11 research outputs found

    Single and multi-antenna MC-DS-CDMA with joint detection for broadband block-fading channels

    Get PDF
    In the context of broadband wireless communications using code division multiple access (CDMA), the main multiple access (MA) options include single-carrier direct sequence CDMA (SC-DS-CDMA) using time-domain direct sequence spreading [1, p. 728], multicarrier CDMA (MC-CDMA) using frequency-domain spreading [2, 3] and multicarrier DS-CDMA (MC-DS-CDMA) using time-domain direct sequence spreading of the individual sub-carrier signals [4, 5]. It was shown in [6] that MC-DS-CDMA has the highest degrees of freedom in the family of CDMA schemes that can be beneficially exploited during the system design and reconfiguration procedures. An amalgam of MC-CDMA and MC-DS-CDMA known as time and frequency domain spreading (TF-domain spreading) MC-DS-CDMA was proposed in [6]. TF-domain spreading MC-DS-CDMA has several benefits over conventional MC-DS-CDMA with regard to both capacity and performance [7]. However, in contrast to conventional MC-DS-CDMA, TF-domain spreading MC-DS-CDMA introduces MUI, which necessitates the use of joint detection at the receiver. Recently, multiple input multiple output (MIMO) or multi-antenna TF-domain spreading MC-DS-CDMA schemes have been proposed in the literature that e ciently exploit both the spatial and frequency diversity available in MIMO frequency-selective channels [8, 9]. Although an extensive amount of research has been done on single and multi-antenna TF-domain spreading MC-DS-CDMA schemes that achieve both spatial and frequency diversity in frequency-selective slow fading channels [6–9], very little research considers the time-selectivity of the wireless channels encountered. Thus, the above-mentioned schemes may not be su ciently e cient, when communicating over wireless channels exhibiting both frequency-selective and time-selective fading. There are very few MC-DS-CDMA schemes in the literature that consider the time-selectivity of the wireless channels encountered. This study considers the design of single and multi-antenna TF-domain spreading MC-DS-CDMA, for frequency-selective block-fading channels, which are capable of exploiting the full diversity available in the channel (i.e. spatial, frequency and temporal diversity), using various methods of joint detection at the receiver. It has been shown that the diversity gain in block-fading channels can be improved by coding across multiple fading blocks [10–12]. Single-antenna TF-domain spreading MC-DS-CDMA is considered for the quasi-synchronous uplink channel, and multi-antenna TF-domain spreading MC-DS-CDMA is considered for the synchronous downlink channel. Numerous simulated bit error rate (BER) performance curves, obtained using a triply selective MIMO channel platform, are presented in this study using optimal and sub-optimal joint detection algorithms at the receiver. In addition, this study investigates the impact of spatial correlation on the BER performance of the MC-DS-CDMA schemes considered. From these simulated results, one is able to conclude that TF-domain spreading MC-DS-CDMA designed for frequency-selective block-fading channels performs better than previously proposed schemes designed for frequency-selective slow fading channels, owing to the additional temporal diversity exploited under the block-fading assumption. AFRIKAANS : In die konteks van bre¨eband- draadlose kommunikasie deur die gebruik van kodeverdelingveelvuldige toegang (KVVT) behels die