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Abstract

“ The educated man sees with both heart and mind: the ignoramus

sees only with his eyes......” (Ali Bin Aby-Talib (r.a) )

Spatial modulation (SM) is a transmission technique proposed for multiple–input multiple–

output (MIMO) systems, where only one transmit antenna is active at a time, offering an in-

crease in the spectral efficiency equal to the base–two logarithm of the number of transmit

antennas. The activation of only one antenna at each time instance enhances the average bit

error ratio (ABER) as inter–channel interference (ICI) is avoided, and reduces hardware com-

plexity, algorithmic complexity and power consumption. Thus, SM is an ideal candidate for

large scale MIMO (tens and hundreds of antennas). The analytical ABER performance of SM

is studied and different frameworks are proposed in other works. However, these frameworks

have various limitations. Therefore, a closed–form analytical bound for the ABER performance

of SM over correlated and uncorrelated, Rayleigh, Rician and Nakagami–m channels is pro-

posed in this work. Furthermore, in spite of the low–complexity implementation of SM, there

is still potential for further reductions, by limiting the number of possible combinations by ex-

ploiting the sphere decoder (SD) principle. However, existing SD algorithms do not consider

the basic and fundamental principle of SM, that at any given time, only one antenna is active.

Therefore, two modified SD algorithms tailored to SM are proposed. It is shown that the pro-

posed sphere decoder algorithms offer an optimal performance, with a significant reduction of

the computational complexity. Finally, the logarithmic increase in spectral efficiency offered

by SM and the requirement that the number of antennas must be a power of two would require

a large number of antennas. To overcome this limitation, two new MIMO modulation systems

generalised spatial modulation (GNSM) and variable generalised spatial modulation (VGSM)

are proposed, where the same symbol is transmitted simultaneously from more than one trans-

mit antenna at a time. Transmitting the same data symbol from more than one antenna reduces

the number of transmit antennas needed and retains the key advantages of SM.

In initial development simple channel models can be used, however, as the system develops it

should be tested on more realistic channels, which include the interactions between the envi-

ronment and antennas. Therefore, a full analysis of the ABER performance of SM over urban

channel measurements is carried out. The results using the urban measured channels confirm

the theoretical work done in the field of SM. Finally, for the first time, the performance of SM

is tested in a practical testbed, whereby the SM principle is validated.
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Introduction

1.1 Introduction, Motivations and Contributions

Multiple–input multiple–output (MIMO) systems offer a significant increase in spectral ef-

ficiency in comparison to single antenna systems [1]. An example is spatial multiplexing

(SMX) [2], which transmits simultaneously over all the transmit antennas. This method achieves

a spectral efficiency that increases linearly with the number of transmit antennas. However, with

the exponential increase in wireless data traffic, a large number of transmit antennas (large scale

MIMO) should be used [3]. Large scale MIMO systems studied in [4, 5, 6, 7, 8], offer a higher

data rate and better average bit error ratio (ABER). However, this comes with the expense of

an increase in:

1. Computational complexity, where SMX–maximum–likelihood (ML) optimum receiver

searches across all possible combinations, and tries to resolve the inter–channel interference

(ICI), caused by transmitting from all antennas simultaneously on the same frequency.

The sphere decoder (SD) is proposed to reduce the complexity of the SMX–ML while

retaining a near optimum performance [9, 10, 11]. The SD reduces the complexity of the

ML decoder by limiting the number of possible combinations. Only those combinations

that lie within a sphere centred at the received signal are considered. However, even

though SMX–SD offers a large reduction in complexity compared to SMX–ML, it still

has a high complexity as it does not avoid ICI.

2. Hardware complexity: In SMX the number of radio frequency (RF) chains is equal to

the number of transmit antennas. From [12], RF chains are circuits that do not follow

Moore’s law in progressive improvement. Therefore, increasing the number of transmit

antennas and consequently the number of RF chains increases significantly the cost of

real system implementation [13].

3. Energy consumption: RF chains contain Power Amplifiers (PAs) which are responsible

for 50–80% of the total power consumption in the transmitter [14]. Therefore, increasing

the number of RF chains results in a decrease in the energy efficiency [13].

Thus, SMXmay not always be feasible and a more energy efficient and low complexity solution

should be considered.

Spatial modulation (SM) is a transmission technology proposed for MIMO wireless systems.

It aims to increase the spectral efficiency, of single–antenna systems while avoiding ICI [15].
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This is attained through the adoption of a new modulation and coding scheme, which fore-

sees: i) the activation, at each time instance, of a single antenna that transmits a given data

symbol (constellation symbol), and ii) the exploitation of the spatial position (index) of the ac-

tive antenna as an additional dimension for data transmission (spatial symbol) [16]. Both the

constellation symbol and the spatial symbol depend on the incoming data bits. An overall in-

crease by the base–two logarithm of the number of transmit–antennas of the spectral efficiency

is achieved. Note that the number of transmit antennas must be a power of two. The receiver

applies the Maximum Likelihood optimum decoder for SM (SM–ML), which performs an ex-

haustive search over the whole constellation symbol and spatial symbol space [17]. Activating

only one antenna at a time means that only one radio frequency (RF) chain is needed, which

significantly reduces the hardware system [18]. Moreover, as only one RF chain is needed, SM

offers a reduction in the energy consumption which scales linearly with the number of trans-

mit antennas [13, 19]. Furthermore, the computational complexity of SM–ML is equal to the

complexity of single–input multiple–ouput (SIMO) systems, i.e. the complexity of SM–ML

depends only on the spectral efficiency and the number of receive antennas, and does not de-

pend on the number of transmit antennas. Accordingly, SM appears to be a good candidate for

large scale MIMO [20, 21, 22, 23].

The analytical ABER performance of SM over different fading channels has been studied by

many researchers. The analytical ABER performance of SM over Rayleigh fading channels is

studied in [16,17,24]. In [16], the authors studied a suboptimal receiver design, and the symbol

error probability is computed by resorting to numerical integrations, which are not easy to

compute [20]. In [17], the analytical ABER performance of the ML receiver for SM is studied,

and an analytical upper bound is derived. However, from [25], the bound is rather weak. The

first closed form upper bound for the ABER performance of SM over Rayleigh channels is

proposed in [24]. However, it is only applicable for 1) Rayleigh fading, 2) channels with

correlation on the transmitter side only.

The authors in [20] studied the analytical ABER performance of SM over correlated Rician

channels, however, the proposed upper bounds are complicated and not easy to compute. Fur-

thermore, the work in [16] is extended to Nakagami–m fading channels in [26, 27], how-

ever, 1) it is for suboptimal receivers. 2) it is semi–analytical. 3) correlation is taking

into account only for the detection of the constellation symbol [28]. Moreover, the authors

in [20, 29, 30], studied the analytical ABER performance of SM over correlated and uncor-

related Nakagami–m fading channels using ML optimal receiver. The authors assumed that
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the phase of the Nakagami–m fading channel is a uniformly distributed random variable (RV).

However, in [31, 32, 33], it is shown that apart from the very special case of m = 1, where

Nakagami–m fading corresponds to a Rayleigh fading, the phase of Nakagami–m distribution

is not uniform. Hence, the bounds stated in [20, 29, 30] will not hold strictly.

Thus, to the best of the authors’ knowledge, there is no tight closed form model for the ABER

performance of SM over correlated and uncorrelated generalised fading channels. In this work,

a tight closed form bound to compute the ABER for SM over correlated and uncorrelated gen-

eralised fading channels is provided. Comparing the framework with Monte Carlo simulations

and state–of–the–art literature, it is shown that the new bound:

1. offers an accurate estimation of the ABER;

2. provides an easy–to-calculate closed–form upper bound;

3. is applicable for correlated Rayleigh, Rician and Nakagami–m channels.

Furthermore, the performance of SM is compared with the performance of SMX. It is shown

that SM offers nearly the same or slightly better ABER performance than SMX for small scale

MIMO. However, SM offers a larger reduction in ABER for large scale MIMO. Moreover, the

computational complexity of SM–ML is studied and it is shown that it is equal to the complexity

of single–antenna systems. This means that the complexity of SM–ML neither depends on

the number of transmit antennas, nor the signal constellation size. Therefore SM is a good

candidate for large scale MIMO.

In spite of the low–complexity implementation of SM, there is still potential for further reduc-

tions, by limiting the number of possible transmitted spatial symbol and constellation symbol

combinations using the SD principle. However, existing SD algorithms in the literature do not

consider the basic and fundamental principle of SM, that at any given time only one antenna is

active [9, 10, 11]. Therefore, they cannot be applied to SM, and two modified SD algorithms

based on the tree search structure that are tailored to SM are proposed. The first SD is called

Receiver–centric SD (Rx–SD). It aims at reducing the complexity from combining the received

signal by each receive antenna at the receiver, as long as the Euclidean distance from the re-

ceived point is less than a given radius. This SD–based detector is especially suitable when the

number of receive–antennas is very large. It reduces the size of the search space related to the

multiple antennas at the receiver (this search space is denoted by “receive search space”). It

will be shown later that there is no loss in either the diversity order or the coding gain, i.e. the
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ABER is very close to that of the ML detector. However, its main limitation is that it does not

reduce the search space related to the number of possible transmitted points (this search space

is denoted by “transmit search space”). This prevents the detector from achieving a significant

reduction in computational complexity when a high data rate is required.

The second SD is called Transmit–centric (Tx–SD). The Tx–SD algorithm aims at reducing

the transmit search space, by examining only those spatial symbol and constellation symbol

combinations that lie inside a sphere with a given radius. However, it is limited to the non–

underdetermined MIMO setup (Nt ≤ Nr), where Nt and Nr are the number of transit and

receiver antennas respectively. In [34, 35], it is shown that Tx–SD in [36] can still be used for

the case of (2Nr − 1) ≥ Nt > Nr, where it is referred to as E–Tx–SD. Moreover, in [34, 35]

a detector for the case of Nt > Nr referred to as G–Tx–SD is proposed. By using the division

algorithm the G–Tx–SD technique [34]: 1) Divides the set of possible antennas to a number

of subsets. 2) Performs E–Tx–SD over each subset. 3) Takes the minimum solution of all

the sets. However, a simple solution is proposed in this thesis, where all that is needed is to

set a constant ϕ to 0 for Nt ≤ Nr and ϕ = σ2
n for Nt > Nr, where σ2

n is the noise variance.

In [34, 35], the normalised expected number of nodes visited by the Tx–SD algorithm is used

to compare its complexity with the complexity of the SM–ML. This does not take into account

the pre–computations needed by the Tx–SD. In this work, when comparing the complexity of

Tx–SD with the complexity of SM–ML and Rx–SD, the pre–computations needed by the Tx–

SD are taken into account. Because of those pre–computations, the Tx-SD is not always the

best solution, whereas in some cases it is even more complex than SM–ML.

In this work, a careful study of the performance of these two detectors, along with an accurate

comparison of their computational complexity is provided. Numerical results show that the

proposed solutions provide a substantial reduction in computational complexity with respect

to the SM–ML decoder, and no loss in the ABER performance. A closed form expression for

the ABER performance of SM–SD is derived, where it is shown that by using it, the initial

radius can be chosen such that SM–SD gives an optimal performance. Furthermore, it is shown

that SM–Rx is less complex than SM–Tx for lower spectral efficiencies, while SM–Tx is the

best solution for higher spectral efficiencies. Finally, numerical results show that SM with SD

offers a significant reduction and nearly the same performance when compared to SMX with

ML decoder or SD.

The logarithmic increase in spectral efficiency offered by SM and the requirement that the num-

ber of antennas must be a power of two would require a large number of antennas. Fractional
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bit encoding spatial modulation (FBE–SM) in [37], is proposed to overcome this limitation by

using the theory of modulus conversion. By doing so an arbitrary number of transmit antennas

can be used. However, FBE–SM suffers from error propagation. Motivated by that, two new

MIMO modulation systems, generalised spatial modulation (GNSM) and variable generalised

spatial modulation (VGSM), are proposed in this thesis to overcome the limitation in the num-

ber of transmit antennas. In GNSM and VGSM the same symbol is transmitted simultaneously

from more than one transmit antenna. Hence, more than one antenna is active and transmits the

same symbol at a time. GNSM is first proposed in [38] and in [39], where in [38], GNSM with

ML–optimum receiver is proposed, and in [39], GNSM with maximal ratio combining (MRC)

sub–optimal receiver is proposed. In GNSM the number of active antennas is constant. How-

ever, in VGSM the number of active antennas varies from only one active antenna at a time

to all antennas being active and transmitting the same symbol. As a result, the number of

transmit antennas required by GNSM and VGSM to achieve a certain spectral efficiency and a

constellation size is reduced. For example, for a spectral efficiency of η = 4 and binary phase

shift keying (BPSK) modulations, GNSM and VGSM reduces the number of transmit anten-

nas needed by SM, by (37%) and (50%) respectively. The mapping procedure for GNSM and

VGSM after grouping the incoming data sequence in groups of η bits, can be summarised in

two points:

1) The first ηℓ bits determine which antenna combination to activate.

2) The last ηs bits are modulated and transmitted through the active antennas.

Transmitting the same data symbol from the active antennas retains the key advantage of SM,

which is the complete avoidance of ICI at the receiver, and consequently keeps the low compu-

tational complexity, which is equal to the complexity of SIMO systems. At the receiver three

decoders are proposed. The first one is the ML–optimum receiver. The other two SDs are Tx–

SD and Rx–SD proposed for SM where in this thesis they are extended to be used for GNSM

and VGSM.

In this thesis, a careful study of the performance of both systems, GNSM and VGSM, using the

three proposed detectors, along with an accurate comparison of their computational complexity

is provided. Moreover, a tight closed form expression for the ABER performance of GNSM

and VGSM, over correlated and uncorrelated Rayleigh and Rician fading channels is derived.

Results show that the proposed schemes, VGSM and GNSM, use a much smaller number of

antennas than SM and have significantly lower computational complexity than SMX, while
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having a small penalty in the ABER performance. More specifically, VGSM and GNSM reduce

the number of transmit antennas by up to (93%) when compared to SM. Furthermore, VGSM

and GNSM reduce the computational complexity by at least (40%) when compared to SMX,

while having an ABER penalty between 1.5− 4 dB. Therefore, the proposed schemes are good

candidates for low hardware and computational complexity MIMO solutions.

In this thesis, for the first time real-world channel measurements are used to analyse the per-

formance of SM, where a full analysis of the ABER of SM using measured urban correlated

and uncorrelated Rayleigh fading channels is provided. The channel measurements are taken

from an outdoor urban MIMO measurement campaign. Moreover, an analytical bound for the

ABER of SM is derived and performance results using simulated Rayleigh fading channels are

provided. It is shown that the results over the measured urban channels validate the derived an-

alytical bound and the results over the simulated channels. The ABER of SM is compared with

the performance of SMX using the measured urban channels for small and large scale MIMO.

It is shown that SM offers nearly the same or a slightly better performance than SMX for small

scale MIMO. However, SM offers large reduction in ABER for large scale MIMO.

Furthermore, for the first time in the world, the performance of SM is tested on a practical

testbed and compared with that for SMX, where National Instruments (NI) testbeds are used.

In particular, NI–PXIe–1075 chassis for transmitter and receiver side are used [40]. The design

of the testbed, hardware and software, is explained in detail along with the transmission chain.

The effect of the physical environment on the channel coefficients is studied, where it is shown

that the effects can be modelled as a power imbalance (PI) between the various link pairs in

the channel. Moreover, an analytical upper bound for the ABER performance of SM over

Rician channels with PI is derived, and compared to the experimental and computer simulation

results, where the experimental results validate the analytical bound as well as the computer

simulations. Finally the performance of SM is compared with the theoretical and experimental

results of SMX.
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1.2 Thesis layout

The layout of the thesis can be summarised as follows:

Chapter 2 In this chapter, the key concepts in relation to wireless communications and SM

are summarised. The chapter starts with an overview of the history of wireless

communications, then introduced MIMO communication systems. In particular, the

different types of MIMO transmission systems and channel environments are dis-

cussed, along with small–scale propagation models. Furthermore, the idea of SMX,

and its advantages and disadvantages is reviewed. After that SM is proposed, and its

advantages compared to SMX, along with its limitations, are discussed. Finally, an

overview of the latest research in SM is presented.

Chapter 3 In this chapter, an accurate closed–form framework to compute the ABER for SM

over correlated and uncorrelated generalised fading channels is provided. Further-

more, the performance of SM is compared with the performance of SMX. It is

shown that SM offers nearly the same or slightly better performance than SMX for

small scale MIMO. However, SM offers a larger reduction in ABER for large scale

MIMO. Finally, the computational complexity of SM–ML is studied and it is shown

that it is equal to the complexity of SIMO systems.

Chapter 4 In this chapter, SD algorithms for SM are developed to reduce the computational

complexity of ML detectors. Two SDs specifically designed for SM are proposed

and analysed in terms of ABER and computational complexity. Using Monte Carlo

simulations and mathematical analysis, it is shown that by carefully choosing the

initial radius the proposed SD algorithms offer the same ABER as ML detection,

with a significant reduction of the computational complexity. A tight closed form

expression for the ABER performance of SM–SD is derived, along with an algo-

rithm for choosing the initial radius which provides optimum performance. Also,

it is shown that none of the proposed SDs is always superior to the others, but the

best SD to use depends on the target spectral efficiency. Finally, the performance

of SM–SDs are compared to SMX, applying ML decoder and applying SD. It is

shown that for the same spectral efficiency, SM–SD offers up to 84% reduction in

complexity compared to SMX–SD, with up to 1 dB better ABER performance than

SMX–ML decoder.
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Chapter 5 In this chapter, GNSM and VGSM along with three receivers are presented. The

first receiver is based on ML principle, and the last two receivers, Tx–SD and Rx–

SD, are based on the SM–SD principle presented in Chapter 4. The performance of

GNSM and VGSM is analysed, and a tight bound on the ABER performance over

correlated and uncorrelated Rayleigh and Rician channels is derived. Furthermore,

the performance of GNSM and VGSM is validated through Monte Carlo simula-

tions and compared to the performance of SM and SMX, where it is shown that the

proposed schemes, GNSM and VGSM, use a much smaller number of transmit an-

tennas than SM and have a significantly lower computational complexity than SMX,

while having a small penalty in the ABER performance.

