468 research outputs found

    Fluorous l -Carbidopa Precursors : Highly Enantioselective Synthesis and Computational Prediction of Bioactivity

    Get PDF
    New fluorous enantiopure (S)-α-aminated β-keto esters were prepared through a highly enantioselective electrophilic α-amination step in the presence of europium triflate and (R,R)-phenyl-pybox. These compounds are precursors of fluorinated analogues of l-carbidopa, which is known to inhibit DOPA decarboxylase (DDC), a key protein in Parkinson's disease. Fluorination provides better stability for biological applications, which could possibly lead to DDC inhibitors better than l-carbidopa itself. Induced fit docking computational simulations performed on the new structures interacting with DDC highlight that for an efficient binding at the DDC site, at least one hydroxyl substituent must be present at the aromatic ring of the l-carbidopa analogues and show that the presence of fluorine can further fix the position of the ligand in the active site

    Simplified immobilisation method for histidine-tagged enzymes in poly(methyl methacrylate) microfluidic devices

    Get PDF
    Article in press. Kulsharova, G., New BIOTECHNOLOGY (2017), https://doi.org/10.1016/j.nbt.2017.12.004Poly(methyl methacrylate) (PMMA) microfluidic devices have become promising platforms for a wide range of applications. Here we report a simple method for immobilising histidine-tagged enzymes suitable for PMMA microfluidic devices. The 1-step-immobilisation described is based on the affinity of the His-tag/Ni-NTA interaction and does not require prior amination of the PMMA surface, unlike many existing protocols. We compared it with a 3-step immobilisation protocol involving amination of PMMA and linking NTA via a glutaraldehyde cross-linker. These methods were applied to immobilise transketolase (TK) in PMMA microfluidic devices. Binding efficiency studies showed that about 15% of the supplied TK was bound using the 1-step method and about 26% of the enzyme was bound by the 3-step method. However, the TK-catalysed reaction producing l-erythrulose performed in microfluidic devices showed that specific activity of TK in the device utilising the 1-step immobilisation method was approximately 30% higher than that of its counterpart. Reusability of the microfluidic device produced via the 1-step method was tested for three cycles of enzymatic reaction and at least 85% of the initial productivity was maintained. The device could be operated for up to 40 h in a continuous flow and on average 70% of the initial productivity was maintained. The simplified immobilisation method required fewer chemicals and less time for preparation of the immobilised microfluidic device compared to the 3-step method while achieving higher specific enzyme activity. The method represents a promising approach for the development of immobilised enzymatic microfluidic devices and could potentially be applied to combine protein purification with immobilisation.Peer reviewe

    A Multicatalytic Approach to the Hydroaminomethylation of α-Olefins.

    Get PDF
    We report an approach to conducting the hydroaminomethylation of diverse α-olefins with a wide range of alkyl, aryl, and heteroarylamines at relatively low temperatures (70-80 °C) and pressures (1.0-3.4 bar) of synthesis gas. This approach is based on simultaneously using two distinct catalysts that are mutually compatible. The hydroformylation step is catalyzed by a rhodium diphosphine complex, and the reductive amination step, which is conducted as a transfer hydrogenation with aqueous, buffered sodium formate as the reducing agent, is catalyzed by a cyclometallated iridium complex. By adjusting the ratio of CO to H2 , we conducted the reaction at one atmosphere of gas with little change in yield. A diverse array of olefins and amines, including hetreroarylamines that do not react under more conventional conditions with a single catalyst, underwent hydroaminomethylation with this new system, and the pharmaceutical ibutilide was prepared in higher yield and under milder conditions than with a single catalyst

    Ultrasound assisted one-pot synthesis of benzo-fused indole-4, 9-dinones from 1,4-naphthoquinone and α-aminoacetals

    Get PDF
    A one-pot synthesis of benzo[f]indole-4,9-diones from 1,4-naphthoquinone with α-aminoacetals has been developed. This method provides a straightforward synthesis of benzo[f]indole-4,9-diones via intramolecular nucleophilic attack of aminoquinones to aldehydes under mild reaction conditions. The detailed mechanism was also investigated

