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________________________________________________________________________________ 
 
Reaction of B10H14 with para-(OHC)C6H4(COOH) in aqueous KOH gives the [nido-6-CB9H11-6-

(C6H4-para-COOH)]− anion 1 which upon cluster closure with iodine in alkali solution gives the 

[closo-2-CB9H9-2-(C6H4-para-COOH)] − anion 2; an analogous procedure with B10H14 and glyoxalic 

acid OHCCOOH gives the [closo-2-CB9H9-2-(COOH)]−  anion 4 via the [arachno-6-CB9H13-6-

(COOH)]− anion 3.  

________________________________________________________________________________ 

 

There is interest in the functionalization of stable closo boranes and closo dicarbaboranes for use as  

synthons or building-blocks for potential life-science 1,2 and  nanoarchitectural applications.3,4,5 Our 

laboratory has become interested in extending this functionalisation chemistry to the intermediate 

monocarbaboranes. Monocarbaboranes offer complementary charge and polarity possibilities 

compared to the boranes on one hand and to the dicarbaboranes on the other hand.  In this regard, 

monocarbaborane units with synthetically useful amine residues {NH2} are readily available. These 

{NH2} units may be directly bound to the monocarbaborane cluster, as in the [1-(H2N)-closo-1-

CB11H11]− anion that is isolatable from the classical route to the closo twelve-vertex monocarbaborane 

clusters,6,7  or less directly bound, as in the isomers of  [para-(H2N)-C6H4-closo-CB9H9]− pioneered by 

Sivaev and co-workers.8,9 Carboxylate units are complementary to {NH2} groupings in synthetic 

reactions,9,10 and in this context we here report preliminary results on the hitherto elusive carboxylic 

acid {COOH} derivatives of the closo {CB9} residue. We have established examples that show that the 

acid unit can be bound either directly to the carbon atom of the constituents of the cluster, or indirectly, 

here by utilization of a {para-C6H4(COOH)} unit bound to the cluster. Both procedures make initial 

use of the Brellochs Reaction11 for the direct generation of functional ten-vertex {CB9} 

monocarbaboranes from the reaction of functional aldehydes with nido-B10H14, and further demonstrate 

the useful versatility of this reaction.   

 

Thus, 4-carboxybenzaldehyde, para-(OHC)C6H4(COOH), reacts in strong alkaline solution with nido-

B10H14 to form the ten-vertex [nido-6-CB9H11-6-(C6H4-para-COOH)]−  anion 1, isolatable in 62 % yield 

as its [NEt4]+ salt 1a.12(a) In strong alkaline solution anion 1 thence reacts with elemental iodine with 

cage closure to form the [closo-2-CB9H9-2-(C6H4-para-(COOH)]− anion 2, isolatable as its 

[NEt4]3[CB9H9(C6H4COOH)]2Br double salt 2a in 73 % yield.12(b)  In a similar manner, by the 

successive dissolution in strong alkaline solution of glyoxylic acid monohydrate, [OHCCO2H(OH2)], 

and nido-B10H14, the [arachno-6-CB9H13-6-(COOH)]− anion 3 can be obtained in 53 % yield as its 

[NEt4]+ salt 3a. 12(c) In strong alkaline solution anion 3 undergoes cage closure with elemental iodine to 
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give the [closo-2-CB9H9-2-(COOH)]− anion 4, isolatable as its [NEt4]+ salt 4a in 92 % yield.12(d)  Both 

new closo anions 2 and 4 are characterised by single-crystal X-ray diffraction analysis,13 anion 4 in its 

[NEt4]+ salt 4a, and anion 2 in the [NEt4]3[closo-2-CB9H9-2-(para-C6H4COOH)]2Br double salt 2a 

(Figure 1). Salient interatomic dimensions are given in the caption to Figure 1.  