Chapter 6 In this chapter, for the first time real-world channel measurements are used to anal-

yse the performance of SM, where a full analysis of the ABER of SM using mea-

sured urban correlated and uncorrelated Rayleigh fading channels is provided. The

channel measurements are taken from an outdoor urban MIMO measurement cam-

paign. Moreover, performance results using simulated Rayleigh fading channels are

provided and compared with the analytical bound for the ABER of SM, and the

ABER results using the measured urban channels. It is shown that the results using

the measured urban channels validate the derived analytical bound and the ABER

results using the simulated channels. Finally, the ABER of SM is compared with

the performance of SMX using the measured urban channels for small and large

scale MIMO. It is shown that SM offers nearly the same or a slightly better perfor-

mance than SMX for small scale MIMO. However, SM offers a large reduction in

the ABER performance for large scale MIMO.

Chapter 7 In this chapter, for the first time in the world the performance of SM is tested on a

practical system, where NI testbeds are used. In particular, NI–PXIe–1075 chassis

for transmitter and receiver side are used. The design of the testbed, hardware and

software, is explained in details along with the transmission chain. The effect of the

physical environment on the channel coefficients is studied, where it is shown that

it can be modelled as a PI between the various link pairs in the channel. Moreover,

computer simulation results are provided and compared with the analytical ABER

upper bound, and the experimental results. The experimental results validate the

analytical bound as well as the computer simulations.

Chapter 8 This chapter contains the conclusion for the above chapters, a discussion of the

limitations and directions for potential future research.
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2.1 History of Wireless Communications

The development of wireless communications began in 1820 after Oersted demonstrated that

an electric current produces a magnetic field. After that, in 1831, Michael Faraday showed that

a changing magnetic field produces an electric field. From that James Clerk Maxwell in 1864

predicted the existence of electromagnetic radiation and formulated the basic theory of elec-

tromagnetics, which formed the basis of wireless technology [41]. Later on, in 1887, Heinrich

Hertz verified Maxwell’s theory experimentally. Oliver Lodge in 1894 invented the coherer.

The coherer is a sensitive device that detect radio signals. It was used to demonstrate wireless

communication at a 150 yards distance. However, it was not until Guglielmo Marconi in 1895,

that the first radio signal transmission was demonstrated at a distance of approximately 2 km.

Later, in 1897, Marconi patented a radio telegraph system and founded the Wireless Telegraph

and Signal Company [42,43]. Morse–coded ON–OFF keying was used in mobile radio commu-

nications until the 1920s [44]. They were first installed and used in transatlantic ocean vessels

to send distress calls, and were even used on the well-known Titanic [45]. On the 7th of April

1928 the Detroit Police Department installed the first one–way radio communication system,

developed by the department’s radio bureau, in its patrol cars [46], while in 1933 the police de-

partment in Bayonne, New Jersey, introduced the first two–way mobile radio voice system [47].

In 1948, Calude E. Shannon characterised the limits of reliable communications [48]. Shannon

showed that there is a maximum data rate, called channel capacity, for which the error proba-

bility is zero, i.e. for zero error probability, the data rate has to be lower or equal to the channel

capacity [49, 50]. Thus, higher data rates require either more bandwidth or greater signal to

noise ratio (SNR) [51]. Since then, wireless systems have been in rapid development to cope

with the demand for indoor wireless access to bandwidth–intensive applications such as the

Internet, multimedia streaming applications (voice over internet protocol (VoIP)), gaming, and

network attached storage (NAS) [52, 53, 54].

The Swedish Mobile Telephone System Administration (Telia, formerly Televerket) was one

of the early European mobile communication companies. They put the MTA system created

by Ericsson in operation on April 25, 1956. The MTA was a fully automatic, 160 MHz band

mobile system using pulsed signalling between the terminal and base station. In 1965, it was

upgraded to MTB, where it used dual–tone multi–frequency signalling [55]. In 1966, the first

land mobile network in Norway, Offentlig Landmobil Telefoni (OLT), was established, and

operated until 1990. In 1981, the OLT was the largest land mobile network in the world with

30,000 mobile subscribers.
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First generation (1G) cellular mobile systems were all based on analog frequency modula-

tion. The first fully automatic 1G cellular phone system was nordic mobile phone (NMP), in

1981 [55]. Shortly afterwards, Bell Laboratories invented advance mobile telephone systems

(AMPS), where the first commercial AMPS was turned on in Chicago in October 1986 [56,57].

Other early 1G standards are total access communication system (TACS) in United Kingdom,

and Nippon Mobile Telephone (NMT) in Japan. Digital second generation (2G) systems, like

those based on Global System for Mobile Communications in Europe [58], personal digital

cellular (PDC) in Japan, digital advanced mobile phone services (D–AMPS) in the United

States, replaced the analog 1G systems, where they enabled improved voice communication,

text messaging and access to data networks to go wireless in many of the leading markets [59].

The success of these systems led many researchers to concentrate on improving the perfor-

mance of wireless communications [60, 61, 62].

The development of the third generation (3G) mobile systems such as universal mobile tele-

phone system (UMTS) and multicarrier CDMA2000 (CDMA2000) [63, 64], along with other

wireless systems like general packet radio service (GPRS) and wireless fidelity (WiFi), started

after the world administrative radio conference (WARC) of the international telecommunica-

tions union (ITU), at its 1992 meeting, identifying the frequencies around 2 GHz that were

available for use by future third generation mobile systems. The term 3G was set by the radio

communications sector of ITU (ITU–R) through the international mobile telecommunications

2000 project (IMT–2000). Simple requirements for IMT–2000 were defined in 1997 [65]:

i) 2048 kbps for indoor office. ii) 384 kbps for outdoor to indoor and pedestrian. iii) 144 kbps

for vehicular. iv) 9.6 kbps for satellite. Early 3G systems could not cope at the start with

these requirements in practical systems, even though they did in theory [65]. Therefore, re-

searchers focused their efforts on methods to improve the deployed system to cope with the

(a) One–way [46] (b) Two–way [47]

Figure 2.1: First one-way and two–way police radio communications.
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Figure 2.2: Cisco’s forecast for the global demand of mobile data per month [73]

IMT–2000 requirements and even beyond that. The addition of high speed downlink packet

access (HSDPA), enhanced dedicated channel (E–DCH), and high speed uplink packet access

(HSUPA) to UMTS introduced 3.5G. Furthermore, the term 3.9G has been widely used to

describe IEEE 802.16e standard (Mobile WiMAX), and third generation partnership project

(3GPP)’s long term evolution (LTE) [65].

The demand for high data rate and quality of service (QoS) increased due to the convergence

of digital wireless networks with the internet, where (as shown in Fig. 2.2) the global de-

mand for data has more than quadrupled since 2011, and it is expected to grow even more.

In response to that, the ITU–R initiated fourth generation (4G) mobile systems. As well as

that, in 2008, the ITU–R set new requirements for mobile systems named international mobile

telecommunications–advanced (IMT–Advanced), where peak data rates of up to 100 Mbps for

high mobility and 1 Gbps for low mobility were set to support advanced mobile services and

applications [66]. In 2009, six proposals were submitted for IMT–Advanced [67,68], where all

proposals were based on : LTE Advanced by 3GPP [69], and IEEE 802.16m (WiMAX 2) [70].

However, with limited spectrum resources, 4G technologies are expected to make extensive

use of multiple–input multiple–output (MIMO) techniques [71], to achieve the minimum target

spectral efficiency by the ITU–R [66, 72].

LTE gets its name from the fact that the enhancements are being designed to be competitive

for the next decade. In keeping with this, the spectral efficiency targets specified in [74] are

5 bps/Hz in the downlink (DL) and 2.5 bps/Hz in the uplink (UL) For a 20 MHz bandwidth,
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this translates to a peak data rate of 100 Mbps and 50 Mbps in the DL and UL respectively,

easily rivaling state–of–the–art home broadband speeds. Using orthogonal frequency division

multiplexing (OFDM) as a key enabling technology LTE can operate in a wide range of fre-

quency bands and size of spectrum allocations. Therefore, LTE can use spectrum allocations

ranging from 1.4 to 20 MHz. Furthermore, LTE systems are envisaged to work seamlessly

in either the time division duplex (TDD) or frequency division duplex (FDD) mode, ensuring

the implementation of multi–mode user equipment (UE) and making global roaming a true

possibility [75, 76].

Using forward error correction (FEC) coding made it possible for single antenna systems to ap-

proach Shannon’s capacity limit [77, 78, 79]. However, with the demand for high–rate wireless

communications, the capacity limit has to be further extended [80, 81]. Fortunately this can be

done by the aid of multiple antenna systems [44]. MIMO systems offer a significant increase

in spectral efficiency in comparison to single antenna systems [1]. The idea of MIMO systems

dates back to 1970, when A.R. Kaye and D.A. George showed that the optimum receiver for

pulse amplitude modulation (PAM) signals transmitted over signal antenna systems [82,83,84],

can be extended to multiple antenna systems [85]. Since then, researchers focused their efforts

on finding methods that increase the spectral efficiency, while retaining an optimal average bit

error ratio (ABER) performance, and low hardware and software complexity.

2.2 MIMO Communication Systems

In MIMO systems, as shown in Fig. 2.3, the modulated Nt–dimensional vector x is transmit-

ted from all Nt transmit antennas through Nr × Nt wireless channel with a transfer function

H, where Nr is the number of receive antennas. At the receiver, each received signal is con-

structed from the faded versions of the transmitted signal by using superposition. Thus, the

Nr–dimensional receive vector can be written as follows,

y = Hx + n (2.1)

where n is the Nr–dimensional additive white Gaussian noise (AWGN).
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Figure 2.3: The MIMO system setup [86].

2.2.1 MIMO Transmission Systems

MIMO transmission systems can be categorised as:

2.2.1.1 Colocated MIMO Systems

Colocated MIMO systems are MIMO systems where the multiple antennas are located at the

same transmitter or receiver node. Colocated MIMO systems can be categorised as:

1. Diversity Techniques [87, 88]:

Diversity techniques overcome the poor QoS caused by the fading channel attenuating

the signal. This is done by creating independent fading replicas of the same transmit-

ted signal in time, frequency, or spatial domain and both at the transmitter and the re-

ceiver [44].

MIMO diversity techniques can be categorised into:

(a) Transmit Diversity: Transmit diversity is achieved by transmitting copies of the

same data symbol over multiple transmit antennas [89].

(b) Receiver Diversity: Receiver diversity is attained simply and without any loss of

bandwidth, by having multiple antennas at the receiver [90].

(c) Time Diversity: Time diversity can be achieved by transmitting the same data sym-

bol multiple times, or by assigning redundant bits to the original data bits where

they are transmitted at different time instances [78]
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(d) Frequency Diversity: Frequency diversity can be achieved by sending the same data

symbol at different time instants using different transmit frequencies [77].

(e) Space–time coding (STC) : In STC systems diversity is achieved by transmitting the

same data from different transmit antennas and different time instances [87].

Table 2.1 summarise the different diversity types and gives examples for each type.

Diversity Type Diversity Technique

Transmit Diversity
Basestation modulation diversity [91]

Alamouti scheme [87]

Receiver Diversity

Maximal ratio combining (MRC) [92]

Equal gain combining (EGC) [93]

Selection combining (SCM) [77]

Time Diversity FEC [78]

Frequency Diversity Frequency hopping [77]

Space–time coding

Space–time block coding (STBC) [88, 94, 95]

Space–time trellis coding (STTC) [96]

Quasi–orthogonal STBC [97]

Linear dispersion codes (LDC) [98]

Differential space–time coding schemes [99, 100, 101, 102]

Table 2.1: Summary of the different diversity types

2. Multiple Access Techniques:

Multiple access techniques are those techniques that enable multiple users to share lim-

ited network resources efficiently. Using multiple access the limited bandwidth offered

by the telecommunication network can be shared among multiple users fairly, so that

no single user spends all available resources [103, 104]. Examples of multiple access

techniques are, i) Time–division multiple access (TDMA), ii) frequency–division mul-

tiple access (FDMA), iii) code–division multiple access (CDMA), iv) space–division

multiple access (SDMA).

3. Beamforming Techniques:

The term beamforming refers to the process of combining signals from different ele-

ments, where the signals induced on different elements of an array are combined to form

a single output of the array. In other words, beamforming can be used to focus the re-

ceived beam pattern in the direction of a specified antenna [44, 105, 106, 107].

4. Spatial Multiplexing Techniques:

In spatial multiplexing (SMX) the source data sequence is divided into a number of

blocks equal to the number of transmit antennas, then transmitted simultaneously from
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all antennas using the same carrier frequency. Hence, the spectral efficiency increases

with the increase of the number of transmit antennas. At the receiver, different decoders

with trade–offs between the ABER performance and complexity were proposed. Ex-

ample of SMX decoders are, i) minimum mean squared error (MMSE) [108], ii) di-

agonal Bell labs layered space–time (D–BLAST) [2], iii) vertical Bell labs layered

space–time (V–BLAST) [109], iv) maximum–likelihood (ML) receiver [110], v) sphere

decoder (SD) [10, 11].

5. Space Modulation Techniques:

In space modulation at each time instance, only one transmit antenna is active at a time.

Thus, information bits can be encoded in: a) The index of the active antenna (spatial

symbol) [111]. b) The data symbol transmitted from the active antenna (constellation

symbol) [22,112]. Hence, the spectral efficiency increases by log2 (Nt) in comparison to

single–input single–output (SISO) systems, where Nt is the number of transmit antennas.

Examples of space modulation techniques are, i) spatial modulation (SM) which was first

introduced in [15, 16], ii) space shift keying (SSK) [18].

6. Multifunctional MIMO Techniques:

Multifunctional MIMO techniques are the result of combining different MIMO schemes.

Consequently, they can attain a combination of diversity gain, beamforming gain, mul-

tiplexing gain, and spatial gain. Examples for that are, i) combining SMX with STBC

to achieve full multiplexing gain while achieving full diversity gain as shown in [113],

ii) space–time block coding spatial modulation (STBC–SM), which is the result of comb-

ing SM with with STBC to achieve spatial and diversity gains [114,115], iii) combining

SM with beamforming to achieve spatial and beamforming gains [24].

2.2.1.2 Distributed MIMO Techniques

The basic idea of distributed MIMO, also referred to as cooperative MIMO, goes back to 1971,

when Van de Meulen introduced the classic relay channel [116], and the characterisation of the

relay channel by Cover and El Gamal [117]. Since then distributed MIMO has attracted much

attention [118,119]. In distributed MIMO the multiple antennas at the front end of the wireless

network are distributed among widely separated radio nodes, where each node has only one

antenna. The information is sent to the receiver from different nodes at different locations.

Hence, a high spatial diversity gain is achieved [120].
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2.2.2 MIMO Channel Environment

The propagation environment is the physical medium between the transmit and receive an-

tennas. It consists of every element that effects the propagation of the transmitted signal be-

tween the transmitter and the receiver. The propagation environment plays a dominant role

in determining the capacity of the MIMO channel. Therefore, modelling of MIMO wire-

less channels is of paramount importance and has attracted extensive research in the past few

years [121, 122, 123].

MIMO channels can be modelled in terms of separation distance between the transmitter and

the receiver,

• Large–scale propagation models: Models that are designed for MIMO systems with a

very large separation between the transmitter and the receiver, hundreds and thousands

of meters separation, are called large–scale propagation models [124].

• Small–scale propagation models: Models that are designed for MIMO systems with a

short separation between the transmitter and the receiver, are called small–scale propa-

gation models [124].

In this thesis, small–scale MIMO channels are considered.

2.2.3 Small–Scale Propagation Models

Small–scale fading models describe the rapid fluctuation of the amplitude of the transmitted

signal, which is caused by the interference between more than one copy of the transmitted

signal arriving at a slightly different times. These copies are called multipath. Multipath is

caused by the presence of reflectors, for example ground and surrounding structures, and has

several effects on small scale MIMO systems [125]: i) Rapid changes in signal strength.

ii) Random frequency modulation. iii) Time dispersion.

Small–scale fading models are influenced by many factors including,

• Multipath propagation: The multipath components are summed constructively and de-

structively at the receiver, and because of that the received signal might get distorted or

fade.
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• Speed of the mobile: The relative motion between the transmitter and the receiver causes

a shift in frequency to each multipath wave. This shift in frequency is called Doppler

shift.

• Speed of surrounding objects: The speed of the surrounding objects can vary the Doppler

shift in time.

• The transmission bandwidth of the signal: As it will be shown later, the bandwidth of

the transmitted signal determines if the signal is subject to fast or slow, flat or frequency

selective fading.

2.2.3.1 Parameters of Small–Scale Propagation Models

Small–scale propagation models have several parameters. Two of them are needed to determine

the type of the small–scale fading:

• Doppler Shift: The movement of the transmitter or receiver node results in a change in

the frequency of the received signal. This change is given by,

fD =
v

λ
cos θ (2.2)

where v is the velocity of the moving node, θ is the angle between the signal and the

direction of moving node, λ = c/fc is the wavelength, c is the speed of light, and fc is

the carrier frequency.

• Coherence Time: The coherence time is the time during which the channel impulse re-

sponse can be considered static, and it is the time domain dual of Doppler spread,

Tc =
1

fD
max (2.3)

where fmax
D = v/λ is the maximum Doppler shift.

• Coherence Bandwidth: It is the range of frequencies over which the channel can be

considered static.
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2.2.3.2 Types of Small–Scale Fading

Depending on the coherence time and the coherence bandwidth, the transmitted signal will pass

through one of four different types of small–scale fading channels [124]: i) Slow flat fading;

ii) fast flat fading; iii) slow frequency selective fading; iv) fast frequency selective fading.

Where,

• Slow fading: A channel is classified as slow fading when the coherence time is larger

than the symbol period, which means that the channel can be considered static during the

symbol period.

• Fast fading: A channel is a fast fading channel, when the coherence time is smaller than

the symbol period. In this case the channel varies within the symbol period.

• Flat fading: Flat fading channels are those channels with a coherence bandwidth larger

than the bandwidth of the transmitted signal. In the case of flat fading channels the

spectral components of the transmitted signal are preserved at the receiver.