belangrikste veelvuldigetoegang- (VT) opsies enkel-draer direkte-sekwensie KVVT (ED-DS-KVVT), deur die gebruik van tyd-domein direkte sekwensie-verspreiding [1, p. 728], veelvuldigedraer-KVVT (VD-KVVT) deur die gebruik van frekwensiedomein-verspreiding [2, 3] en VD-DS- KVVT deur die gebruik van tyd-domein direkte sekwensie-verspreiding van die individuele sub-draerseine [4, 5]. Daar is in [6] aangetoon dat VD-DS-KVVT die hoogste vlakke van vryheid in die familie KVVT-skemas het wat voordelig benut kan word gedurende sisteemontwerp en rekonfigurasieprosedures. ’n Amalgaam van VD-KVVT en VD-DS-KVVT bekend as tyd-en-frekwensiedomeinverspreiding (TF-domeinverspreiding) VD-DS-KVVT is voorgestel in [6]. TF-domeinverspreiding VD-DS-KVVT het verskeie voordele bo konvensionele VD-DS-KVVT wat sowel kapasiteit as werkverrigting betref [7]. In teenstelling met konvensionele VD-DS-KVVT benut TF-domeinverspreiding VD-DS-KVVT multi-gebruiker-interferensie, wat die gebruik van gesamentlike opsporing by die ontvanger noodsaak. In die onlangse verlede is in die literatuur veelvuldige-inset-veelvuldige-uitset- (VIVU) of veelvuldige-antenna TF-omeinverspreiding VD-DS-KVVT-skemas voorgestel wat sowel die ruimtelike as frekwensiediversiteit wat in VIVU frekwensie-selektiewe kanale beskikbaar is, e ektief gebruik [8, 9]. Hoewel uitgebreide navorsing onderneem is oor enkel- en multi-antenna TF-domeinverspreiding VD-DS-KVVT-skemas wat sowel ruimtelike as frekwensie diversiteit in frekwensie-selektiewe stadig deinende kanale bereik [6–9], oorweeg baie min navorsing die tyd-selektiwiteit van die draadlose kanale wat betrokke is. Bogenoemde skemas mag dus nie e ektief genoeg wees nie wanneer kommunikasie plaasvind oor draadlose kanale wat sowel frekwensie-selektiewe as tyd-selektiewe wegsterwing toon. Baie min VD-DS-KVVT-skemas in die literatuur skenk aandag aan die tyd-selektiwiteit van die betrokke draadlose kanale. Die studie ondersoek die ontwerp van enkel- en multi-antenna TF-domeinverspreiding VD-DS-KVVT vir frekwensie-selektiewe blokwegsterwingkanale, wat in staat is om die volle diversiteit wat in die kanaal beskikbaar is, te benut (i.e. ruimtelike, frekwensie- en tyddiversiteit), deur die gebruik van verskeie metodes van gesamentlike opsporing by die ontvanger. Daar is aangetoon dat die diversiteitwins in blokwegsterwingkanale verbeter kan word deur kodering oor veelvuldige deinende blokke [10–12]. Enkel-antenna TF-domeinverspreiding VD-DS-KVVT word oorweeg vir die kwasi-sinchroniese opverbinding-kanaal, en multi-antenna TF-domeinverspreiding VD-DS-KVVT vir die sinchroniese afverbinding-kanaal. Talryke gesimuleerde bisfouttempo (BFT) werkverrigtingkurwes wat verkry is deur die gebruik van ’n drie-voudige selektiewe VIVU-kanaalplatform, word in hierdie studie aangebied, deur die gebruik van optimale en sub-optimale gesamentlike opsporingsalgoritmes by die ontvanger. Daarbenewens ondersoek hierdie studie die impak van ruimtelike korrelasie op die BFT-werkverrigring van die VD-DS-KVVT-skemas wat oorweeg word. Uit hierdie gesimuleerde resultate is dit moontlik om tot die gevolgtrekking te kom dat TF-domeinverspreiding VD-DS-KVVT wat ontwerp is vir frekwensie-selektiese blokwegsterwingkanale beter werkverrigting toon as vroe¨er voorgestelde skemas wat ontwerp is vir frekwensie-selektiewe stadig deinende kanale, te danke aan die ekstra tyddiversiteit wat deur die blokwegsterwing-aanname benut word. CopyrightDissertation (MEng)--University of Pretoria, 2010.Electrical, Electronic and Computer Engineeringunrestricte