 

 

             
    
Figure 1. Crystallographically determined molecular structures13 of (left) the [closo-2-CB9H9-2-(C6H4-para-COOH)]− anion 2 in 

its [NEt4]3[CB9H9(C6H4COOH)]2Br  double salt 2a and (right) the [closo-2-CB9H9-2-(COOH)]− anion 4 in its [NEt4]+ salt 4a. In 

2a the C(2)-C(21) distance is 1.497(4), the C(24)C(27) distance is 1.492(4) Å, the O(1)C(27) distance is 1.207(4) Å, the 

O(2)C(27) distance is 1.320(4) Å and the O(1)C(27)O(2)  angle is 123.5(3)°; within the cluster, C(2)B(1) is 1.637(4), C(2)B(3) is 

1.753(5), C(2)B(5) is 1.769(4), C(2)B(6) is 1.752(4) and C(2)B(9) is 1.756(4) Å. There are two independent molecules, A and B, 

of 4 in the unit cell of 4a; the molecular structure of only one of these (anion A) is shown. Dimensions for the anions A and B are 

closely related (see text). In anion A, the C(2)C(3) distance is 1.465(3) Å, the O(1)C(3) distance is 1.221(2) Å, the O(2)C(3) 

distance is 1.293(2) Å and the O(1)C(3)O(2) angle is 123.14(18)°; within the cluster, C(2)B(1) is 1.603(3), C(2)B(3) is 1.703(3), 

C(2)B(5) is 1.761(3), C(2)B(6) is 1.754(3) and C(2)B(9) is 1.730(3) Å. In anion B, the C(2)C(3) distance is 1.473(3) Å, the 

O(1)C(3) distance is 1.188(2) Å, the O(2)C(3) distance is 1.291(2) Å and the O(1)C(3)O(2) angle is 121.57(19)°; within the 

cluster, C(2)B(1) is 1.606(3), C(2)B(3) is 1.765(3), C(2)B(5) is 1.698(3), C(2)B(6) is 1.732(3) and C(2)B(9) is 1.732(3) Å.  
 

The crystallographically determined cluster structure of anion 2 is relatively symmetrical across the 

B(1)C(2)B(10) plane. By contrast, the crystallographic analysis of intramolecular C-B distances in 

anion 4 gives an apparent significant asymmetry about C(2). There are two independent molecules of 4 

in the crystal of 4a.  In molecule A, C(2)-B(3) is much shorter than C(2)-B(5),  and, conversely, C(2)-

B(6) is much longer than C(2)-B(9). At first sight, it is tempting to ascribe this to differential trans 

effects arising from C=O versus COH in the {COOH} group, but molecule B shows the converse 

asymmetry, with C(2)-B(3) being much longer than C(2)-B(5),  and C(2)-B(6) is much shorter than 

C(2)-B(9), suggesting a crystallographic artefact. A more definitive difference between anions 2 and 4 

is that the C(2)-B(1) distance in the directly carboxylated cluster species 4 is shorter than C(2)-B(1) in 

2, and C(2)-C(3) in 4 is shorter than both C(2)C(21) and C(24)-C(27) in 2, which suggest some 

multiple-bonding character in the cluster to carboxylate linkage C(2)-C(3) in 4. There is also an 

interesting difference in intermolecular interaction behaviour when the anions in 2a and 4a are 

compared.  Whereas hydrogen bonding between the carboxylic acid residues in 2a results in an 

association of pairs of anions 2 to give conventional carboxylic acid dimeric units, for anion 4 the 

hydrogen bonding in 4a gives the less common planar assembly of four {COOH} units, rather than the 



dimeric configuration. We hope to address these and related phenomena in more detail when this and 

related work is complete and presented in full description.  

 

It is anticipated that these carboxylic acid species, and analogous derivatives of related cluster species, 

will constitute very useful intermediates for molecular architectural constructions and for the synthesis 

of molecules to be investigated for potential life-science applications. They offer opportunity for 

derivatisation for further useful functionalization, e.g. for acid chloride formation which could be 

useful for the generation of amide linkages, and for reduction to alcohols and subsequent reoxidation to 

aldehydes, both of which offer further synthetic potential. Also, in principle, they can be isomerised to 

their closo-1-monocarbadecaborane isomers,8 permitting more subtle permutations in molecular 

configuration that could be useful in the fine tuning of any emerging effect chemistry. We are currently 

devising experimentation to examine some of these possibilities.   
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B10H14 with para-(OHC)C6H4(COOH) or OHCCOOH in aqueous KOH gives the [nido-6-CB9H11-6-

(C6H4-para-COOH)]− anion or the [arachno-6-CB9H13-6-(COOH)]− anion,  respectively; oxidation 

with I2 thence gives the [closo-2-CB9H9-2-(C6H4-para-COOH)] − anion or the [closo-2-CB9H9-2-

(COOH)]−  anion, respectively. 

             
 

 

 

 

 



  