• Frequency selective fading: Channels with a coherence time smaller than the bandwidth

of the transmitted signal are called frequency selective fading channels. In frequency

selective fading channels, different spectral components of the transmitted signal experi-

ence different fading gains.

For the rest of this thesis, slow flat fading MIMO channels are considered.

2.2.3.3 Slow Flat Fading MIMO Systems

Depending on the nature of the propagation environment, there are different models to describe

the behaviour of the MIMO channel. In this thesis, frequency–flat Nr × Nt MIMO fading

channels with a transfer function H are considered. In particular: Rayleigh Fading, Rician

fading, and Nakagami–m fading channels are considered, along with spatial correlation (SC).

• Rayleigh Fading

The Rayleigh distribution is often used to model non–line of sight (NLoS) channels,

where the received signal is visualised as a sum of independent vectors with uniformly
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distributed phases [126, 127]. Thus, the entries of H are modelled as complex, identical

and independently distributed (i.i.d.) Gaussian random variables with zero mean and unit

variance. Furthermore, the amplitude of the channel is distributed according to,

p(ϑ) = 2ϑe−ϑ2

(2.4)

where ϑ is the amplitude of the channel, and p(·) is the probability distribution function

(PDF).

• Rician Fading

The Rice distribution is often used to model multipath fading channels with a line of

sight (LoS) component. From [128, 129] the amplitude of the Rician fading channel is

distributed according to,

p(ϑ) = 2(K + 1)ϑe−K−(1+K)ϑ2

I0

(
2
√

K(K + 1)ϑ
)

(2.5)

where I0(·) is the modified Bessel function of the first kind with order zero.

Moreover, the entries of H are modelled as [130],

H =

√
K

1 + K
+

√
1

1 + K
H′ (2.6)

where K is the Rician factor, K/(1 + K) is the mean power of the LoS component,

1/(1 + K) is the mean power of the random component, and H′ is a Nr × Nt matrix

whose entries are modelled as complex i.i.d. Gaussian random variables with zero–mean

and unit–variance.

• Nakagami–m Fading

Nakagami–m distribution is widely used to describe channels with severe to moderate

fading [131]. The main justifications for the use of the Nakagami–m model is, it is good

fit to empirical fading data, and it describes well the channel when MRC is used at the

receiver [127, 132].

From [31, 32, 33], for Nakagami–m fading channels the entries of H for the nt–th and

nr–th transmit and receive antenna respectively, are modelled as,
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hnr ,nt =

√√√√
m∑

i=1

|zR
i |2 + j

√√√√
m∑

i=1

|zI
i |2 (2.7)

where zR
i and zR

i are an i.i.d. Gaussian random variables with zero mean and variance

equal to σ2
z = (2m)−1. The envelope of the Nakagami–m fading channel is distributed

according to [32],

p(ϑ) =
2mmϑ2m−1

Γ(m)
e(−mϑ2) (2.8)

where Γ(·) is the gamma function.

Furthermore, the PDF of the phase is [32],

p(θ) =
Γ(m) |sin (2θ)|m−1

2mΓ2(m/2)
(2.9)

Note, from (2.9) apart from the very special case of m = 1, where Nakagami–m fad-

ing corresponds to a Rayleigh fading, the phase of Nakagami–m distribution is not uni-

form [32].

• Spatial Correlation Model (SC)

Different channel correlation models were proposed in literature [133, 134] for MIMO

systems. In this thesis, the Kronecker channel model is used for its straightforward math-

ematical description [135, 136],

Hc = R
1

2

RxHR
1

2

Tx (2.10)

= vec (H)R
1

2

s (2.11)

where H is the uncorrelated channel, which can be NLoS or LoS channels, RTx is the

transmitter correlation matrix, RRx is the receiver correlation matrix, vec(B) is the vec-

torisation operator, where the columns of the matrix B are stacked in a column vector,

and Rs = RRx ⊗ RTx, where ⊗ is the Kronecker product.

Moreover, the correlation matrices are generated using an exponential decay model as

shown in [137], for the reason that it is a simple and accurate single parameter correlation

model,
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Rc =





1 rc r2
c · · · rn−1

c

rc 1 rc
. . .

...

r2
c rc 1

. . . r2
c

...
. . .

. . .
. . . rc

rn−1
c · · · r2

c rc 1





(2.12)

where rc = exp (−β), β is the correlation decay coefficient, and n is the number of

antennas.

2.3 Spatial Multiplexing

One of the most promising MIMO techniques to increase the spectral efficiency is SMX [2].

The SMX modulation algorithm can be summarised by:

1. The incoming data bits are divided into a number of sub–streams, equal to the number of

transmit antennas. Each sub–stream contains the data bits to be transmitted to a single

transmit antenna.

2. Each sub–stream is modulated using any conventional modulation scheme such as quadra-

ture amplitude modulation (QAM).

3. The sub–streams are then transmitted simultaneously from the existing transmit antennas.

Thus a spectral efficiency that increases linearly with the number of transmit antennas is achieved.

However, this comes at the expense of an increase in:

1. Computational complexity as the receiver has to resolve the inter–channel interference

(ICI) caused by transmitting from all antennas simultaneously.

2. Hardware complexity as the number of radio frequency (RF) chains is equal to the num-

ber of transmit antennas.

3. Power Consumption as the power requirements increase linearly with the number of RF

chains added [138, 139].

Thus, SMX may not always be practically feasible especially in modern wireless communica-

tions where energy efficiency is of great concern. Therefore, solutions need to be found that

strike an elegant trade-off between computational complexity, energy efficiency, and spatial

multiplexing gain.
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2.3.1 Maximum–Likelihood Receiver for SMX

The ML optimum receiver for SMX can be written as,

x̂
(ML)
t = arg min

x∈Qm

{
‖y −Hx‖2

F

}
(2.13)

whereQm is a 2m space containing all possible (Nt × 1) transmitted vectors, ‖·‖F is the Frobe-

nius norm, and ·̂ denotes the estimated spatial and constellation symbols.

2.3.2 Sphere Decoder for SMX

The conventional SD is designed for SMX, where all antennas are active at each time in-

stance [140,10,141,142]. The SD algorithm reduces the number of possible transmitted points

x ∈ Qm to be searched through in (2.13), i.e., the transmit search space, by computing the Eu-

clidean distances only for those points that lie inside a sphere with radius R and centred around

the received signal. Hence, (2.13) becomes,

x̂
(SD)
t = arg min

x∈ΘSMX
R

{
‖y − Hx‖2

F

}
(2.14)

where ΘSMX
R is the subset of points x in the transmit search space that satisfy the condition

R2 ≥ ‖y − Hx‖2
F.

2.4 Spatial Modulation

SM is a transmission technology proposed for MIMO wireless systems. It aims to increase

the spectral efficiency of single–antenna systems while avoiding ICI [15]. This is attained

as shown in Fig. 2.4, through the adoption of a new modulation and coding scheme which

foresees, i) the activation, at each time instance, of a single antenna that transmits a given data

symbol (constellation symbol), and ii) the exploitation of the spatial position (index) of the

active antenna as an additional dimension for data transmission (spatial symbol) [16]. Both the

constellation symbol and the spatial symbol depend on the incoming data bits.
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Figure 2.4: The unique three dimensional constellation diagram for SM. The first two bits

from left to right, in the four bit word define the spatial–constellation point which

identifies the active antenna. These are shown in parentheses. The remaining two

bits determine the signal–constellation point that is to be transmitted [143].

2.4.1 Operating Principle

The modulation algorithm for SM can be summarised in [112],

1. The incoming data bits are divided into blocks containing log2 (Nt)+log2 (M) bits each,

where Nt is the number of transmit antennas, and M is the constellation size.

2. The first log2 (Nt) bits are used to select the antenna which is switched on for data trans-

mission, while the other transmit antennas are kept inactive. In this work, the actual trans-

mit antenna which is active for transmission is denoted by ℓt with ℓt ∈ {1, 2, . . . , Nt}.

3. The second log2 (M) bits are used to choose a symbol in the signal–constellation di-

agram. In this work, the actual complex symbol emitted by the transmit antenna ℓt is

denoted by st, with st ∈ {s1, s2, . . . , sM}.

Accordingly, the Nt–dimensional transmit vector is:

xℓt,st
=
[
01×(ℓt−1), st,01×(Nt−ℓt)

]T
(2.15)

where [·]T denotes the transpose operation, and 0p×q is a p × q matrix with all–zero entries.
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An overall increase by the base–two logarithm of the number of transmit–antennas in the spec-

tral efficiency is achieved. Note that the number of transmit antennas must be a power of two.

Activating only one antenna at a time means that only one RF chain is needed, which signif-

icantly reduces the hardware complexity of the system [18]. It also offers a reduction in the

energy needed to power the transmit antennas, as only one antenna needs to be powered at a

time, resulting in a very green solution. The energy consumption is independent of the number

of transmit antennas which is a very important feature in the context of large (massive) MIMO

systems [13]. Moreover, as it will be shown later the computational complexity of SM is equal

to the complexity of single–antenna systems, i.e. the complexity of SM depends only on the

spectral efficiency and the number of receive antennas, and does not depend on the number

of transmit antennas. Again, this property makes SM an ideal candidate technology for large

scale MIMO.

2.4.2 Maximum–Likelihood Receiver for SM

In SM, only one transmit antenna is active at any given time. Therefore, the optimal receiver in

(2.13) can be simplified to,

[
ℓ̂
(ML)
t , ŝ

(ML)
t

]
= arg min

ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{∥∥∥y − h̃ℓs
∥∥∥

2

F

}

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{
Nr∑

r=1

∣∣∣yr − h̃ℓ,rs
∣∣∣
2
}

(2.16)

where yr is the r–th entry of y.

2.4.3 State-of-the-Art

Space modulation is based on the receiver being able to exploit the distinct received signals

from different transmit antennas to distinguish the transmitted information bits [144]. However,

the proposed method in [144] has more than one antenna active at a time, thus requiring inter-

antenna synchronization (IAS) and more than one RF chain [112]. A year later, the idea of using

the index of the antenna to provide multiplexing gain was proposed for the first time in [111].

Independently, a MIMO technique based on the same principle as in [144], called Channel

Hopping modulations is introduced in [145,146], and later on re–named to information-guided

channel hopping (IGCH) in [147]. Unlike [144], any number of transmit antennas can be used.
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Moreover, it foresaw the activation of a single transmit antenna at a time.

SM was first introduced in [16, 148, 149], it aims at reducing the computational complexity

and the number of RF chains needed, while attaining a good end–to–end system performance

and high spectral efficiency. This is achieved by activating only a single transmit antenna

at each instance to transmit a certain data symbol, where the active antenna index and the

data sent depend on the incoming data bits. A simple suboptimal MRC–based detector for

SM is proposed in [16], where the index of the active antenna and the transmitted symbol are

estimated independently. The performance of this receiver has been studied over correlated and

uncorrelated, Rayleigh and Rician channel, with or without antenna coupling, and compared

to V–BLAST and Alamouti–STC. The results in [16] showed that SM with maximum receive

ratio combining (MRRC), when compared to V–BLAST and Alamouti, offers the same or

better ABER performance, and a large reduction in receiver complexity, while attaining the

same spectral efficiency. In particular, by activating only one transmit antenna at a time, SM

avoids ICI which results in a better ABER and a reduction in complexity when compared to

V–BLAST. Furthermore, information bits are conveyed in the index of the active antenna,

therefore, a smaller constellation size is needed when compared to Alamouti, and hence, better

ABER can be achieved. Later on, the ML–optimum detector for SM is presented in [17], where

it is demonstrated that with a slight increase in the complexity, SM–ML can offer a performance

gain of 3 dB and 1.5 over i.i.d. Rayleigh channels, when compared to SM–MRC and V–BLAST

respectively.

A special case of SM called SSK is proposed in [18], where no symbol is transmitted, and

therefore, all the information bits are encoded in the index of the active antenna. In [18], the

performance of SSK is analysed comprehensively, where it is shown that the ABER perfor-

mance of SSK, on the one hand, degrades with the increase of the number of transmit antennas.

On the other hand, the ABER performance of SSK improves with the increase of the number of

receive antennas. Moreover, the diversity order for SSK over i.i.d. Rayleigh fading channels is

derived and shown to be equal to the number of receive antennas [18]. Furthermore, the perfor-

mance of SSK is compared with the performance of conventional MIMO systems, and shown

that it can offer a better ABER. In [150], generalised space shift keying (GSSK) is proposed

to reduce the number of transmit antennas needed by SSK where more than one antenna can

be active at time. The optimal detector with partial channel state information (CSI) and imper-

fect channel knowledge is proposed in [151, 152]. A general framework for the performance

of SSK over correlated Nakagami–m fading environment is established in [28, 153, 154], and
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studied further in [22, 23]. Finally in [155], the performance of SSK is improved by the use of

an optimised power allocation.

One of the more comprehensive analyses of SM is presented in [20]. The analytical ABER per-

formance of SM is studied comprehensively over generic fading channels for any MIMO setup,

where the effect of fading severity, the achievable diversity gain and the impact of the constel-

lation diagram is derived and analysed. A closed–form expression for the optimisation for the

role of the bit mapping in the spatial and signal constellation diagrams is derived. Furthermore,

it is shown that for severe fading environments, encoding more bits in the constellation dia-

gram is recommended, however, in less severe fading environments encoding more bits in the

the spatial domain is better. The ABER performance of SM is also studied in [29, 156, 30],

however, a closed form expression for the ABER performance of SM has not been derived yet.

In [149, 157], the idea of SM is used over orthogonal frequency division multiple access

(OFDMA) systems, by activating only one antenna for each sub–channel. By doing so IAS and

ICI are avoided. It is shown that SM outperform V–BLAST in terms of the ABER over cor-

related Rician fading channels with antenna coupling by 7 dB. Furthermore, the hard–decision

ML–optimum decoding in [17], is generalised to soft–decision ML detector in [158]. By using

the soft–decision ML detector the performance of SM can be improved by up to 3 dB when

compared to hard–decision ML detector.

The optimal detector for SM with partial state information, in particular with unknown phase

reference at the receiver, is presented in [159]. An analytical framework is derived, and the

performance of this detector is compared to the performance of a ML detector with full CSI at

the receiver. It is shown that partial CSI at the receiver leads to a sub-optimal receiver design,

however, it is a more practical system. The paper also highlights, that unlike ordinary modula-

tion schemes there is a substantial performance loss because the receiver cannot use the phase

information for ML detection. It also highlights the importance of accurate channel estimation

for efficient operations of SM. The effect of channel estimation error on the performance of

SM and space modulation has been studied in [160, 161], and compared to the performance

of V–BLAST and Alamouti. It is shown that SM is more robust to channel estimation errors

than V–BLAST and Alamouti, because the probability of error is determined by the differences

between channels associated with the different transmit antennas instead of the actual channel

realisation. Thus, the effect of channel estimations on the performance of space modulation

techniques are insignificant [161].
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In [25, 130, 162], the performance of SM over correlated channels is enhanced in a novel fash-

ion by using trellis coded modulation (TCM). The novel scheme is called trellis coded spatial

modulation (TCSM). In TCSM the transmit antennas are partitioned into sub–sets, such that

the spatial spacing between the antennas in each sub–set is maximised. Thus, the effect of

the correlation in the channel on the ABER performance of SM is reduced. The ABER per-

formance of TCSM is studied over correlated Rician fading channels, where it is shown that

TCSM offers a major improvement when compared to SM, V–BLAST with SD as proposed

in [10,11], and Alamouti with TCM [163] and turbo coded modulation (TuCM) [164]. Another

new TCM design for SM called spatial modulation with trellis coding (SM–TC) is proposed

in [165], where a soft decision Viterbi decoder is used at the receiver, which is fed with the

soft information supplied by the SM–ML decoder. The authors in [165] shows that the SM–

TC achieves better ABER performance in terms of the ABER, and a reduced computational

complexity, when compared to TCSM, and coded V–BLAST for the same spectral efficiency.

Optical wireless (OW) communications gained newmomentum, as light–emitting diodes (LEDs)

are expected to be the base for all lighting in the near future. Unlike fluorescent and incandes-

cent light sources, LEDs can be modulated at a high data rate, and they offer a high energy

efficiency and reliability [166]. In [167, 168], SM is applied to OW communications. The

proposed scheme is called optical spatial modulation (OSM). It offers a power and bandwidth

efficient pulse modulation technique for OW communications. In OSM only one light–emitting

diode (LED) for an array of LEDs is active and radiating a certain intensity level at each time

instant. At the receiver SM is used to detect the index of the active LED, hence an increase in

the spectral efficiency by the base 2 logarithm of the number of LEDs is achieved. The effect

of the location of the transmit and receive LEDs is studied, and an optimum location is shown.

Moreover, it is shown that by aligning the transmitter and the receiver LEDs the performance

of OSM in terms of power efficiency and bandwidth is better than on-off keying, pulse position

modulation (PPM), and PAM. Moreover, it is shown that the power efficiency can be increased

by using receive diversity and/or by using soft and channel hard coding techniques. In addi-

tion, in [169], the ABER performance of OSM is enhanced by using TCSM. Lastly, in [170],

experimental results demonstrating the practical aspects of applying SM in the optical wireless

communications system are shown and studied.

The different SM techniques described in this section are summarised in 2.2. Further infor-

mation about the development of SM for wireless communications and OW can be found

in [44, 112, 166].
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Modulation Type Modulation Techniques

Space Modulation

SM [16, 148, 149]

SSK [18]

GSSK [150]

Channel hopping modulations [145, 146]

IGCH [147]

Spatial Modulation

MRC [16]

SM–ML optimum detector [17]

Soft–decision ML detector [158]

Partial state information detector [159]

Coded SM
TCSM [25, 130, 162]

SM–TC [165]

Optical Wireless SM
OSM [167, 168]

OSM–TCSM [169]

Table 2.2: Summary of the different SM techniques described in Sec. 2.4.3

2.5 Summary

In this chapter the key concepts in relation to wireless communications and SM were sum-

marised. The chapter started with an overview of the history of wireless communications, then

introduced MIMO communication systems. In particular, the different types of MIMO trans-

mission system, and channel environments were discussed, along with small–scale propagation

models. Furthermore, the idea of SMX and its advantages and disadvantages ware reviewed.