    New quasi-orthogonal BCH-derived sequences for CDMA applications

    Get PDF
    European Transactions on Telecommunications, vol. 18Based on two methods recently proposed—the ‘Ranging Criterion’ (RC) and the ‘Generators Ranging Criterion’ (GRC)—new (quasi orthogonal) even BCH-derived sequences are generated which are very attractive for synchronous or quasi-synchronous Code Division Multiple-Access (CDMA) systems. Numerical results show that the new family of BCH-derived sequences can contain a higher number of quasi-orthogonal sequences with lower correlation values and higher processing gains (PGs) than the spreading sequences typically used in the third generation of mobile communications system, UMTS or in the recent large area synchronised CDMA (LAS-CDMA) technology. It is shown that the even BCHderived sequences are easily generated by a linear shift register generator, allowing the construction of systems with receiver structures of low complexity as compared with those of quasi-synchronous systems using low correlation zone sequences, as for instance the LAS-CDMA system

    Detecção multiutilizador do domínio da frequência para sistemas DS-CDMA

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaOs Sinais de Espalhamento de Espectro de Sequência Directa exibem propriedades cicloestacionárias que implicam redundância entre componentes de frequência espaçadas por múltiplos da taxa de símbolo. Nesta tese, é apresentado um cancelador de interferência multiutilizador (Cancelador por translação na frequência - FSC) que tira partido desta propriedade. Este cancelador linear opera no domínio da frequência no sinal espalhado de tal forma que minimiza a interferência e ruído na saída (Critério do Mínimo Erro Quadrado Médio). Além de testado para o caso de antena única, são avaliadas as performances das configurações de antenas múltiplas para o caso de beamforming e canais espacialmente descorrelacionados considerando sistemas síncronos e sistemas com desalinhamento no tempo dos perfis de canais (ambos UMTS-TDD). Essas configurações divergiam na ordem da combinação temporal, combinação espacial e detecção multiutilizador. As configurações FSC foram avaliadas quando concatenadas com o PIC-2D. Os resultados das simulações mostram consideráveis melhorias nos resultados relativamente ao RAKE-2D convencional e PIC-2D. Foi atingida performance próximo ao RAKE de utilizador único quando o FSC foi avaliado concatenado com PIC-2D em quase todas as configurações. Todas as configurações foram avaliadas com modulação QPSK, 8-PSK e 16-QAM. Foi introduzida codificação Turbo e identificou-se as situações da vantagem de utilização do FSC antes do PIC-2D. As modulações 8-PSK e 16-QAM foram igualmente testadas com codificação.Direct Sequence Spread Spectrum signals exhibit cyclostationary properties which imply redundancy between frequency components separated by multiples of the symbol rate. In this thesis a Multiple Access Interference Canceller (Frequency Shift Canceller - FSC) that explores this property is presented. The linear frequency domain canceller operates on the spreaded signal so as to minimize the interference and noise at the output (Minimum Mean Squared Error Criterium). Moreover the FSC was tested with single antenna, the performance of multisensor configurations for the cases of beamforming and uncorrelated spatial channels was evaluated considering both synchronous and time misalignment systems (both UMTS-TDD). Those configurations diverge in temporal combining, spatial combining and multiuser detection order. The FSC configurations were concatenated with PIC-2D structure and evaluated. The simulation results show considerable improvement relative to the conventional RAKE-2D and PIC-2D receiver. A performance close to the single user RAKE case was a achieved when it (FSC) was evaluated jointly with PIC-2D. All the configurations with modulation QPSK, 8-PSK and 16-QAM were evaluated. Turbo Codes were introduced and it was identified the situations which it is advantageous to use the FSC before the PIC-2D. The 8-PSK and 16-QAM modulations were equally tested with coding