    Design, Synthesis and biological evaluation of novel acridine-polyamine conjugates against prostate cancer

    Get PDF
    Prostate cancer is the most common cause of cancer death in men, aged 85 and over. Androgen receptor, a single polypeptide with three functional domains is very important during initiation and progression of the disease. In this study, a DNA intercalating agent, acridine is linked to the testosterone via a polyamine linker to obtain a compound with trifunctional characteristics, where the acridine intercalates the DNA, the polyamine linker binds the phosphoryl groups of the DNA backbone and the testosterone moiety binds into the AR ligand binding domain, with which its DNA binding domain is bound already to the DNA. This trifunctional compound and related derivatives have been synthesized and tested against androgen dependent- and androgen independent- prostate cancer cell lines and they have demonstrated to be cytotoxic at the micromolar concentrations

    Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin

    Get PDF
    Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles based on natural polymers represent valuable tools to achieve this aim. The ability to respond to environmental signals from the pathological site (e.g., altered redox potential), together with the specific interaction with membrane receptors overexpressed on cancer cells membrane (e.g., CD44 receptors), represent the main features of actively targeted nanoparticles. In this work, redox-responsive micelle-like nanoparticles were prepared by self-assembling of a hyaluronic acid–human serum albumin conjugate containing cystamine moieties acting as a functional spacer. The conjugation procedure consisted of a reductive amination step of hyaluronic acid followed by condensation with albumin. After self-assembling, nanoparticles with a mean size of 70 nm and able to be destabilized in reducing media were obtained. Doxorubicin-loaded nanoparticles modulated drug release rate in response to different redox conditions. Finally, the viability and uptake experiments on healthy (BALB-3T3) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a drug vector in cancer therapyL.D.-G. acknowledges Consellería de Cultura, Educación e Ordenación Universitaria for a postdoctoral fellowship (Xunta de Galicia, Spain; ED481B 2017/063)S

    Davis-Beirut reaction: route to thiazolo-, thiazino-, and thiazepino-2H-indazoles.

    Get PDF
    Methods for the construction of thiazolo-, thiazino-, and thiazepino-2H-indazoles from o-nitrobenzaldehydes or o-nitrobenzyl bromides and S-trityl-protected 1°-aminothioalkanes are reported. The process consists of formation of the requisite N-(2-nitrobenzyl)(tritylthio)alkylamine, subsequent deprotection of the trityl moiety with TFA, and immediate treatment with aq. KOH in methanol under Davis-Beirut reaction conditions to deliver the target thiazolo-, thiazino-, or thiazepino-2H-indazole in good overall yield. Subsequent S-oxidation gives the corresponding sulfone

    Transaminase triggered aza-Michael approach for the enantioselective synthesis of piperidine scaffolds

    Get PDF
    The expanding “toolbox” of biocatalysts opens new opportunities to redesign synthetic strategies to target molecules by incorporating a key enzymatic step into the synthesis. Herein, we describe a general biocatalytic approach for the enantioselective preparation of 2,6-disubstituted piperidines starting from easily accessible pro-chiral ketoenones. The strategy represents a new biocatalytic disconnection, which relies on an ω-TA-mediated aza-Michael reaction. Significantly, we show that the reversible enzymatic process can power the shuttling of amine functionality across a molecular framework, providing access to the desired aza-Michael products

    8-Azatetracyclines: Synthesis and Evaluation of a Novel Class of Tetracycline Antibacterial Agents

    Get PDF
    bS Supporting Information ABSTRACT: A novel series of fully synthetic 8-azatetracyclines was prepared and evaluated for antibacterial activity. Compounds were identified that overcome both efflux (tet(K)) and ribosomal protection (tet(M)) tetracycline resistance mechanisms and are active against Gram-positive and Gram-negative organisms. Two compounds were identified that exhibit comparable efficacy to marketed tetracyclines in in vivo models of bacterial infection. The tetracycline class of antibacterial agents has seen wide-spread clinical use for over 50 years due to its broad spectrum anti-bacterial activity.1 Tetracyclines inhibit bacterial growth by prevent-ing protein biosynthesis through binding to the 30S ribosome
    corecore