After that SM was proposed, and its advantages were compared to SMX. Its limitations were

also discussed. Finally, an overview of the latest research in SM was presented.
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Chapter 3

A Complete Framework for Spatial

Modulation

In this chapter, a tight closed–form upper bound to compute the average bit error ratio (ABER)

for spatial modulation (SM) over correlated and uncorrelated generalised fading channels is

provided. Comparing the framework with Monte Carlo simulations and state–of–the–art liter-

ature, it is shown that the new upper bound, 1) offers an accurate estimation of the ABER;

2) provides an easy–to–calculate closed–form upper bound; 3) is applicable for correlated

and uncorrelated, Rayleigh, Rician and Nakagami–m channel. Furthermore, the performance

of SM is compared with the performance of spatial multiplexing (SMX). It is shown that SM

offers nearly the same or slightly better performance than SMX for small scale multiple–input

multiple–output (MIMO) systems. However, SM achieves a larger reduction in ABER for

large scale MIMO. Finally, the computational complexity of SM–maximum–likelihood (ML)

is studied and it is shown that it is equal to the complexity of single–antenna systems, which

means that the complexity of SM–ML neither depends on the number of transmit antennas, nor

the signal constellation size.
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3.1 Introduction

The analytical average bit error ratio (ABER) performance of spatial modulation (SM) over

different fading channels is studied by many researchers. The analytical ABER performance

of SM over Rayleigh fading channels is studied in [16, 17, 24]. In [16], the authors studied

a suboptimal receiver design, and the symbol error probability is computed by resorting to

numerical integrations, which are not easy to compute [20]. In [17], the analytical ABER

performance of the maximum–likelihood (ML) receiver for SM is studied, and an analytical

upper bound is derived. However, [25] shows that the bound is relatively weak. The first

closed form upper bound for the ABER performance of SM over Rayleigh fading channels was

proposed in [24]. However, 1) the bound is applicable for Rayleigh fading only, and 2) it is

only applicable for channels with correlation on the transmitter side.

The authors in [20] studied the analytical ABER performance of SM over correlated Rician

channels. However, the proposed upper bounds are mathematically involved and not easy to

compute. Furthermore, the work in [16] is extended to Nakagami–m fading channels in [26,

27]. The limitations of [26, 27] are: 1) the bounds are for suboptimal receivers; 2) the ap-

proach is semi–analytical; and 3) correlation is only taken into account for the detection

of the constellation symbol, where the framework in [16] is used to compute the probability

of transmit–antenna detection, which does not take into account correlation [28]. Additional

works in [20,29,30] study the analytical ABER performance of SM over correlated and uncor-

related Nakagami–m fading channels using ML optimal receiver. It is assumed that the phase

of the Nakagami–m fading channel is a uniformly distributed random variable (RV). How-

ever, in [31, 32, 33], it is demonstrated that apart from the very special case of m = 1, where

Nakagami–m fading corresponds to a Rayleigh fading, the phase of Nakagami–m distribution

is not uniformly distributed. In all these analysis, the probability distribution function (PDF)

of the signal to noise ratio (SNR) at the receiver input considering the specific channel model

need to be obtained to derive a closed-form expression of the pairwise error probability (PEP).

Therefore and with respect to current literature, the contributions in this chapter are five folds:

1. A general and tight closed–form expression of the PEP of SM in correlated and uncorre-

lated channel conditions is derived.

2. The derived expression is applicable for generalised fading channels such as Rayleigh,

Rice and Nakagami–m.
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3. The general distribution of the Nakagami–m channel, which does not consider the limit-

ing assumption that the phase is uniformly distributed, is considered.

4. An upper bound of the ABER is given and shown to be tight for large range of SNR

values.

5. Performance comparison between SM and spatial multiplexing (SMX) is provided.

The remainder of this chapter is organised as follows. The analytical framework for the ABER

of SM over correlated and uncorrelated, Rayleigh, Rician and Nakagami–m channels is derived

in Section 3.2. The complexity of SM and SMX is discussed and compared in Section 3.3. The

results are presented in Section 3.4, and the chapter is concluded in Section 3.5. Note, the

operating principle of SM is explained in 2.4.1, the channel model is introduced in 2.2.3.3, and

the SM–ML decoder is described in 2.4.2.

3.2 Analytical Upper Bound of the ABER performance of SM

The ABER for SM system can be approximated by using the union bound [110], which can be

expressed as follows,

ABER
SM

≤ 1

2η

∑

ℓt,st

∑

ℓ,s

N (xℓt,st
,xℓ,s)

η
EH

{
Pr
error

}
(3.1)

where N (xℓt,st
,xℓ,s) is the number of bits in error between xℓt,st

and xℓ,s, EH{·} is the ex-

pectation across the channel H, and Pr
error

is the conditional PEP of deciding on xℓ,s given that

xℓt,st
is transmitted,

Pr
error

= Pr

(
‖y − Hcxℓt,st

‖2
F > ‖y − Hcxℓ,s‖2

F

∣∣∣∣H
)

= Q

(√
ϕ ‖HcΨ‖2

F

)

=
1

π

∫ π
2

0
exp

(
−ϕ ‖HcΨ‖2

F

2 sin2 θ

)
dθ (3.2)

where Ψ = (xℓt,st
− xℓ,s), and from [171, 172], the alternative integral expression of the Q–
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function is,

Q(x) =
1

π

∫ π
2

0
exp

(
x2

2 sin2 θ

)
dθ (3.3)

Taking the expectation of (3.2),

EH

{
Pr
error

}
=

1

π

∫ π
2

0
Φ
(
− ϕ

2 sin2 θ

)
dθ (3.4)

where Φ (·) is the moment-generation function (MGF) of the random variable ‖HcΨ‖2
and

ϕ = 1/
(
2σ2

n

)
.

From [173], the argument of the MGF in (3.4) can be written as,

‖HcΨ‖2 = tr
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HcΨΨHHH

c

)
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(
HH
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)H (
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)
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(
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)H
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H
2

s

(
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)
R

1

2

s vec
(
HH

)
(3.5)

where tr(·) is the trace function, In is an n×n identity matrix, and (·)H
denotes the Hermitian.

From [174], for an identical and independently distributed (i.i.d.) complex Gaussian vector v

with mean ṽ, and any Hermitian matrix Q, the MGF of f = vHQv is,

Φ(s) =
exp

(
sṽHQ (I − sLvQ)−1

ṽ
)

I − sLvQ
(3.6)

where (̃·) denotes the mean, and Lv is the covariance matrix of v.

Hence, from (3.5) and (3.6), the MGF in (3.4) is,

Φ (s) =

exp

(
svec

(
H̃H

)H
Λ (INrNt − sLHΛ)−1

vec
(
H̃H

))

|I− sLHΛ| (3.7)

where, LH is the covariance matrix of H, and,

Λ = R
H
2

s

(
INr ⊗ ΨΨH

)
R

1

2

s =
(
INr ⊗ ΨΨH

)
Rs

=
(
INr ⊗ ΨΨH

)
(RRx ⊗ RTx) = RRx ⊗

(
ΨΨHRTx

)
(3.8)
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From (3.2),(3.7), and using the Chernoff bound,
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The mean matrix H̃ and the covariance matrix LH depends on the type of channel, where for,

1. Rayleigh Fading

H̃ = 0Nr×Nt (3.10)

LH = INrNt (3.11)

2. Rician Fading

H̃ =

√
K

1 + K
× 1Nr×Nt (3.12)

LH =
1

1 + K
× INrNt (3.13)

where 1Nr×Nt is an Nr × Nt all ones matrix.

3. Nakagami–m Fading

H̃ =
Γ ((m/2) + 1/2)

Γ(m/2)
√

m/2
ej π

4 × 1Nr×Nt (3.14)

LH = 1 − 2

m

(
Γ ((m/2) + 1/2)

Γ(m/2)

)2

× INrNt (3.15)

In Section 3.4, the bound in (3.9) is shown to be a tight upper bound for SM.
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3.3 Complexity Analysis

In this section, the receiver complexity for SM–ML is compared to the complexity of SMX–

ML, for the same search space size, i.e. the same spectral efficiency. Note, the spectral effi-

ciency of SM is ηSM = log2 NtM , and the spectral efficiency for SMX is ηSMX = Nt log2 M .

The complexity is computed as the number of real multiplicative operations (×,÷) needed by

each algorithm [175].

• SM–ML: The computational complexity of the SM–ML receiver in (2.16) is equal to

CSM–ML = 8Nr2
η
SM (3.16)

where the ML detector searches through the whole transmit and receive search spaces.

Note, evaluating the Euclidean distance
(
|yr − hℓ,rs|2

)
requires two complex multipli-

cations, where each complex multiplication requires four real multiplications.

• SMX–ML: The computational complexity of SMX–ML is equal to,

CSMX–ML = 4 (Nt + 1) Nr2
η
SMX (3.17)

Note, in (2.13),
(
|y − Hx|2

)
requires (Nt + 1) complex multiplications.

From (3.16) and (3.17), the reduction of SM–ML receiver complexity relative to the complexity

of the SMX–ML decoder for the same spectral efficiency, i.e. , ηSM = ηSMX, is given by,

Crel = 100 ×
(

1 − 2

Nt + 1

)
(3.18)
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Figure 3.1: The reduction of SM–ML receiver complexity relative to the complexity of SMX–

ML
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From (3.16), the complexity of SM does not depend on the number of transmit antennas, and

it is equal to the complexity of single–input multiple–ouput (SIMO) systems. However, the

complexity of SMX increases linearly with the number of transmit antennas. This can be seen

in Fig. 3.1 where the relative complexity for Nt = [2, 4, 8, . . . , 128] is shown. The reduction in

complexity offered by SM increases with the increase in the number of transmit antennas. e.g.

for Nt = 4, SM offers a 60% reduction in complexity, and as the number of transmit antennas

increase the reduction increases. For Nt = 128, SM offers 98% reduction in complexity.

3.4 Results

In the following, Monte Carlo simulation results for the ABER performance of SM for at least

106 channel realisation are shown and compared with with the derived analytical bound. Fur-

thermore, the ABER performance of SM is compared with the ABER performance of SMX.

3.4.1 Analytical performance of SM

The ABER simulation results for SM over correlated and uncorrelated, Rayleigh channels,

Rician channels with K = 5 dB, and Nakagami–m channels with m = 2, 4, are depicted in

Figs. 3.2-3.9 and, compared with analytical results obtained from the bound in Section 3.2, for

η = 8, Nt = 8, 32, 128 and Nr = 4. The correlation decay coefficients are chosen to model

moderate correlation, with β = 0.7 at the transmitter side and β = 0.6 at the receiver side.

Analytical and simulation results demonstrate close match for wide and pragmatic range of

SNR values and for different channel conditions, which validates the derived analysis in this

chapter.

Comparing Rayleigh fading results, Fig. 3.2 and Fig. 3.3, with Rician fading results, Fig. 3.4

and Fig. 3.5, clearly highlight the negative impact of the existence of line of sight (LoS) compo-

nent. The presence of LoS component increases the correlation between different channel paths

and degrades the performance of SM system. Performance degradation of about 3 ∼ 4 dB can

be noticed in the figures. As well, similar degradation can be noticed for correlated SM system.

For instance, the performance of different configurations in Fig. 3.3 degrades by about 2 dB as

compared to the results in Fig. 3.2.

ABER results of SM system with uncorrelated and correlated Nakagami–m channel are de-

picted in Figs. 3.6-3.9. Again, SM performance degrades in Nakagami–m channel as compared
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Figure 3.2: ABER versus SNR for SM over uncorrelated Rayleigh channels, where η = 8 and

Nr = 4. (Dashed line) analytical upper bound, (solid line) simulation.
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Figure 3.3: ABER versus SNR for SM over correlated Rayleigh channels, where η = 8 and

Nr = 4. (Dashed line) analytical upper bound, (solid line) simulation.

40



A Complete Framework for Spatial Modulation

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
v
e

ra
g

e
 B

it
 E

rr
o

r 
R

a
ti
o

Uncorrelated Rice K=5dB

 

 

Analytical N
t
=   8

Analytical N
t
=  32

Analytical N
t
= 128

Simulation N
t
=   8

Simulation N
t
=  32

Simulation N
t
= 128

Figure 3.4: ABER versus SNR for SM over uncorrelated Rician channels with K = 5 dB,

where η = 8 and Nr = 4. (Dashed line) analytical upper bound, (solid line)

simulation.
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Figure 3.5: ABER versus SNR for SM over correlated Rician channels wit K = 5 dB, where

η = 8 and Nr = 4. (Dashed line) analytical upper bound, (solid line) simulation.
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Figure 3.6: ABER versus SNR for SM over uncorrelated Nakagami–m channels with m = 2,
where η = 8 and Nr = 4. (Dashed line) analytical upper bound, (solid line)

simulation.
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Figure 3.7: ABER versus SNR for SM over uncorrelated Nakagami–m channels with m = 4,
where η = 8 and Nr = 4. (Dashed line) analytical upper bound, (solid line)

simulation.
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Figure 3.8: ABER versus SNR for SM over correlated Nakagami–m channels with m = 2,
where η = 8 and Nr = 4. (Dashed line) analytical upper bound, (solid line)

simulation.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
v
e
ra

g
e
 B

it
 E

rr
o
r 

R
a
ti
o

Correlated Nakagami−m=4

 

 

Analytical N
t
 =8

Analytical N
t
 =32

Analytical N
t
 =128

Simulation N
t
 =8

Simulation N
t
 =32

Simulation N
t
 =128

Figure 3.9: ABER versus SNR for SM over correlated Nakagami–m channels with m = 4,
where η = 8 and Nr = 4. (Dashed line) analytical upper bound, (solid line)

simulation.
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to Rayleigh channel. For instance, 6 dB degradation can be noticed in Fig. 3.6 for m = 2 and

about 8.5 dB performance degradation is noticed for m = 4 as shown in Fig. 3.7. Performance

degradation in Nakagami–m channel can be attributed to the fact that the spatial correlation be-

tween different channel paths increases with increasing the value of m. In fact, as m → ∞, the

Nakagami–m fading channel converges to a nonfading additive white Gaussian noise (AWGN)

channel and separating different channel paths would be impossible. This is a very interest-

ing observation that contradicts the already reported results in [20], where it is shown that SM

performance enhances as m increases.

3.4.2 Comparison in the ABER performance of SM and SMX

Figs. 3.10 - 3.17 compare the ABER performance of SM with Nt = 8, 32, 128 and SMX with

Nt = 2, 8, over uncorrelated and correlated, Rayleigh, Rice, and Nakagami-m fading channels

with similar parameters as discussed above.

3.4.2.1 Rayleigh Fading

In Fig. 3.10 and Fig. 3.11 the ABER results for SM and SMX over correlated and uncorrelated

Rayleigh channels are shown. It can be observed that the ABER performance depends on the

the number of transmit antennas used and, consequently, the constellation size. The smaller the

constellation size, the better the performance. Another observation is that SM and SMX offer

nearly the same performance when using the same constellation size. Moreover, comparing

the uncorrelated case with the correlated case, SM is more robust to channel correlation, where

for the uncorrelated case SM with Nt = 128 offers 1 dB better performance than SMX with

Nt = 8. However, for the correlated case SM offers 2 dB better performance.

3.4.2.2 Rician Fading

Performance comparison between SM and SMX over correlated and uncorrelated Rician chan-

nels are shown in Fig. 3.12 and Fig. 3.13. For the uncorrelated case, SM with Nt = 128

performs almost the same as SMX with Nt = 8, as both systems are using same signal con-

stellation size. However, for the correlated case SM performs better by 1.3 dB when compared

to SMX. Also, SM with Nt = 32 performs almost the same as SMX with Nt = 2 for the

uncorrelated case, but for the correlated case SM performs better than SMX by about 2.3 dB.
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3.4.2.3 Nakagami–m Fading

Fig. 3.12 and Fig. 3.13 shows the ABER results for SM and SMX over correlated and uncor-

related Nakagami–m channels with m = 2, 4. For the uncorrelated case, SM with Nt = 128

and Nt = 32 performs the same as SMX with Nt = 8 and Nt = 2 respectively. However, for

the correlated case SM performs better than SMX for both m = 2 and m = 4. For m = 2

and m = 4 SM with Nt = 2 and Nt = 8 performs 1.25 dB and 2.5 dB better than SMX with

Nt = 2 and Nt = 8, respectively.
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Figure 3.10: ABER versus SNR for SM and SMX over uncorrelated Rayleigh channels, where

η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.
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Figure 3.11: ABER versus SNR for SM and SMX over correlated Rayleigh channels, where

η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.
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Figure 3.12: ABER versus SNR for SM and SMX over uncorrelated Rician channels with K =
5 dB, where η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.
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Figure 3.13: ABER versus SNR for SM and SMX over correlated Rician channels with K = 5
dB, where η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
v
e
ra

g
e
 B

it
 E

rr
o
r 

R
a
ti
o

Uncorrelated Nakagami−m=2

 

 
SM N

t
 =8

SM N
t
 =32

SM N
t
 =128

SMX N
t
 =2

SMX N
t
 =8

Figure 3.14: ABER versus SNR for SM and SMX over uncorrelated Nakagami–m channels

with m = 2, where η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.
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Figure 3.15: ABER versus SNR for SM and SMX over uncorrelated Nakagami–m channels

with m = 4, where η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.
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Figure 3.16: ABER versus SNR for SM and SMX over correlated Nakagami–m channels with

m = 2, where η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.
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Figure 3.17: ABER versus SNR for SM and SMX over correlated Nakagami–m channels with

m = 4, where η = 8 and Nr = 4. (Dashed line) SMX, (solid line) SM.

3.5 Summary

In this chapter, a novel, simple and accurate analytical upper bound to compute the ABER for

SM over Rayleigh, Rician and Nakagami–m fading channels has been proposed. The upper

bound allows the calculation of the ABER of SM in correlated and uncorrelated channels, and

for small and large scale multiple–input multiple–output (MIMO) with any digital modulation

scheme. The performance of SM is also compared with the performance of SMX, where it is

shown that SM offers nearly the same or slightly better performance than SMX.