    Use of RNS Based Pseudo Noise Sequence in DS-CDMA and 3G WCDMA

    Get PDF
    Code Division Multiple Access (CDMA) based on Spread Signal (SS) has emerged as one of the most important multiple access technologies for Second Generation (2G) and Third Generation (3G) wireless communication systems by its wide applications in many important mobile cellular standards. CDMA technique relies on spreading codes to separate dierent users or channels and its properties will govern the performance of the system. So many of the problems of communication systems based on CDMA technology stem from the spreading codes/sequences, which includes two sub-categories, one being the orthogonal codes, such as Walsh Hadamard (WH) codes and Orthogonal Variable Spreading Factor (OVSF) codes, and the other being pseudo-noise or Pseudo Random (PN) sequences, such as Gold sequences, Kasami sequences, m-sequences, etc. In this thesis a PN sequence generation based on Residue Arithmetic is investigated with an eort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. This interference-limited performance is due to the fact that all the existing CDMA codes used in mobile cellular standards does not consider external interferences, multipath propagation, Doppler eect etc. So the non-ideal correlation properties of the pseudo-random CDMA codes results in MAI when used in a multi-user system. The PN codes appear random yet they are completely deterministic in nature with a small set of initial conditions. Consequently this work focuses on CDMA code design approach based on Residue Number System (RNS) which should take into account as many real operational conditions as possible and to maintain a suciently large code set size.First, the thesis reviews RNS, DS-CDMA and CDMA codes that are already implemented in various mobile cellular standards. Then the new PN Sequencegenerator design based on RNS is discussed. Comparison of the generated PN sequence with respect to other standard sequence is done in terms of number of codes and correlation properties. Monte-Carlo simulations with the generated sequence are carried out for performance analysis under multi-path environment. The system has been evaluated in AWGN, Rayleigh Fading channel and dierent Stationary Multipath Channels for dierent cross-correlation threshold. It is known that orthogonal Codes are used to multiplex more than one signal for downlink transmission over cellular networks. This downlink transmission is prone to self interference caused by the loss of orthogonality between spreading codes due to multipath propagation. This issue is investigated in detail with respect to WCDMA standards, which is very good representative for CDMA based 3G mobile cellular systems where the channelization code is OVSF code. The code assignment blocking (CAB) (If a particular code in the tree is used in a cell, then all its parent codes and child codes should not be used in the same cell to maintain orthogonality among the users) problem of OVSF codes restricts the number of available codes for a given cell. Since the 3rd generation WCDMA mobile communication systems apply the same multiple access technique, the generated sequence can also be the channelization code for downlink WCDMA system to mitigate the the same. The performance of the system is compared with Walsh Hadamard code over multipath AWGN and dierent Fading channels. This thesis work shows that RNS based PN sequence has enhanced performance to that of other CDMA codes by comparing the bit error probability in multi- user and multipath environment thus contributing a little towards the evolution of next generation CDMA technology

    Extension and practical evaluation of the spatial modulation concept

    Get PDF
    The spatial modulation (SM) concept combines, in a novel fashion, digital modulation and multiple antenna transmission for low complexity and spectrally efficient data transmission. The idea considers the transmit antenna array as a spatial constellation diagram with the transmit antennas as the constellation points. To this extent, SM maps a sequence of bits onto a signal constellation point and onto a spatial constellation point. The information is conveyed by detecting the transmitting antenna (the spatial constellation point) in addition to the signal constellation point. In this manner, inter-channel interference is avoided entirely since transmission is restricted to a single antenna at any transmission instance. However, encoding binary information in the spatial domain means that the number of transmit antennas must be a power of two. To address this constraint, fractional bit encoded spatial modulation (FBE—SM) is proposed. FBE–SMuses the theory of modulus conversion to facilitate fractional bit rates over time. In particular, it allows each transmitter to use an arbitrary number of transmit antennas. Furthermore, the application of SM in a multi-user, interference limited scenario has never been considered. To this extent, the average bit error rate (ABER) of SM is characterised in the interference limited scenario. The ABER performance is first analysed for the interference-unaware detector. An interference-aware detector is then proposed and compared with the cost and complexity equivalent detector for a single–input multiple–output (SIMO) system. The application of SM with an interference-aware detector results in coding gains for the system. Another area of interest involves using SM for relaying systems. The aptitude of SM to replace or supplement traditional relaying networks is analysed and its performance is compared with present solutions. The application of SM to a fixed relaying system, termed dual-hop spatial modulation (Dh-SM), is shown to have an advantage in terms of the source to destination ABER when compared to the classical decode and forward (DF) relaying scheme. In addition, the application of SM to a relaying system employing distributed relaying nodes is considered and its performance relative to Dh-SM is presented. While significant theoretical work has been done in analysing the performance of SM, the implementation of SM in a practical system has never been shown. In this thesis, the performance evaluation of SM in a practical testbed scenario is presented for the first time. To this extent, the empirical results validate the theoretical work presented in the literature

