340,618 research outputs found

    Polyhedral monocarbaborane chemistry. Carboxylic acid derivatives of the [closo-2-CB9H10](-) anion

    Get PDF
    Reaction of B10H14 with para-(OHC)C6H4(COOH) in aqueous KOH gives the [nido-6-CB9H11-6-(C6H4-para-COOH)](-) anion I which upon cluster closure with iodine in alkali solution gives the [closo-2-CB9H9-2-(C6H4-para-COOH)](-) anion 2; an analogous procedure with B10H14 and glyoxalic acid OHCCOOH gives the [closo-2-CB9H9-2-(COOH)](-) anion 4 via the [arachno-6-CB9H13-6-(COOH)](-) anion 3

    Anion receptor chemistry: highlights from 2011 and 2012

    No full text
    This review covers advances in anion complexation in the years 2011 and 2012. The review covers both organic and inorganic systems and also highlights the applications to which anion receptors can be applied such as self-assembly and molecular architecture, sensing, catalysis and anion transport

    Highly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas

    No full text
    Simple, highly fluorinated receptors are shown to function as highly effective transmembrane anion antiporters with the most active transporters rivalling the transport efficacy of natural anion transporter prodigiosin for bicarbonate

    Chiral Ionic Liquids:  Synthesis, Properties, and Enantiomeric Recognition

    Get PDF
    We have synthesized a series of structurally novel chiral ionic liquids which have a either chiral cation, chiral anion, or both. Cations are an imidazolium group, while anions are based on a borate ion with spiral structure and chiral substituents. Both (or all) stereoisomeric forms of each compound in the series can be readily synthesized in optically pure form by a simple one-step process from commercially available reagents. In addition to the ease of preparation, most of the chiral ILs in this series are liquid at room temperature with a solid to liquid transformation temperature as low as −70 °C and have relatively high thermal stability (up to at least 300 °C). Circular dichroism and X-ray crystallographic results confirm that the reaction to form the chiral spiral borate anion is stereospecific, namely, only one of two possible spiral stereoisomers was formed. Results of NMR studies including 1H{15N} heteronuclear single quantum coherence (HSQC) show that these chiral ILs exhibit intramolecular as well as intermolecular enantiomeric recognition. Intramolecularly, the chiral anion of an IL was found to exhibit chiral recognition toward the cation. Specifically, for a chiral IL composing with a chiral anion and a racemic cation, enantiomeric recognition of the chiral anion toward both enantiomers of the cation lead to pronounced differences in the NMR bands of the cation enantiomers. The chiral recognition was found to be dependent on solvent dielectric constant, concentration, and structure of the ILs. Stronger enantiomeric recognition was found in solvent with relatively lower dielectric constants (CDCl3 compared to CD3CN) and at higher concentration of ILs. Also, stronger chiral recognition was found for anions with a relatively larger substituent group (e.g., chiral anion with a phenylmethyl group exhibits stronger chiral recognition compared to that with a phenyl group, and an anion with an isobutyl group has the weakest chiral recognition). Chiral anions were also found to exhibit intermolecular chiral recognition. Enantiomeric discrimination was found for a chiral IL composed of a chiral anion and achiral cation toward another chiral molecule such as a quinine derivative

    Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    Get PDF
    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium–fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and 11B nuclear magnetic resonance studies suggest that co-intercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties

    X-ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface

    Get PDF
    X-ray photoelectron spectroscopy has been used to measure levels of anion cross-incorporation and to study interface formation for the mixed anion GaSb/lnAs heterojunction. Anion cross-incorporation was measured in 20 Å thick GaSb layers grown on lnAs, and 20 Å thick InAs layers grown on GaSb for cracked and uncracked sources. It was found that significantly less anion cross-incorporation occurs in structures grown with cracked sources. Interface formation was investigated by studying Sb soaks of InAs surfaces and As soaks of GaSb surfaces as a function of cracker power and soak time. Exchange of the group V surface atoms was found to be an increasing function of both cracker power and soak time. We find that further optimization of current growth parameters may be possible by modifying the soak time used at interfaces

    Reactions of (-)-sparteine with alkali metal HMDS complexes : conventional meets the unconventional

    Get PDF
    Conventional (-)-sparteine adducts of lithium and sodium 1,1,1,3,3,3-hexamethyldisilazide (HMDS) were prepared and characterised, along with an unexpected and unconventional hydroxyl-incorporated sodium sodiate, [(-)-sparteine·Na(-HMDS)Na·(-)-sparteine]+[Na4(-HMDS)4(OH)]--the complex anion of which is the first inverse crown ether anion

    Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs2SnX6 Vacancy Ordered Double Perovskites.

    Get PDF
    Mixed anion compounds in the Fm3̅m vacancy ordered perovskite structure were synthesized and characterized experimentally and computationally with a focus on compounds where A = Cs+. Pure anion Cs2SnX6 compounds were formed with X = Cl, Br, and I using a room temperature solution phase method. Mixed anion compounds were formed as solid solutions of Cs2SnCl6 and Cs2SnBr6 and a second series from Cs2SnBr6 and Cs2SnI6. Single phase structures formed across the entirety of both composition series with no evidence of long-range anion ordering observed by diffraction. A distortion of the cubic A2BX6 structure was identified in which the spacing of the BX6 octahedra changes to accommodate the A site cation without reduction of overall symmetry. Optical band gap values varied with anion composition between 4.89 eV in Cs2SnCl6 to 1.35 eV in Cs2SnI6 but proved highly nonlinear with changes in composition. In mixed halide compounds, it was found that lower energy optical transitions appeared that were not present in the pure halide compounds, and this was attributed to lowering of the local symmetry within the tin halide octahedra. The electronic structure was characterized by photoemission spectroscopy, and Raman spectroscopy revealed vibrational modes in the mixed halide compounds that could be assigned to particular mixed halide octahedra. This analysis was used to determine the distribution of octahedra types in mixed anion compounds, which was found to be consistent with a near-random distribution of halide anions throughout the structure, although some deviations from random halide distribution were noted in mixed iodide-bromide compounds, where the larger iodide anions preferentially adopted trans configurations
    corecore