To sum up, SM exhibits i) an ABER performance that improves with the increase of the number

transmit antennas, and ii) a reduction in complexity that increases up to 98% when compared

to SMX, while the complexity is independent of the number of available transmit antenna

elements.
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Chapter 4

Generalised Sphere Decoding

In this chapter, sphere decoder (SD) algorithms for spatial modulation (SM) are developed to

reduce the computational complexity of maximum–likelihood (ML) detectors. Two SDs specif-

ically designed for SM are proposed and analysed in terms of average bit error ratio (ABER)

and computational complexity. Using Monte Carlo simulations and mathematical analysis, it is

shown that by carefully choosing the initial radius the proposed SD algorithms offer the same

ABER as ML detection, with a significant reduction of the computational complexity. A tight

closed form bound for the ABER performance of SM–SD is derived, along with an algorithm

for choosing the initial radius which provides optimum performance. Also, it is shown that

none of the proposed SDs is always superior to the others, but the best SD to use depends

on the target spectral efficiency. Finally, the performance of SM–SDs are compared to spatial

multiplexing (SMX), applying ML decoder and applying SD. It is shown that for the same

spectral efficiency, SM–SD offers up to 84% reduction in complexity compared to SMX–SD,

with up to 1 dB better ABER performance than SMX–ML decoder.
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4.1 Introduction

In spite of the low–complexity implementation of spatial modulation (SM), there is still po-

tential for further complexity reduction, by using the sphere decoder (SD) principle. However,

existing SD algorithms in the literature do not consider the basic and fundamental principle of

SM, that at any given time, only one antenna is active. Therefore, they cannot be applied to SM,

and two modified SD algorithms based on the tree search structure that are tailored to SM are

proposed. The first SD will be called receiver–centric SD (Rx-SD). The Rx–SD aims at reduc-

ing the complexity by combining the received signals from each antenna at the receiver, as long

as the Euclidean distance from the received point is less than a given radius. This SD–based

detector is especially suitable when the number of receive–antennas is large. It reduces the size

of the search space related to the multiple antennas at the receiver (this search space is denoted

as “receive search space”). It will be shown later that there is no loss in either the diversity

order or the coding gain, i.e. the average bit error ratio (ABER) is very close to that of the

maximum–likelihood (ML) detector. However, its main limitation is that it does not reduce the

search space related to the number of possible transmitted points (this search space is denoted

as “transmit search space”). This prevents the detector from achieving a significant reduction in

computational complexity when high data rate is required, i.e. , when the number of antennas

is large.

The second SD, which will be called Transmit–centric (Tx–SD) aims at reducing the trans-

mit search space, by limiting the number of possible antenna and constellation combinations

searched over [36]. The Tx–SD algorithm avoids an exhaustive search by examining only

those points that lie inside a sphere with a given radius. However, it is limited to the non–

underdetermined multiple–input multiple–output (MIMO) setup (Nt ≤ Nr), where Nt and Nr

are the number of transit and receiver antennas respectively. In [34,35], it is shown that Tx–SD

in [36] still can be used for the case of (2Nr − 1) ≥ Nt > Nr, where it is referred to as

E–Tx–SD. Moreover, in [34, 35] a detector for the case of Nt > Nr referred to as G–Tx–SD

is proposed. By using the division algorithm the G–Tx–SD technique: 1) Divides the set of

possible antennas into a number of subsets. 2) Performs E–Tx–SD over each subset. 3) Takes

the minimum solution of all the sets. However, in this chapter a simple solution is proposed,

where as it will be shown later, all what is needed is to set a constant ε to 0 for Nt ≤ Nr and

ε = σ2
n for Nt > Nr, where σ2

n is the noise variance. In [34, 35], the normalised expected

number of nodes visited by the Tx–SD algorithm is used to compare its complexity with the

complexity of the SM–ML. This does not take into account the pre–computations needed by

52



Generalised Sphere Decoding

the Tx–SD algorithm. In this chapter, when comparing the complexity of Tx–SD with the

complexity of SM–ML and Rx–SD, the pre–computations needed by the Tx–SD are taken into

account. Because of those pre–computations, the Tx–SD is not always the best solution, where

in some cases it is even more complex than SM–ML. Finally, the performance of both SDs

is closely tied to the choice of the initial radius. The chosen radius should be large enough so

that the sphere contains the solution. On the one hand, the larger the radius is, the longer the

search takes, which increases the complexity. On the other hand, a small radius may cause the

algorithm to fail in finding any point inside the sphere.

In this chapter, a careful study of the performance of these two detectors is provided, along

with an accurate comparison of their computational complexity. Numerical results show that

the proposed solutions provide a substantial reduction in computational complexity with respect

to SM–ML decoder, and no loss in the ABER performance. The closed form expression for

the ABER performance of SM–SD is derived and shown that the initial radius can be chosen

such that SM–SD gives an optimum performance. Furthermore, it is shown that Rx–SD is

less complex than Tx–SD for lower spectral efficiencies, while Tx–SD is the best solution for

higher spectral efficiencies. Finally, using numerical results it is shown that SM with SD offers

a significant reduction and nearly the same performance when compared to spatial multiplexing

(SMX) with ML decoder or SD.

The reminder of this chapter is organised as follows. In Section 4.2, the new spatial modulation

receiver–centric SD (SM–Rx) and spatial modulation transmit–centric SD (SM–Tx) receivers

are described. In Section 4.3, an accurate analysis of the computational complexity of both

SM–Rx and SM–Tx is performed. In Section 4.4, the analytical ABER performance for SM–

SDs is derived along with the initial radius selection method. Numerical results are presented

in Section 4.5, and the chapter is concluded in Section 4.6. Note, the operating principle of SM

is explained in 2.4.1, the channel model is introduced in 2.2.3.3, and the SM–ML decoder is

described in 2.4.2.

4.2 Sphere Decoders for SM

In this section two SDs tailored for SM are introduced, Rx–SD and Tx–SD. Rx–SD aims at

reducing the number of summations over Nr required by the ML receiver in (2.16). Tx–SD

aims at reducing the number of points (ℓ, s) the ML receiver searches over.
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First, for ease of derivation, the real–valued equivalent of the complex–valued model in (2.16)

following [176] is introduced,

ȳ = H̄x̄ℓt,st
+ n̄

= h̄ℓt
s̄t + n̄ (4.1)

where,

ȳ =
[
Re
{
yT
}

, Im
{
yT
}]T

(4.2)

H̄ =



 Re {H} Im {H}
−Im {H} Re {H}



 (4.3)

x̄ℓt,st
=

[
Re
{
xT

ℓt,st

}
, Im

{
xT

ℓt,st

}]T
(4.4)

n̄ =
[
Re
{
nT
}

, Im
{
nT
}]T

(4.5)

h̄ℓ =
[
H̄ℓ, H̄ℓ+Nt

]
(4.6)

s̄ =



 Re{s}
Im{s}



 (4.7)

where Re {·} and Im {·} denote real and imaginary parts respectively, and H̄ℓ is the ℓ–th col-

umn of H̄.

4.2.1 Rx–SD Detector

The Rx–SD is a reduced–complexity and close–to–optimum ABER–achieving decoder, which

aims at reducing the receive search space. The detector can formally be written as follows:

[
ℓ̂
(Rx−SD)
t , ŝ

(Rx−SD)
t

]
= arg min

ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}






Ñr(ℓ,s)∑

r=1

∣∣ȳr − h̄r,ℓs̄
∣∣2



 (4.8)

where h̄r,ℓ is the r–th element of h̄ℓ, and,
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Ñr (ℓ, s) = max
n∈{1,2,...2Nr}

{
n

∣∣∣∣∣

n∑

r=1

|yr − hr,ℓs|2 ≤ R2

}
. (4.9)

The idea behind Rx–SD is that it keeps combining the received signals as long as the Euclidean

distance in (4.8) is less or equal to the radius R. Whenever a point is found to be inside the

sphere, the radius, R, is updated with the Euclidean distance of that point. The point with the

minimum Euclidean distance and Ñr (·, ·) = 2Nr is considered to be the solution.

4.2.2 Tx–SD Detector

The conventional SD is designed for SMX, where all antennas are active at each time in-

stance [10, 140, 141, 142]. However, in SM only one antenna is active at a time. There-

fore, a modified SD algorithm tailored for SM, named Tx–SD, is presented. More specifi-

cally, similar to conventional SDs, the Tx–SD scheme reduces the number of points (ℓ, s) for

ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM} to be searched through in (2.16), i.e., the transmit

search space, by computing the Euclidean distances only for those points that lie inside a sphere

with radius R and are centred around the received signal. However, unlike conventional SDs,

in our scheme the set of points inside the sphere are much simpler to compute, as there is only

a single active antenna in SM. This section, shows how to compute the set of points.

The Cholesky factorisation of the (2Nt × 2Nt) positive definite matrix Ḡ = H̄T H̄ + ε̄INt is

Ḡ = D̄T D̄, where

ε =





σ2

n Nt > Nr

0 Nt ≤ Nr

(4.10)

Then the Tx–SD can be formally written as follow,

[
ℓ̂
(Tx−SD)
t , ŝ

(Tx−SD)
t

]
= arg min

(ℓ,s)∈ΘR

{∥∥z̄ − D̄x̄ℓ,s

∥∥2

F

}
(4.11)

where ΘR is the subset of points (ℓ, s) for ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM} in the

transmit search space that lie inside a sphere with radius R and centred around the received

signal z̄, z̄ = D̄ρ̄ and ρ̄ = Ḡ−1H̄T ȳ.
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Unlike Rx–SD, Tx–SD reduces the computational complexity of the ML receiver by reducing

the transmit search space, which is done by the efficient computation of the subset ΘR. After

some algebraic manipulations as shown in Appendix A. The subset of points ΘR lie in the

intervals:

−Ri + z̄ℓ+Nt

D̄(ℓ+Nt,ℓ+Nt)
≤ Im {s} ≤ Ri + z̄ℓ+Nt

D̄(ℓ+Nt,ℓ+Nt)
(4.12)

−R′ + z̄ℓ|ℓ+Nt

D̄ℓ,ℓ
≤ Re {s} ≤

R′ + z̄ℓ|ℓ+Nt

D̄ℓ,ℓ
(4.13)

where

z̄a|b = z̄a − D̄(a,b)Im {s} (4.14)

R′2 = R2 −
2Nt∑

ν=Nt+1

z̄2
ν|ℓ+Nt

(4.15)

Note, every time a point is found inside the sphere, the radius R is updated with the Euclidean

distance of that point,

R2
i+1 =

∥∥z̄ − D̄x̄ℓ,s

∥∥2

F

= (R2
i − R′2) +

Nt∑

ν=1

(
zν − D(ν,ℓ)Re {s} − D(ν,ℓ+Nt)Im {s}

)2
(4.16)

Moreover, (4.13) needs to be computed only for those points that lie inside the interval in (4.12),

for the reason that (4.13) depends implicitly on (4.12).

Because of the unique properties of SM the intervals in (4.12) and (4.13) needs to be calculated

only once for each possible transmit point, unlike conventional SDs where the intervals have to

be calculate Nt times for each transmit point. Furthermore, note that SM–Tx works for both

underdetermined MIMO setup withNt > Nr, and overdetermined MIMO setup withNt ≤ Nr.

As opposed to the Rx–SD scheme, the Tx–SD scheme uses some pre–computations to estimate

the points that lie inside the sphere of radius R. These additional computations are carefully

taken into account in the analysis of the computational complexity of the Tx–SD scheme and

its comparison with the ML–optimum detector in section 4.3.
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4.3 Computational Complexity of Rx–SD and Tx–SD

In this section, the computational complexity of SM–ML, Rx–SD and Tx–SD is analysed. The

complexity is here computed as the number of real multiplications and divisions operations

needed by each algorithm [175].

4.3.1 SM–ML

The computational complexity of the SM–ML receiver in (2.16), yields,

CSM–ML = 8Nr2
η (4.17)

as the ML detector searches through the whole transmit and receive search spaces. Note, eval-

uating the Euclidean distance
(
|yr − hℓ,rs|2

)
requires 8 real multiplications.

The computational complexity of the SMX–ML receiver in (2.13) results in,

CSMX–ML = 4 (Nt + 1) Nr2
η (4.18)

Note,
(
|y −Hx|2

)
in (2.13) requires (Nt + 1) complex multiplications.

From (4.17) and (4.18), the complexity of SM does not depend on the number of transmit

antennas, and it is equal to the complexity of single–input multiple–ouput (SIMO) systems.

However, the complexity of SMX increases linearly with the number of transmit antennas.

The reduction of SM–ML receiver complexity relative to the complexity of the SMX–ML de-

coder for the same spectral efficiency is given by,

CML
rel = 100 ×

(
1 − 2

Nt + 1

)
(4.19)

From (4.19), the reduction in complexity offered by SM increases with the increase in the num-

ber of transmit antennas. For example for Nt = 4, SM offers a 60% reduction in complexity

compared to SMX, and as the number of transmit antennas increase the reduction increases.

57



Generalised Sphere Decoding

4.3.2 Rx–SD

The complexity of the Rx–SD receiver is given by:

CRx−SD = 3

Nt∑

ℓ=1

M∑

s=1

Ñr (ℓ, s) (4.20)

It is easy to show that CRx−SD lies in the interval 3× 2η ≤ CRx−SD ≤ 6Nr2
η, where the lower

bound corresponds to the scenario where Ñr (ℓ, s) = 1, and the upper bound corresponds to the

scenario where Ñr (ℓ, s) = 2Nr for ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM}. An interesting
observation is that Rx–SD offers a reduction in complexity even for the case of Nr = 1, where

the complexity lies in the interval 3 × 2η ≤ CRx−SD ≤ 6 × 2η . Note, the Rx–SD solution

requires no pre–computations with respect to the ML–optimum detector. In fact, Ñr (ℓ, s) for

ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM} in (4.9) are implicitly computed when solving the

detection problem in (4.8).

4.3.3 Tx–SD

The computational complexity of Tx–SD can be upper–bounded by,

CTx−SD ≤ CΘR
+ 3Nt

¯̄ΘR (4.21)

where ¯̄a denotes the cardinality of a, and CΘR
is the complexity of finding the points in the

subset ΘR,

CΘR
= CPre-Comp + CInterval (4.22)

where,

1. CPre-Comp is the number of operations needed to compute the Cholesky decomposition.

Calculating the upper triangular matrix D̄ using Cholesky decomposition has the com-

plexity [175],

CCH = 4N3
t /3 (4.23)

Calculation of Ḡ, ρ̄ and z̄ can be easily shown that it requires 2NrNt(2Nt+1), 2Nt(2Nt+

2Nr + 1) and Nt(2Nt + 1) real operations respectively, where back–substitution algo-

rithm was used for calculating ρ̄ [175]. Hence,

CPre-Comp = CCH + Nt(4NrNt + 6Nr + 6Nt + 3) (4.24)
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2. CInterval is the number of operations need to compute the intervals in (4.12),(4.13),

Cinterval = 2Nt + (2Nt + 3)N(4.13) (4.25)

where,

• For (4.12): 2Nt real divisions are needed.

• For (4.13): (2Nt + 3) N(4.13) real multiplication are needed, where (2Nt + 3) is

the number of real computations need to compute (4.13), and N(4.13) is the number

of times (4.13) is computed, which is calculated by simulations. Note that: i) the

interval in (4.13) depends on the antenna index ℓ and only the imaginary part of

the symbol s, ii) some symbols share the same imaginary part. Therefore, (4.13)

is only calculated for those points (ℓ, s) which lie in the interval in (4.12) and does

not have the same ℓ and Im{s} as a previously calculated point.

4.4 Error Probability of SM–SDs and Initial Radius SelectionMethod

In this section, an analytical upper bound for the ABER performance of SM–SD is derived.

Moreover, this section shows that SM–SD offers a near optimum performance. The ABER for

SM–SD is estimated using the union bound [110], which is as follows,

ABER
SM–SD

≤
∑

ℓt,st

∑

ℓ,s

N (x̄ℓt,st
, x̄ℓ,s)

η

EH {Pre,SM–SD}
2η

(4.26)

where N (x̄ℓt,st
, x̄ℓ,s) is the number of bits in error between x̄ℓt,st

and x̄ℓ,s, and,

Pr
e,SM–SD

= Pr
((

ℓ̃SM–SD, s̃SM–SD

)
6= (ℓt, st)

)
(4.27)

is the pairwise error probability of deciding on the point
(
ℓ̃SM–SD, s̃SM–SD

)
given that the point

(ℓt, st) is transmitted.

The probability of error Pre,SM–SD can be thought of as two mutually exclusive events depend-

ing on whether the transmitted point (ℓt, st) is inside the sphere. In other words, the probability

of error for SM–SD can be separated in two parts, as shown in [177]:
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• Pr
(
(ℓ̃SM–ML, s̃SM–ML) 6= (ℓt, st)

)
: The probability of deciding on the incorrect trans-

mitted symbol and/or used antenna combination, given that the transmitted point (ℓt, st)

is inside the sphere.

• Pr ((ℓt, st) /∈ ΘR): The probability that the transmitted point (ℓt, st) is outside the set of

points ΘR considered by the SD algorithm.

Therefore, the probability of error for SM–SD can be written as,

Pr
e,SM–SD

≤
(
Pr
(
(ℓ̃SM–ML, s̃SM–ML) 6= (ℓt, st)

)
+ Pr ((ℓt, st) /∈ ΘR)

)
(4.28)

However, the probability of error for the ML decoder is,

Pr
e,SM–ML

≤ Pr
(
(ℓ̃, s̃) 6= (ℓt, st)

)
(4.29)

Thus, SM–SD will have a near optimum performance when,

Pr ((ℓt, st) /∈ ΘR) << Pr
(
(ℓ̃, s̃) 6= (ℓt, st)

)
(4.30)

The probability of not having the transmitted point (ℓt, st) inside ΘR can be written as,

Pr ((ℓt, st) /∈ ΘR) = Pr

(
2Nr∑

r=1

∣∣ȳr − h̄ℓt,r s̄t

∣∣2 > R2

)

= Pr

(
κ >

(
R

σn/
√

2

)2
)

= 1 −
γ

(
Nr,

(
R
σn

)2
)

Γ(Nr)
(4.31)

where,

κ =

2Nr∑

r=1

∣∣∣∣
n̄r

σn/2

∣∣∣∣
2

(4.32)

is a central chi-squared random variable with 2Nr degree of freedom, and a cumulative distri-

bution function (CDF) equal to [110],
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Fκ(a, b) =
γ(b/2, a/2)

Γ(b/2)
(4.33)

where γ(c, d) is the lower incomplete gamma function given by,

γ(c, d) =

∫ d

0
tc−1e−tdt (4.34)

and Γ(c) is the gamma function given by,

Γ(c) =

∫ ∞

0
tc−1e−tdt (4.35)

The initial sphere radius considered in SM–SD is a function of the noise variance as given

in [178],

R2 = 2̺Nrσ
2
n (4.36)

where ̺ is a constant chosen to satisfy (4.30). In this chapter, this is done by assuming

Pr ((ℓt, st) /∈ ΘR) = 10−6 and back solving (4.31). For Nr = 1, 2, 4, ̺ = 13.8, 8.3, 5.3

respectively.

