation (2), when
counting the transitions between energy statleskigure 2, the tensor concerning the category of audiovisual
appliances is shown. The graph contdi@isnatrices corresponding to each hourad§pical day between 6:00 and
17:00h. Each of those matrices shows transitions between statesrrerstejpt to time stept +1, represented as
points of size proportional to the probability of that transition to ncEtom the graph# is inferred that the
dominant transitions are situated along the diagonal, correspondings®ttiat do not imply variations in energy
demand, practically independently from the time of the day. Variationfbanel outside the diagonal over time,
even though they are modest.

In general, the time-inhomogeneous approach in this particular casedsstribing large temporal differences
on the transition probabilities, taking into account that we are representing a a&tonbiof the energy states
transitions of a group of appliances; nevertheless, this behavior isbeetved when building tensors ofeth
individual appliances. One explanation to this could be that a dominant a&gpl@esenting this transition
behaviour is influencing more significantly the overall plot. A furttaesk to refine the modelling then would be to
identify those appliances that could have dominant behaviour.

4.1.2.Simulation results

From the information extracted from the annual data and represented as atdrmwsition probabilities, it is
possible to generate a sequence of energy states that fokopvaibability distribution. An inverse cumulative
distribution function (CDF) method is employed to do that, where for thearglévnet, a random number from a
continuous uniform distribution over the interv@,1) is drawn and the corresponding interval in the CDF is
selected as the state f8rl. This process is repeated for every 10 minute step over the valigatioal.

The result of the simulation is a stochastic sequence of energy statels, cahibe evaluated by means of
performance indicators [10]. In the case of audiovisual appliancesetiséigty (True Positive Rate, TPR), the
specificity (True Negative Rate, TNR) and the model accuracy (ACC) are equnllgg 0.918 and 0.484,
respectively, which means that the model is performing reasonably wilk iprediction of a sequence energy
states.

These values can be complemented with a comparison between the probabikiresilating and observing
each of the energy states. Figur@r8sents the CDF’s for both simulated and observed energy states during the
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validation period. In general, the off-state (state 0) is found to be overestiwisitedhe stand by-state (state 1) is
underestimated. This fact suggests that the technique could be improvedejling the switch on events
separately, and use the Markov approach only to model energy variatienewer the appliances are being used.

The sequence of energy states can be further used to obtain an eswsggnption profile due to low-load
appliances of each category by following the methodology describeectiors 3.2.1; this makei$ possible to
evaluate the goodness of the prediction of energy use. As dis@lsses], maximum energy values were poorly
estimated due to lack of information on rated power, leading to a relative €84%0in the prediction of annual
energy. Nevertheless, the core formulation of the model is still reliable, iagstirat in reality this value should be
accurately known from the allocation of appliances. The former carnshalized in Figure 4, where the energy
consumption of the average day of the validation data is presented, for bagured and simulated Q5
simulations); the overestimation is clear, showing the observed dawdgrfrom the 90% confidence interval of
the simulations. Different alternatives to address the problem of estimagimgatimum energy are currently being
investigated, including the use of finer temporal data.

5. Conclusion

In this paper the application of a time-inhomogeneous Markov priozdsar categories of appliances has been
presented, with the purpose of dynamically modelling fractional eneagy u

Thus far, results show that Markov processes can be used to pstfmiastic simulations of the fractional
energy states. However, further study should consider the reductorefy and temporal states in order to avoid
redundant calculations and increase computing efficiency; identification ohdotrappliances and cluster analysis
techniques are the next steps to take into account in this research. On themdhé@émproved estimations of the
maximum energy use are required to predict accurate demand profiles.

Also, other candidate strategies such as the probability of switchilag @appliance, the duration of use or its
conditional probability to be linked to an activity will be further tested @mpare, with the objective of finding
the most parsimonious approach, and the most suitable aggregation of appliance

Modelling the lowltoad appliances, will contribute to improved prediction of buildings’ thermal and electrical
energy demands, when considering together with previous effortedelling the use of high-load appliances and
appliance ownership modelling.
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