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Spatial modulation: theory to practice

    Get PDF
    Spatial modulation (SM) is a transmission technique proposed for multiple–input multiple– output (MIMO) systems, where only one transmit antenna is active at a time, offering an increase in the spectral efficiency equal to the base–two logarithm of the number of transmit antennas. The activation of only one antenna at each time instance enhances the average bit error ratio (ABER) as inter–channel interference (ICI) is avoided, and reduces hardware complexity, algorithmic complexity and power consumption. Thus, SM is an ideal candidate for large scale MIMO (tens and hundreds of antennas). The analytical ABER performance of SM is studied and different frameworks are proposed in other works. However, these frameworks have various limitations. Therefore, a closed–form analytical bound for the ABER performance of SM over correlated and uncorrelated, Rayleigh, Rician and Nakagami–m channels is proposed in this work. Furthermore, in spite of the low–complexity implementation of SM, there is still potential for further reductions, by limiting the number of possible combinations by exploiting the sphere decoder (SD) principle. However, existing SD algorithms do not consider the basic and fundamental principle of SM, that at any given time, only one antenna is active. Therefore, two modified SD algorithms tailored to SM are proposed. It is shown that the proposed sphere decoder algorithms offer an optimal performance, with a significant reduction of the computational complexity. Finally, the logarithmic increase in spectral efficiency offered by SM and the requirement that the number of antennas must be a power of two would require a large number of antennas. To overcome this limitation, two new MIMO modulation systems generalised spatial modulation (GNSM) and variable generalised spatial modulation (VGSM) are proposed, where the same symbol is transmitted simultaneously from more than one transmit antenna at a time. Transmitting the same data symbol from more than one antenna reduces the number of transmit antennas needed and retains the key advantages of SM. In initial development simple channel models can be used, however, as the system develops it should be tested on more realistic channels, which include the interactions between the environment and antennas. Therefore, a full analysis of the ABER performance of SM over urban channel measurements is carried out. The results using the urban measured channels confirm the theoretical work done in the field of SM. Finally, for the first time, the performance of SM is tested in a practical testbed, whereby the SM principle is validated

    Diseño de estrategias de sincronización y estimación de canal para la mejora de comunicaciones en redes inteligentes de energía

    Get PDF
    La presente tesis contribuye en el desarrollo de estrategias eficientes de sincronización y estimación de canal para sistemas de comunicaciones por la red eléctrica (Power-Line Communications – PLC), que utilizan modulación multiportadora por división de frecuencias ortogonales (Orthogonal Frequency Division Multiplexing – OFDM). El principal objetivo es disminuir la complejidad asociada respecto a variantes existentes en la literatura, y a su vez mantener un desempeño competitivo. Para ello, se realiza el diseño de un símbolo piloto construido a partir de pares de secuencias complementarias y se definen algoritmos de sincronización y estimación de canal. Se analizan las técnicas de sincronización gruesa por Autocorrelación (AC) y Correlación Cruzada (CC) en sistemas PLC, y se define un algoritmo de sincronización fina y estimación de canal a partir de la reutilización de la CC. La propuesta se evalúa por simulaciones estudiando el efecto en cada etapa de: el canal PLC, el ruido de fondo coloreado y las diversas fuentes de ruido impulsivo. Adicionalmente, se determina la degradación en el desempeño de cada etapa y se proponen soluciones en un escenario con restricción en la cantidad de subportadoras habilitadas para la transmisión del símbolo piloto, al aplicar una máscara espectral de compatibilidad electromagnética.Universidad Nacional de La PlataUniversidad de Alcal
    corecore