From all above, Pre,SM–SD can be formulated as,

Pr
e,SM–SD

= Pr
(∥∥ȳ − h̄ℓs̄

∥∥2
>
∥∥ȳ − h̄ℓt

s̄t

∥∥2
)

= Pr
(
ξ >

∥∥h̄ℓt
s̄t − h̄ℓs̄

∥∥) (4.37)

where,

ξ = 2Re
{(

h̄ℓt
s̄t − h̄ℓs̄

)T
n̄
}
∼ N

(
0, 2σ2

n

(∥∥h̄ℓt
s̄t − h̄ℓs̄

∥∥)) (4.38)

Then,

Pr
e,SM–SD

= Q





√∥∥h̄ℓt
s̄t − h̄ℓs̄

∥∥2

2σ2
n



 (4.39)

where Q(x) = (1/
√

2π)
∫ +∞
x e−t2/2dt.

61



Generalised Sphere Decoding

In the case of Rayleigh fading, the closed form solution for EH {Pre,SM–SD} in (4.26) can

be derived by employing the solution from [179, eq. (62)]. Note that the argument within

(4.39) can be represented as the summation of 2Nr squared Gaussian random variables, with

zero mean and variance equal to 1. This means that the argument in the Q–function can be

described by a central chi–squared distribution with 2Nr degrees of freedom. The result for

EH {Pre,SM–SD} is given as,

EH

{
Pr

e,SM–SD

}
=

[
ζ

(
σ2

s

4σ2
n

)]Nr Nr−1∑

r=0

(
Nr − 1 + r

r

)[
1 − ζ

(
σ2

s

4σ2
n

)]r

(4.40)

where σ2
s = ‖x̄ℓt,st

− x̄ℓ,s‖2
F and,

ζ(c) =
1

2

(
1 −

√
c

1 + c

)
(4.41)

Plugging (4.40) into (4.26) gives a closed form upper bound for the ABER of SM–SD. Next

section shows that (4.26) gives a tight upper bound for the ABER of SM–SD, and that SM–SD

offers a near optimum performance.

4.5 Results

In the following, Monte Carlo simulation results for at least 106 Rayleigh fading channel re-

alisations are shown to compare the performance and computational complexity of large scale

MIMO, SM–ML, SM–SD and SMX–SD.

4.5.1 Analytical performance of SM–SD

Figs. 4.1-4.2 show ABER simulation results for SM–ML, Rx–SD and Tx–SD compared with

the analytical bound derived in section 4.4, where η = 6, 8 and Nr = 4. From the figures it

can be seen that both Tx–SD and Rx–SD offer a near optimum performance, where the results

overlap with the results of the SM–ML optimum receiver. Furthermore, Figs. 4.1-4.2 the figure

validates the analytical bound as for BER < 10−2 all graphs closely match the analytical curve.

Note, it is will–known that the union bound is loose for low SNR [110].
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Figure 4.1: ABER against SNR. η = 6, and Nr = 4.
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Figure 4.2: ABER against SNR. η = 8, and Nr = 4.
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4.5.2 Comparison of the ABER performance of SM and SMX

Figs. 4.3 and 4.4 depict the ABER comparison between all possible combinations of SM and

SMX for η = 6 and Nr = 2, 4. In Fig. 4.3, we can observe that the ABER performance

depends on the number of transmit antennas used and, consequently, the constellation size. The

smaller the constellation size, the better the performance. Another observation that can be made

is that SM and SMX offer nearly the same performance when using the same constellation size.

However, in Fig. 4.4, where the number of receive antennas is increased, it can be noticed that

SM performs better than SMX. In particular, binary phase shift keying (BPSK)–SM provides

1 dB better performance than BPSK–SMX. Also 8–quadrature amplitude modulation (QAM)

SM offers a slightly better performance (∼ 0.5 dB) than 8-QAM SMX.

In Figs. 4.5 and 4.6, the ABER comparisons for η = 8 and Nr = 2, 4 are shown. In Fig.

4.5, SM and SMX offers almost similar performance for the same constellation size. However,

from Fig. 4.6 SM offers a better performance when the number of receive antennas increases.

In summary, SM offers a better or nearly the same ABER as SMX, where the ABER of both

systems depends on the size of the constellation diagram and the number of receive antennas.

Note, the ABER performance of SM can be improved by increasing the number of receive

antennas.
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Figure 4.3: ABER against SNR. η = 6, and Nr = 2.
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Figure 4.4: ABER against SNR. η = 6, and Nr = 4.
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Figure 4.5: ABER against SNR. η = 8, and Nr = 2.
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Figure 4.6: ABER against SNR. η = 8, and Nr = 4.

4.5.3 Complexity Analysis

In Figs. 4.7-4.10, the computational complexity of Rx–SD and Tx–SD provided in (4.20) and

(4.21) respectively is compared with the complexity of SMX–SD, where the initial radius is

chosen according to (4.36). In particular, the figures show the relative computational complex-

ity of the SDs with respect to the ML–optimum detector, i.e Crel (%) = 100 × (CSD/CML).

Note, for SM the SD with the lowest complexity is chosen.

In Figs. 4.7 and 4.8, the relative complexities for η = 6 and Nr = 2, 4 are shown. Fig.

4.7, shows that for large constellation size the lowest relative complexity is offered by Tx–SD

Nt = 2. The relative computational complexity ranges between 40% for low signal to noise

ratio (SNR) and 16% for high SNR. However, for lower constellation size Rx–SD provides the

lowest relative complexity, which is between 56% for low SNR and 26% for high SNR. As

Rx–SD reduces the receive search space, the reduction in complexity offered by Rx–SD does

not depend on the number of transmit antennas. Therefore, only Rx–SD with Nt = 4, 32 are

shown, where both scenarios offer nearly the same relative computational complexity. Finally,

from Fig. 4.7 it can be seen that SMX–SD, Nt = 2 and Nt = 3 are less complex than SM–ML
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with a relative complexity (48%) and 79% − 82% respectively. However, comparing SM–

SD to SMX–SD Nt = 2, for 32–QAM SM–SD is 32% less complex than SMX–SD, and for

BPSK SM–SD is 22% less complex than SMX–SD. In Fig. 4.8, it can be seen that for large

constellation size Tx–SD is still the best choice with a relative complexity that ranges between

22% − 12%, which is 15% less than SMX–SD, Nt = 2. For smaller constellation size Rx–

SD is the best choice with relative complexity that ranges between (55% − 14%)), offering a

(23%) extra reduction in complexity when compared to SMX–SD, Nt = 2. Note, i) SMX–

SD, Nt = 6 is not shown in the figure, because this scenario has a complexity higher than the

complexity of SM–ML, ii) the complexity of SMX–SD, Nt = 3 increased with the increase of

SNR, for the reason that, in the under-determined case ε depends on the SNR (4.10).

The relative complexity for η = 8 and Nr = 2, 4 is shown in Fig. 4.9 and 4.10. Since Tx–SD

reduces the transmit search space, the reduction in complexity increased by more than 10%

with the increase in the spectral efficiency and consequently the constellation size. In Fig. 4.9

for high constellation size Tx–SD, Nt = 2 is the best choice with a relative complexity that

reaches 4% for high SNR, and in Fig. 4.10 for high constellation size Tx–SD, Nt = 2 and

Nt = 4 are the best choice with a relative complexity that reaches 3% and 10% respectively.

On the other hand, Rx–SD reduces the receive search space, therefore, it still offers nearly the

same relative complexity. However, the complexity reduces with the increase of Nr, where

Rx–SD, Nr = 4 is ∼ 10% less complex than Rx–SD Nr = 2. Finally, from both figures

it can be seen that although SM–ML is much less complex than SMX–ML, SMX–SD is less

complex than SM–ML. For that reason, SM–SD has to be developed, where SM–SD is ∼ 20%

less complex than SMX–SD for Nr = 2, and ∼ 10% less complex than SMX–SD for Nr = 4.

Note, the complexity of both SM–Tx and SMX–SD decreases with the increase of Nr, because

for the case of Nr < Nt, the less under-determined the system, the fewer pre–computations are

needed.
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Figure 4.7: Computational complexity against SNR. η = 6, and Nr = 2.
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Figure 4.8: Computational complexity against SNR. η = 6, and Nr = 4.
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Figure 4.9: Computational complexity against SNR. η = 8, and Nr = 2.
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Figure 4.10: Computational complexity against SNR. η = 8, and Nr = 4.
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4.6 Summary

This chapter introduced and analysed the performance/complexity trade–off of two SDs de-

signed specifically for SM. Tx–SD which reduces the transmit search space, and Rx–SD which

reduces the receive search space. The proposed SDs provide a substantial reduction in the

computational complexity while retaining the same ABER as the ML–optimum detector. The

closed–form analytical performance of SM in identical and independently distributed (i.i.d.)

Rayleigh flat–fading channels has been derived, and analytical and simulation results were

shown to closely agree. Furthermore, numerical results have highlighted that no SD is superior

to the others, and that the best solution to use depends on the particular MIMO setup, and the

SNR at the receiver. In general, Rx–SD is the best choice for lower spectral efficiencies, and

Tx–SD is the best option for higher spectral efficiencies. Finally, simulation results showed that

SM using SD offers a significant reduction in computational complexity and nearly the same

ABER performance as SMX using ML decoder or SD.

In summary, SM–SD offers i) computational complexity and power consumption that does

not depend on the number of transmit antennas, ii) ABER performance that improves with

the increase of the number transmit antennas, and iii) significant reduction in computational

complexity compared to SMX.
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Chapter 5

Generalised Spatial Modulation with

Variable Number of Active Antennas

In this chapter, a generalised techniques for spatial modulation (SM) are presented. Generalised

spatial modulation (GNSM) and variable generalised spatial modulation (VGSM) overcome

the constraint in the number of transmit antennas needed by SM in a novel fashion. In GNSM

and VGSM, a block of information bits is mapped to a constellation symbol and a spatial sym-

bol. The spatial symbol is a combination of transmit antennas activated at each instance to

transmit the constellation symbol. While in GNSM the number of active antennas is constant,

however, for VGSM the number of active antennas varies. This is unlike SM where single

transmit antenna is activated at each instance. Hence, GNSM and VGSM increase the overall

spectral efficiency by base-two logarithm of the number of antenna combinations, thus reducing

the number of transmit antennas needed. Three receivers to determine the full information bits

by detecting the antenna combination and the transmitted symbol are proposed. The first re-

ceiver is based on the maximum–likelihood (ML) principle, and the last two receivers are based

on the sphere decoder (SD) principle. The performance of GNSMand VGSM is analysed in this

chapter, and a tight bound on the average bit error ratio (ABER) performance over, correlated

and uncorrelated, Rayleigh and Rician channels is derived. Finally, the performance of GNSM

and VGSM is validated through Monte Carlo simulations and compared to the performance of

SM and spatial multiplexing (SMX), where it is shown that the proposed schemes, GNSM and

VGSM use much smaller number of antennas than SM, have significantly lower computational

complexity than SMX, and need only one radio frequency (RF) chain, while having a small

penalty in the ABER performance. Therefore, the proposed schemes are good candidates for

low hardware, and computational complexity multiple–input multiple–output (MIMO) solu-

tions.
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5.1 Introduction

The logarithmic increase in spectral efficiency offered by spatial modulation (SM) and the

requirement that the number of antennas must be a power of two would require large number

of antennas. Fractional bit encoding spatial modulation (FBE–SM) in [37], was proposed to

overcome this limitation by using the theory of modulus conversion. By doing so, an arbitrary

number of transmit antennas can be used. However, FBE–SM suffers from error propagation.

Motivated by that, two new multiple–input multiple–output (MIMO) modulation systems, gen-

eralised spatial modulation (GNSM) and variable generalised spatial modulation (VGSM), are

proposed to over come the limitation in the number of transmit antennas. In GNSM and VGSM

the same symbol is transmitted simultaneously from more than than one transmit antenna.

Hence, more than one antenna is active and transmits the same symbol at a time. GNSM is first

proposed in [38] and in [39], where in [38], GNSM with maximum–likelihood (ML)–optimum

receiver is proposed, and in [39], GNSM with maximal ratio combining (MRC) sub–optimal

receiver is proposed. In GNSM the number of active antennas is constant. However, in VGSM

the number of active antennas varies from only one active antenna at a time to all antennas being

active and transmitting the same symbol. As a result, the number of transmit antennas required

by GNSM and VGSM to achieve a certain spectral efficiency and a constellation size is re-

duced. For example, for η = 4 and binary phase shift keying (BPSK) modulations, GNSM and

VGSM reduces the number of transmit antennas needed by SM, by 37% and 50% respectively.

The mapping procedure for GNSM and VGSM after grouping the incoming data sequence in

groups of η bits, can be summarised in two points: 1) The first ηℓ bits determine which antenna

combination to activate. 2) The last ηs bits are modulated and transmitted through the active

antennas.

Transmitting the same data symbol from the active antennas, retains the key advantages of SM:

• The complete avoidance of inter–channel interference (ICI) at the receiver, where all

active antennas transmit the same symbol.

• The low computational complexity, which is equal to the complexity of single–input

multiple–ouput (SIMO) systems.

• Only one radio frequency (RF) chain is needed, as all active antennas transmit the same

symbol.
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At the receiver three decoders are proposed. The first one is the ML–optimum receiver. The

other two sphere decoders (SDs) are Tx–SD and Rx–SD proposed for SM where in this chapter

they are extended to be used for GNSM and VGSM.

In this chapter, a careful study of the performance of both systems, GNSM and VGSM, us-

ing the three proposed detectors, along with an accurate comparison of their computational

complexity is provided. Moreover, a tight closed form expression for the average bit error

ratio (ABER) performance of GNSM and VGSM, over correlated and uncorrelated, Rayleigh

and Rician fading channels is derived. Results show that the proposed schemes, VGSM and

GNSM, use much smaller number of antennas than SM and have significantly lower computa-

tional complexity than spatial multiplexing (SMX), while having a small penalty in the ABER

performance. More specifically, VGSM and GNSM, reduces the number of transmit antennas

by up to 93%, when compared to SM. Furthermore, VGSM and GNSM, reduce the compu-

tational complexity by at least (40% when compared to SMX, while having an ABER penalty

between 1.5 − 4 dB. Therefore, proposed schemes are good candidates for low hardware and

computational complexity MIMO solutions.

The reminder of this chapter is organised as follows. In Section 5.2 and Section 5.3, the system

models for GNSM and VGSM are summarised. In Section 5.4, the three receivers, ML, Tx–SD,

and Rx–SD, are described. An accurate analysis of the computational complexity of, ML, Tx–

SD, and Rx–SD, is performed in Section 5.5. The analytical ABER performance for GNSM

and VGSM is derived along with the initial radius selection method in Section 5.6. Finally,

numerical results are presented in Section 5.7, and the chapter is concluded in Section 5.8.

Note, the channel model is introduced in 2.2.3.3.

5.2 Generalised Spatial Modulation

Unlike SM in GNSM more than one transmit antenna is active and sending the same complex

symbol at a time. Hence, a set of antenna combinations can be formed, and used as spatial con-

stellation points. The number of possible antenna combinations is
(Nt

Nu

)
, whereNt is the number

of transmit antennas, Nu is the number of active antennas at each instance, and
(·
·
)
denotes the

binomial operation. However, the number of antenna combinations that can be considered for

transmission must be a power of two. Therefore, only ̺GNSM = 2ηℓ combinations, can be used,

where ηℓ = ⌊log2

(Nt

Nu

)
⌋, and ⌊·⌋ is the floor operation.

73



Generalised Spatial Modulation with Variable Number of Active Antennas

Grouped Bits Antenna Combination (ΥGNSM)

000 (1,2)

001 (1,3)

010 (1,4)

011 (1,5)

100 (2,3)

101 (2,4)

110 (2,5)

111 (3,4)

Table 5.1: GNSM Mapping Table for Nt = 5 and Nu = 2, where (·, ·) indicates the indexes of
the active antennas

The GNSM mapper divides the incoming bit stream into blocks of η = ηℓ + ηs bits, where

η is the spectral efficiency and ηs = log2(M) where M is the size of the constellation dia-

gram. 1) The first ηℓ bits are used to select which antennas to activate. In this chapter, the

transmit–antennas which are active for transmission are denoted by ΥGNSM
t , with ΥGNSM

t ∈
{ΥGNSM

1 ,ΥGNSM
2 , . . . ,ΥGNSM

̺GNSM
}. 2) The last ηs bits are used to choose a symbol in the signal–

constellation diagram. Without loss of generality, quadrature amplitude modulation (QAM)

is considered in this chapter. The transmitted complex symbol is denoted by st, with st ∈
{s1, s2, . . . , sM}.

In general, the maximum number of bits that can be transmitted using GNSM is given by,

ηGNSM = ηℓ + ηs =

⌊
log2

(
Nt

Nu

)⌋
+ log2 M (5.1)

An example of the possible antennas combinations for the case of Nt = 5 and Nu = 2 is shown

in Table 5.1. Note, the antenna combinations (3, 4), (4, 5) are not used, that is because the

number of possible antenna combinations is
(
5
2

)
= 10. However, only ̺GNSM = 2⌊log2

(10)⌋ = 8

can be used. Therefore, only the first eight antenna combinations are used. Now let g =[
1 0 0 1

]
be the incoming data sequence. Then, from Table 5.1, the first ηℓ = 3 bits,

gℓ =
[

1 0 0
]
, give the antenna combination ΥGNSM

5 = (2, 3) to be used, and the last

ηs = 1 bit, gs =
[

1
]
, is modulated using BPSK modulation to st = +1. Hence, the

transmitted vector is xℓt,st
=
[

0 +1√
2

+1√
2

0 0
]T

. Note, the symbol is divided by the
√

Nu so that E[|x|2] = 1.

If SM is to be used instead of GNSM, for the same modulation order and spectral efficiency, the

number of antennas must be increased to eight, i.e., GNSM offered about ∼ 37.5% reduction

in Nt when compared to SM. Note, the spectral efficiency for SM is ηSM = log2(Nt) + ηs.
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5.3 Variable Generalised Spatial Modulation

Even though GNSM offers a large reduction in the number of transmit antennas when compared

to SM, there is still possibility for further reductions. In this section VGSM is proposed, where

the number of active antennas varies from only one active transmit antenna to all antennas

being active, and transmitting the same symbol. In this way, the number of possible antenna

combinations increases to,

̺′VGSM =

Nt∑

n=1

(
Nt

n

)
= 2Nt − 1 (5.2)

However, as the number of combinations must be a power of two, only ̺VGSM = 2ηℓ can be

used, where,

ηℓ = ⌊log2

(
2Nt − 1

)
⌋ = Nt − 1 (5.3)

Therefore, the spectral efficiency of VGSM is,

ηVGSM = ηs + ηℓ = ηs + Nt − 1 (5.4)

Comparing the number of transmit antennas needed by VGSM to the number of transmit anten-

nas needed by SM, for η = 4 bit and BPSK modulation, it can be seen that VGSM offers 50%

reduction in the number of transmit antennas, which is an extra 12.5% reduction in comparison

to the reduction offered by GNSM, and VGSM only needs four transmit antennas. Now, com-

paring the spectral efficiency of VGSM with the spectral efficiency of SMX, where the spectral

efficiency for SMX is ηSMX = ηsNt, it can be seen that the spectral efficiency of VGSM does

not increase linearly as the spectral efficiency of SMX. This means that VGSM needs a larger

number of transmit antennas/larger constellation size to have the same spectral efficiency as

SMX. However, because in VGSM the active antennas transmit the same symbol, the compu-

tational complexity of VGSM, as it is going to be shown later, does not depend on the number

of transmit antennas. Unlike SMX where the computational complexity increases linearly with

the number of transmit antennas. The computational complexity of VGSM is the same as the

computational complexity of SIMO systems.

An example of the possible antenna combinations that can be used for VGSM with Nt = 4

is shown in Table 5.2. It can be seen from the table that depending on the incoming bits, in

some cases, for example gℓ =
[

0 1 0
]
, only one transmit antenna, the third antenna, is

75



Generalised Spatial Modulation with Variable Number of Active Antennas

Grouped Bits Antenna Combination (ΥVGSM)

000 (1)

001 (2)

010 (3)

011 (4)

100 (1,2)

101 (1,3)

110 (1,4)

111 (2,3)

Table 5.2: VGSM Mapping Table for Nt = 4, where (·, ·) indicates the indexes of the active

antennas

active. And in other case, for example gℓ =
[

1 0 1
]
, two transmit antennas, first and third

antenna, are active and transmitting the same symbol.

As in GNSM, the mapping procedure for VGSM, after grouping the incoming data sequence in

groups of ηVGSM bits, can be summarised in two points,

• The first ηℓ bits are used to find which antenna combination to be used.

• The last ηs bits are modulated using M–QAM modulation, and transmitted from all the

active antennas.

5.4 Maximum Likelihood Receiver and Sphere Decoder

In this section two low complexity receivers designed for GNSM and VGSM are introduced.

The first receiver is ML–optimum detector, and the second receiver is based on the SD idea,

which avoids an exhaustive search by examining only those points that lie inside a sphere with

radius R. First, the real–valued equivalent of the complex–valued model in (2.1) following

[176] is introduced,

ȳ = H̄cx̄ℓt,st
+ n̄ = h̄ℓt

c s̄t + n̄ (5.5)

where denoting Re {·} and Im {·} the real and imaginary parts respectively, and,
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ȳ =
[
Re
{
yT
}

, Im
{
yT
}]T

(5.6)

H̄c =



 Re {Hc} Im {Hc}
−Im {Hc} Re {Hc}



 (5.7)

x̄ℓt,st
=

[
Re
{
xT

ℓt,st

}
, Im

{
xT

ℓt,st

}]T
(5.8)

n̄ =
[
Re
{
nT
}

, Im
{
nT
}]T

(5.9)

h̄ℓ
c =




∑

n∈Υℓ

h̄n,
∑

n∈Υℓ

h̄n+Nt



 (5.10)

s̄ =



 Re{s}
Im{s}



 (5.11)

where h̄i is the i–th column of H̄c.

5.4.1 ML–Optimum Detector

The ML–optimum receiver for MIMO systems can be written as,

x̂
(ML)
t = arg min

x∈Qη

{∥∥ȳ − H̄cx̄
∥∥2

F

}
(5.12)

where Qη is a 2η space containing all possible (Nt × 1) transmitted vectors, ‖·‖F is the Frobe-

nius norm, and ·̂ denotes the estimated spatial and constellation symbols. In GNSM and VGSM

all active antennas transmit the same symbol. Therefore, (5.12) can be simplified to,

[
ℓ̂
(ML)
t , ŝ

(ML)
t

]
= F arg min

s∈M–QAM
ℓ∈{1,2,...,̺}

{∥∥∥ȳ − h̄ℓ
cs̄

∥∥∥
2

F

}

= arg min
s∈M–QAM
ℓ∈{1,2,...,̺}

{
2Nr∑

r=1

∣∣∣ȳr − h̄ℓ
c,r s̄

∣∣∣
2
}

(5.13)

where ȳr is the r–th entry of ȳ, and h̄ℓ
c,r is the r–th row of h̄ℓ

c.
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5.4.2 Sphere Decoding

Two SDs are presented here, Rx–SD and Tx–SD. Rx–SD aims at reducing the number of sum-

mations over Nr done by the ML receiver in (5.13). Tx–SD aims at reducing the number of

points (ℓ, s) the ML receiver searches over.

5.4.2.1 Rx–SD Detector

The Rx–SD is a reduced–complexity and close–to–optimal ABER–achieving decoder, which

aims at reducing the receive search space. The detector can formally be written as follows:

[
ℓ̂
(Rx−SD)
t , ŝ

(Rx−SD)
t

]
= arg min

s∈M–QAM
ℓ∈{1,2,...,̺}






Ñr(ℓ,s)∑

r=1

∣∣∣ȳr − h̄ℓ
c,r s̄

∣∣∣
2




 (5.14)

where,

Ñr (ℓ, s) = max
n∈{1,2,...2Nr}

{
n

∣∣∣∣∣

n∑

r=1

∣∣∣ȳr − h̄ℓ
c,rs̄

∣∣∣
2
≤ R2

}
. (5.15)

The algorithm executes the following steps: 1) It keeps combining the received signals as long

as the Euclidean distance in (5.14) is less or equal to the radius R. 2) Whenever a point is

found to be inside the sphere, the radius, R, is updated with the Euclidean distance of that

point. 3) The point with the minimum Euclidean distance and Ñr (·, ·) = 2Nr is considered to

be the solution.

5.4.2.2 Tx–SD Detector

SD in literature is designed for SMX, where all antennas are active and transmitting different

symbols [10, 140, 141, 142], or for SM, where only one antenna is active [180]. However, in

GNSM and VGSM more than one antenna can be active and transmitting the same symbol.

Therefore, a modified SD that reduces the transmit search space, designed for GNSM and

VGSM is presented. The transmit search space is reduced by computing the Euclidean distances

only for those points, (ℓ, s) ∈ (Υ,M–QAM), which lie inside a sphere with radius R and are

centred around the received signal.

Let Cholesky factorisation of the (2Nt × 2Nt) positive definite matrix Ḡ = H̄T H̄ + ε̄INt be

Ḡ = D̄T D̄, where

ε =





σ2

n Nt > Nr

0 Nt ≤ Nr

(5.16)
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Then the Tx–SD can be formally written as follow,

[
ℓ̂
(Tx−SD)
t , ŝ

(Tx−SD)
t

]
= arg min

(ℓ,s)∈ΘR

{∥∥z̄− D̄x̄ℓ,s

∥∥2

F

}

= arg min
(ℓ,s)∈ΘR






∥∥∥∥∥∥
z̄ −




∑

n∈Υℓ

d̄n,
∑

n∈Υℓ

d̄n+Nt



 s̄

∥∥∥∥∥∥

2

F




 (5.17)

where ΘR is the subset of points (ℓ, s) for ℓ ∈ {1, 2, . . . , ̺} and s ∈ M–QAM in the transmit

search space which lie inside a sphere with radius R and are centred around the received signal

z̄, z̄ = D̄ρ̄, ρ̄ = Ḡ−1H̄T ȳ, and d̄n is the n–th column of D̄.

After some algebraic manipulations on (5.17), the subset of points ΘR lie in the intervals:

−Ri + z̄Υ1

ℓ
+Nt∑

n∈Υℓ
D̄(Υ1

ℓ
+Nt,n+Nt)

≤ Im {s} ≤
Ri + z̄Υ1

ℓ
+Nt∑

n∈Υℓ
D̄(Υ1

ℓ
+Nt,n+Nt)

(5.18)

−R′ + z̄Υ1

ℓ
|ℓ∑

n∈Υℓ
D̄Υ1

ℓ
,n

≤ Re {s} ≤
R′ + z̄Υ1

ℓ
|ℓ∑

n∈Υℓ
D̄Υ1

ℓ
,n

(5.19)

where Υ1
ℓ is the index of the first antenna in the antenna combination Υℓ, and,

z̄a|b = z̄a −
∑

n∈Υb

D̄(a,n+Nt)Im {s} (5.20)

R′2 = R2 −
2Nt∑

nt=Nt+1

z̄2
nt|ℓ (5.21)

Note, every time a point is found inside the sphere, the radius R is updated with the Euclidean

distance of that point,

R2
i+1 =

∥∥∥∥∥∥
z̄ −




∑

n∈Υℓ

d̄n,
∑

n∈Υℓ

d̄n+Nt



 s̄

∥∥∥∥∥∥

2

F

= (R2
i − R′2) +

Nt∑

ν=1



zν −
∑

n∈Υℓ

D(ν,n)Re {s} −
∑

n∈Υℓ

D(ν,n+Nt)Im {s}




2

(5.22)

Furthermore, Tx–SD works for both under-determined MIMO setup with Nt > Nr, and non-

under-determined MIMO setup with Nt ≤ Nr.
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5.5 Computational Complexity of Rx–SD and Tx–SD

In this section, the computational complexity of SM–ML, Rx–SD and Tx–SD is analysed. The

complexity is here computed as the number of real multiplicative operations (×,÷) needed by

each algorithm [175].

5.5.1 ML–Optimum Detector

The computational complexity of GNSM–ML and VGSM–ML receiver in (5.13), is equal to,

CML = 6Nr2
η (5.23)

as the ML detector searches through the whole transmit and receive search spaces. Note, eval-

uating the Euclidean distance
(∣∣ȳr − h̄ℓ

rs̄
∣∣2
)
requires 6 real multiplications.

The computational complexity of SMX–ML receiver in (5.12) is equal to

CSMX–ML = 4 (Nt + 1) Nr2
η (5.24)

Note, in (5.12)
(
|y − Hx|2

)
requires (Nt + 1) complex multiplications.

From (5.23), the complexity of GNSM and VGSM does not depend on the number of transmit

antennas, and it is equal to the complexity of SIMO systems. However, the complexity of SMX

increases linearly with the number of transmit antennas, as shown in (5.24).

The reduction of GNSM and VGSM –ML receiver complexity relative to the complexity of the

SMX–ML decoder for the same spectral efficiency is given by,

CML
rel = 100 ×

(
1 − 3

2(Nt + 1)

)
(5.25)

The reduction in complexity offered by GNSM and VGSM increases with the increase in the

number of transmit antennas. For example for Nt = 8, GNSM and VGSM both offer a 83.33%

reduction in complexity, and as the number of transmit antennas increase the reduction in-

creases.

80



Generalised Spatial Modulation with Variable Number of Active Antennas

5.5.2 Rx–SD

The complexity of the Rx–SD receiver is given by:

CRx–SD = 3
∑̺

ℓ=1

M∑

s=1

Ñr (ℓ, s) (5.26)

Note that the Rx–SD solution has no pre–computations with respect to the ML–optimum detec-

tor. In fact, Ñr (ℓ, s) for ℓ ∈ {1, 2, . . . ̺} and s ∈ M–QAM in (5.15) are implicitly computed

when solving the hypothesis–detection problem in (5.14).

5.5.3 Tx–SD

The computational complexity of Tx–SD can be upper–bounded by,

CTx–SD ≤ CΘR
+ 3Nt

¯̄ΘR (5.27)

where ¯̄a denotes the cardinality of a, and CΘR
is the complexity of finding the points in the

subset ΘR,

CΘR
= CPre-Comp + CInterval (5.28)

where,

CPre-Comp = CCH + Nt(4NrNt + 6Nr + 6Nt + 3) (5.29)

Cinterval = 2Nt + (2Nt + 3)N(5.19) (5.30)

where CCH = 4N3
t /3 is the number of operations needed to compute the Cholesky decomposi-

tion [175], and N(5.19) is the number of times (5.19) is computed.

Note, from Chapter 4, and (5.23), (5.26) and (5.27), the complexity of GNSM and VGSM

receivers is equal to the complexity of SM ML and SD receivers.
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5.6 Analytical Analysis for GNSM and VGSM

5.6.1 Average Bit Error Rate Performance

The ABER for ML–GNSM and ML–VGSM systems can be approximated by using the union

bound [110], which can be expressed as follows,

ABER ≤ 1

2η

∑

ℓt,st

∑

ℓ,s

N (xℓt,st
,xℓ,s)

η
EH

{
Pr
error

}
(5.31)

where N (xℓt,st
,xℓ,s) is the number of bits in error between xℓt,st

and xℓ,s, EH{·} is the ex-

pectation across the channel H, and Pr
error

is the conditional pairwise error probability (PEP) of

deciding on xℓ,s given that xℓt,st
is transmitted,

Pr
error

= Pr

(
‖y − Hcxℓt,st

‖2 > ‖y − Hcxℓ,s‖2

∣∣∣∣H
)

= Q




√

‖HcΨ‖2

2σ2
n



 =
1

π

∫ π
2

0
exp

(

− ‖HcΨ‖2

4σ2
n sin2 θ

)

dθ (5.32)

where Ψ = (xℓt,st
− xℓ,s), and from [171, 172], the alternative integral expression of the Q-

function is,

Q(x) =
1

π

∫ π
2

0
exp

(
x2

2 sin2 θ

)
dθ (5.33)

Taking the expectation of (5.32),

EH

{
Pr
error

}
=

1

π

∫ π
2

0
Φ

(
− 1

4σ2
n sin2 θ

)
dθ (5.34)

where Φ (·) is the moment-generation function (MGF) of the random variable ‖HΨ‖2
.

From [173], the argument of the MGF in (5.34) can be written as,

‖HcΨ‖2 = vec
(
HH

)H
R

H
2

s

(
INr ⊗ ΨΨH

)
R

1

2

s vec
(
HH

)
(5.35)

where In is an n × n identity matrix, and (·)H
denotes the Hermitian.
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From [174], for an identical and independently distributed (i.i.d.) complex Gaussian vector v

with mean ṽ, and any Hermetian matrix Q, the MGF of f = vHQv is,

Φ(s) =
exp

(
sṽHQ (I − sLvQ)−1

ṽ
)

|I − sLvQ| (5.36)

where (̃·) denotes the mean, and Lv is the covariance matrix of v. Hence, from (5.35) and

(5.36), the MGF in (5.34) is,

Φ (s) =

exp

(
s × vec

(
H̃H

)H
Λ (INrNt − sLHΛ)−1

vec
(
H̃H

))

|I − sLHΛ| (5.37)

where (·)H
denotes the Hermitian, LH is the covariance matrix of H, and,

Λ = R
H
2

s

(
INr ⊗ ΨΨH

)
R

1

2

s = RRx ⊗
(
ΨΨHRTx

)
(5.38)

From (5.32),(5.37), and using the Chernoff bound,

EH

{
Pr
error

}
=

1

π

∫ π
2

0

exp

(
− 1

4σ2
n sin2 θ

vec
(
H̃H

)H
Λ
(
INrNt + 1

4σ2
n sin2 θ

LHΛ
)−1

vec
(
H̃H

))

∣∣∣INrNt + 1
4σ2

n sin2 θ
LHΛ

∣∣∣
dθ

≤ 1

2π

exp

(
− 1

4σ2
n
vec
(
H̃H

)H
Λ
(
INrNt + 1

4σ2
n
LHΛ

)−1
vec
(
H̃H

))

∣∣∣INrNt + 1
4σ2

n
LHΛ

∣∣∣
(5.39)

The mean matrix H̃ and the covariance matrix LH depends on the type of channel, where for,

1. Rayleigh Fading

H̃ = 0Nr×Nt (5.40)

LH = INrNt (5.41)

2. Rician Fading

H̃ =

√
K

1 + K
× 1Nr×Nt (5.42)

LH =

√
1

1 + K
× INrNt (5.43)

where 1Nr×Nt is an Nr × Nt all ones matrix.

In Section 5.7, the bound is shown to be a tight upper bound for GNSM and VGSM.
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5.6.2 Initial Radius Selection Method for Rx–SD and Tx–SD

From [177], the probability of error for SD can be written as,

Pr
e,SD

≤
(

Pr
e,ML

+ Pr ((ℓt, st) /∈ ΘR)

)
(5.44)

where Pr ((ℓt, st) /∈ ΘR) is the probability of the transmitted point (ℓt, st) being outside the set

of points ΘR considered by SD.

Therefore, SD will have a near optimum performance when,

Pr ((ℓt, st) /∈ ΘR) << Pr
e,ML

(5.45)

The probability of not having the transmitted point (ℓt, st) inside ΘR can be written as,

Pr ((ℓt, st) /∈ ΘR) = Pr

(
2Nr∑

r=1

∣∣∣ȳr − h̄ℓt
c,rs̄t

∣∣∣
2

> R2

)

= Pr

(

κ >

(
R

σn/
√

2

)2
)

= 1 −
γ

(
Nr,

(
R
σn

)2
)

Γ(Nr)
(5.46)

where κ =
∑2Nr

r=1

∣∣∣ n̄r

σn/2

∣∣∣
2
is a central chi-squared random variable with 2Nr degree of freedom,

and a cumulative distribution function (CDF) equal to [110],

Fκ(a, b) =
γ(b/2, a/2)

Γ(b/2)
(5.47)

where γ(c, d) is the lower incomplete gamma function, and Γ(c) is the gamma function,

γ(c, d) =

∫ d

0
tc−1e−tdt (5.48) Γ(c) =

∫ ∞

0
tc−1e−tdt (5.49)

Note, n̄r is the r–th element of the noise vector n̄.

The initial sphere radius considered in this chapter is a function of the noise variance as given

in [178],

R2 = 2̺Nrσ
2
n (5.50)

where ̺ is a constant chosen to satisfy (5.45). This done assuming Pr ((ℓt, st) /∈ ΘR) = 10−6

and back solving (5.46) to obtain ̺. For Nr = 1, 2, 4, ̺ = 13.8, 8.3, 5.3 respectively.
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5.7 Results

In the following, Monte Carlo simulation results for at least 106 channel realisations are shown

to compare the ABER performance and the computational complexity of VGSM, GNSM, SM

and SMX.

5.7.1 Analytical Performance of GNSM and VGSM

Figs. 5.1 - 5.4 show the ABER simulation results for GNSM and VGSM using ML, Rx–SD

and Tx–SD over correlated and uncorrelated, Rayleigh and Rician channels, compared with the

analytical bound derived in Sec. 5.6. Note, η = 8, Nr = 4, for GNSM Nt = 12 and Nu = 3,

for VGSM Nt = 8, and BPSK modulation is used.

The figures shows that both Rx–SD and Tx–SD offer a near optimum performance, where they

directly overlap with results attained from the ML–optimum receiver. Furthermore, the figures

validate the derived analytical bound as for ABER < 10−2 all detection techniques produce

results that follow closely the analytical curves. Another observation is that for non–line of

sight (NLoS) channels there is only 1 dB difference between the performance of GNSM and

VGSM. However, for line of sight (LoS) channels VGSM performs the same as GNSM.
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Figure 5.1: ABER against SNR for GNSM and VGSM over a Rayleigh channel, where η =
8, Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, and BPSK

modulation is used.
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Figure 5.2: ABER against SNR for GNSM and VGSM over a Rayleigh channel, where η =
8, Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, and BPSK

modulation is used.
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Figure 5.3: ABER against SNR for GNSM and VGSM over a Rician channel, where η = 8,
Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, and BPSK modula-

tion is used.
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Figure 5.4: ABER against SNR for GNSM and VGSM over a Rician channel, where η = 8,
Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, and BPSK modula-

tion is used.

5.7.2 ABER Performance Comparison

Figs. 5.5 - 5.8, show a comparison of the ABER performance between GNSM with Nt = 12

and Nu = 3, VGSM with Nt = 8, SM with Nt = 128, SMX with Nt = 8, using BPSK

modulation, over uncorrelated and correlated, Rayleigh channels and Rician channels withK =

10 dB, for η = 8 and Nr = 4. The correlation decay coefficients are chosen to model moderate

correlation, with βt = 0.7 at the transmitter size and βr = 0.6 at the receiver side.

Comparing Figs. 5.5 and 5.6, with Figs. 5.7 and 5.8, it can be seen that GNSM and VGSM

perform better with Rayleigh channels, because in the case of NLoS channels it is easier to

distinguish the active antennas at the transmitter. However, in the presence of a strong line-

of–sight component, the performance of GNSM and VGSM degrades as it is more difficult to

distinguish the active antennas. For Rayleigh channels in Figs. 5.5 and 5.6, it can be seen that

for both cases, correlated and uncorrelated channels, VGSM and GNSM perform ∼ 4 dB and

∼ 3 dB worse than SM respectively. However, VGSM and GNSM need only Nt = 8 and

Nt = 12, while SM needs Nt = 128. Now, comparing VGSM and GNSM to SMX, on the

one hand, VGSM and GNSM perform ∼ 2.5 dB and ∼ 1.5 dB worse then SMX. On the other

hand, from (5.25) the complexity of VGSM and GNSM is 83.33% less than the complexity of

SMX as it does not depend on the number of transmit antennas.
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Figure 5.5: ABER against SNR for GNSM, VGSM, SM and SMX over a Rayleigh channel,

where η = 8, Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for
SM Nt = 128, for SMX Nt = 8, using BPSK modulation.
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Figure 5.6: ABER against SNR for GNSM, VGSM, SM and SMX over a Rayleigh channel,

where η = 8, Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for
SM Nt = 128, for SMX Nt = 8, using BPSK modulation.
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Figure 5.7: ABER against SNR for GNSM, VGSM, SM and SMX over a Rician channel, where

η = 8, Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for SM
Nt = 128, for SMX Nt = 8, using BPSK modulation.
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Figure 5.8: ABER against SNR for GNSM, VGSM, SM and SMX over a Rician channel, where

η = 8, Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for SM
Nt = 128, for SMX Nt = 8, using BPSK modulation.
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In summary, VGSM and GNSM does not offer the same performance as SM or SMX as the Eu-

clidean distances between the different spatial and constellation symbols are smaller. However,

it offers an acceptable performance, with a much smaller number of transmit antennas com-

pared to SM, up to (93.75%) and (90.625%) reduction in the number of antennas by VGSM

and GNSM respectively. Furthermore, a much lower complexity compared to SMX, where up

to (83.33%) reduction in complexity is offered.

5.7.3 Computational Complexity Comparison between Tx–SD and Rx–SD

Fig. 5.9 shows the computational complexity of VGSM–SD for η = 6, 8, 10, 12, Nt = 6

and Nr = 4, where BPSK, 8–QAM, 32–QAM, and 128–QAM is used. The initial radius is

chosen according to (5.50). Note, in order to keep the results clear and to highlight the main

points, the Tx–SD and Rx–SD algorithms, with the lowest complexity are shown. In particular,

the figure shows the relative computational complexity of the SDs with respect to the SIMO

ML–optimum detector, i.e Crel (%) = 100 × (CSD/CML).

Tx–SD reduces the transmit search space, more specifically it reduces the search over the pos-

sible constellation points used for each antenna combination, this offers a large reduction in

transmit search space. However, Tx–SD requires some pre–computations, and the reduction

in complexity has to be large enough to compensate for these pre–computations. Therefore,

the Tx–SD reduces the complexity of the ML–optimum receiver only for large constellation

diagrams. For small constellation diagrams, Rx–SD is the best choice, as it does not require

any pre–computations. Fig. 5.9 summarises this investigation, where for large constellation

diagrams, 32–QAM and 128-QAM, Tx–SD was chosen, as the reduction in the transmit search

space is large enough to compensate for the pre–computations. However, for small constellation

diagrams, BPSK and 8–QAM, Rx–SD was the best choice. Finally, comparing BPSK Rx–SD

with 8–QAM Rx–SD, it can be seen that they both offer the same reduction, even though the

latter is using four times bigger constellation digram. That is because the Rx–SD reduces the

receive search space, and therefore does not depend on the size of the constellation diagram

used.
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Figure 5.9: Computational complexity against SNR, for uncorrelated Rayleigh channels, where

Nr = 4.

5.7.4 Computational Complexity Comparison between GNSM, VGSM, SM and

SMX

In Figs. 5.10-5.13, the computational complexity of GNSM–SD with Nt = 12 and Nu = 3,

and VGSM–SD with Nt = 8 is compared with the complexity of SM–SD with Nt = 128 and

SMX–SD with Nt = 8, over uncorrelated and correlated, Rayleigh and Rician channels, for

η = 8, Nr = 4, and BPSK modulation. Note, for GNSM, VGSM, and SM the SD, (Rx–SD,

Tx–SD), with the lowest complexity is chosen.

In all figures it can be seen that GNSM–SD and VGSM–SD offer a relative complexity as low

as SM, where it is in the range between 43% for low signal to noise ratio (SNR) and 13% for

high SNR. Moreover, GNSM–SD and VGSM–SD is at least 30% less complex than SMX–

SD. Another point to notice is that, the reduction in complexity offered by GNSM–SD and

VGSM–SD is the same for correlated and uncorrelated, Rayleigh and Rician channels, i.e. the

performance of GNSM–SD and VGSM–SD does not depend on the channel, unlike SMX–SD

where the reduction in complexity is not the same for correlated and uncorrelated channels.

For uncorrelated Rayleigh channels SMX–SD offers a relative complexity that is about 75%,
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for correlated Rayleigh channels SMX–SD offers 86%. However, for Rician correlated and

uncorrelated channels SMX–SD has a relative complexity that is higher than 100%.

In summary, GNSM–SD and VGSM–SD reduce the number of transmit antennas needed by

SM while attaining the same reduction in computational complexity, which is significantly less

than the complexity of SMX–SD.
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Figure 5.10: Computational complexity against SNR, for Rayleigh channels, where η = 8,
Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for SM Nt = 128,
for SMX Nt = 8, using BPSK modulation.
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Figure 5.11: Computational complexity against SNR, for Rayleigh channels, where η = 8,
Nr = 4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for SM Nt = 128,
for SMX Nt = 8, using BPSK modulation.
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Figure 5.12: Computational complexity against SNR, for Rician channels, where η = 8, Nr =
4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for SM Nt = 128, for
SMX Nt = 8, using BPSK modulation.
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Figure 5.13: Computational complexity against SNR, for Rician channels, where η = 8, Nr =
4, for GNSM Nt = 12 and Nu = 3, for VGSM Nt = 8, for SM Nt = 128, for
SMX Nt = 8, using BPSK modulation.

5.8 Summary

In this chapter, the idea of SM was generalised by sending the same symbol from more than

one transmit antenna at a time. Hence, the basic idea of SM is no longer limited to a power

of two number of transmit antennas and an arbitrary number of transmit antennas can be used.

Furthermore, three receivers were proposed. The first receiver is based on the ML principle,

and the last two receivers, Tx–SD and Rx–SD, are based on the SD principle. Also a tight

closed form expression for the ABER performance of GNSM and VGSM, over correlated and

uncorrelated, Rayleigh and Rician fading channels was provided. Results show that the pro-

posed schemes, VGSM and GNSM, use much smaller number of antennas than SM and have

significantly lower computational complexity and number of RF chains than SMX, while hav-

ing a small penalty in the ABER performance. Overall, GNSM and VGSM are good candidates

for smaller number of transmit antennas and low computational complexity MIMO solutions.
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Chapter 6

Performance of Spatial Modulation

using Measured Real-World Channels
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6.1 Introduction

In this chapter, for the first time real–world channel measurements are used to analyse the per-

formance of spatial modulation (SM). An analysis of the average bit error ratio (ABER) of

SM using measured urban correlated and uncorrelated Rayleigh fading channels is provided.

The channel measurements which are taken from an outdoor urban multiple–input multiple–

output (MIMO) measurement campaign were provided by Dr. William Thompson and Prof.

Mark Beach, university of Bristol, as part of the beyond fourth generation (4G), UK–China

bridges project. Moreover, performance results using simulated Rayleigh fading channels are

provided and compared with the analytical bound for the ABER of SM, and the ABER results

using the measured urban channels. It is shown that the results using the measured urban chan-

nels validate the derived analytical bound and the ABER results using the simulated channels.

The ABER of SM is compared with the performance of spatial multiplexing (SMX) using the

measured urban channels for small and large scale MIMO. It is shown that SM offers nearly the

same or a slightly better performance than SMX for small scale MIMO. However, SM offers

large reduction in ABER for large scale MIMO.

The remainder of this chapter is organised as follows. In Section 6.2, the channel measurements

are introduced. In Section 6.3, an analytical bound for SM over correlated and uncorrelated

Rayleigh channels is derived. The results are presented in Section 6.4, and the chapter is con-

cluded in Section 6.5. Note, the operating principle of SM is explained in 2.4.1, the channel

model is introduced in 2.2.3.3, and the SM–maximum–likelihood (ML) decoder is described

in 2.4.2.

6.2 Channel Measurement and Model

The channel measurements used within this chapter were acquired within the Mobile VCE

MIMO elective [181]. MIMO channel measurements were taken around the centre of Bristol in

the United Kingdom, using a MEDAV RUSK channel sounder, a 4 × 4 antenna configuration,

with 20 MHz bandwidth centred at 2 GHz. The transmitter consisted of a pair of dual polarised

(±45◦) Racal Xp651772 antennas [182] separated by 2 m, positioned atop a building, providing

elevated coverage of the central business and commercial districts of Bristol city. At the receiver

two different receiver devices are used, both equipped with four antennas [183, 184].

The two receiver devices are a reference headset and a laptop. The reference antenna design

is based on 4-dipoles mounted on a cycle helmet, thus avoiding any shadowing by the user.

The laptop is equipped with 4 PIFA elements, both devices are detailed in [181]. Fifty–eight
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measurement locations were chosen around the city. At each location the user walked, holding

the laptop in front of them and the reference device on their head, in a straight line roughly 6

m long, until 4096 channel snapshots have been recorded. A second measurement is then taken

with the user walking a second path perpendicular to the first. As the measurement speed is

significantly faster than the coherence time of the channel, the measurements are averaged in

groups of four to reduce measurement noise.

One set of measurement results with the laptop and reference device, and a second set of only

the reference device measurements taken at the same locations, but on different days, is also

included in the measurement data for analysis. This provides a total of 348 different measure-

ment sets, each containing 1024 snapshots of a 4 × 4 MIMO channel, with 128 frequency bins

spanning the 20 MHz bandwidth. As the simulations are carried out using flat fading channels,

a single frequency bin centred around 2 GHz, is chosen from each measurement snapshot to

create the narrowband channel.

6.2.1 Small Scale MIMO

For small scale MIMO, Rayleigh fading channels were distinguished using the Chi-squared

goodness of fit test, with a significance level of 1%, where of the 348 measurements, only 20

measurements fulfilled this requirement. Fig. 6.1 shows the probability distribution function

(PDF) for the envelop of one of the chosen channel measurements, and compare it with the

PDF for a Rayleigh distribution. It can be seen from Fig. 6.1 that the distribution of the channel

envelop is not exactly a Rayleigh distribution, however, it closely follow a Rayleigh distribu-

tion. For each measurement the transmit and receive correlation matrices are estimated, then

the decay of the correlation, based on the antenna indices, is fitted to an exponential decay

model [137], Two channels with the lowest mean square error between the exponential decay

in (2.12) and the actual correlation matrices were chosen for the two correlated channel results.

Both of the chosen channels are from measurements taken using the laptop device, and the

measured decay coefficients for the transmitter and receiver are 0.5 and 0.8 for the first channel

and 0.7 and 0.4 for the second channel respectively.

For the uncorrelated channels, the two channels with the lowest average correlation coefficient

between their MIMO channels are chosen. One is from the laptop measurements, and the other

from the reference headset device measurements. Selecting the channels in this manner may

not provide completely uncorrelated channels, as there may still be a small correlation between

the channels. However, this manner of selection will provide the channel measurements that

experienced the lowest spatial correlations.
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Figure 6.1: The PDF for the envelope of the urban channel measurements compared with the

PDF for the Rayleigh distibution.

6.2.2 Large Scale MIMO

The original measurements were taken using 4 × 4 system. However, a larger virtual MIMO

systems can be created by exploiting the measurements. In particular, the following steps are

taken in order to create the large scale channel array:

1. Channel measurements from the reference device are used to exclude the body shadowing

effects.

2. The original channels are reversed, such that the mobile station becomes the transmitting

device. The reason for that is that the transmitters of the original channel measurements

are fixed on top of a building, while the receiver device moved.

3. The first channel from each snapshot of the walking measurements, was chosen to form

each of the virtual array transmitters, resulting in a virtual array with 1024 elements.

4. To reduce the correlation between adjacent channels, every fourth element of this array

was chosen, forming a maximum array size of 256 antennas. These are equally spaced

along a path of about 6 m in length.

5. The locations with good fitting to Rayleigh fading distributions were first chosen, and

then those that showed the lowest variation in their Rayleigh fading statistics between

each virtual spatial channel were selected. This is done to avoid the scenario where the

user experienced significant channel shadowing along part of the walking measurement,

as this would introduce a significant power imbalance in the virtual MIMO channel.

The Rayleigh fading mean statistic of the normalised constructed virtual MIMO channel has an

average of 0.70, and a variance of 0.16.
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6.3 Analytical Modelling of SM–ABER over Correlated and Un-

correlated Channels

The ABER for SM system can be approximated by using the union bound [110], which can be

expressed as follows,

ABER
SM

≤
∑

ℓt,st

∑

ℓ,s

N (xℓt,st
,xℓ,s)

η

EH {Pr (xℓ,s 6= xℓt,st
)}

2η
(6.1)

where N (xℓt,st
,xℓ,s) is the number of bits in error between xℓt,st

and xℓ,s, EH{·} is the expec-
tation across the channel H and Pr (xℓ,s 6= xℓt,st

) is the conditional pairwise error probability

(PEP) of deciding on xℓ,s given that xℓt,st
is transmitted,

Pr (xℓ,s 6= xℓt,st
) = Pr

(
‖y − Hcxℓt,st

‖2 > ‖y − Hcxℓ,s‖2

∣∣∣∣H
)

= Q




√

‖HcΨ‖2

2σ2
n





=
1

π

∫ π
2

0
exp

(
− ‖HcΨ‖2

4σ2
n sin2 θ

)
dθ (6.2)

where Ψ = (xℓt,st
− xℓ,s), from [171,172] the alternative integral expression of the Q-function

is,

Q(x) =
1

π

∫ π
2

0
exp

(
x2

2 sin2 θ

)
dθ. (6.3)

Taking the expectation of (6.2),

EH {Pr (xℓ,s 6= xℓt,st
)} =

1

π

∫ π
2

0
Φ

(
− 1

4σ2
n sin2 θ

)
dθ (6.4)

where Φ (·) is the moment-generation function (MGF) of the random variable ‖HcΨ‖2
.

From [173], and noting that in SM only one antenna is active at a time, the MGF in (6.4) for

quasi–static fading with spatial correlation is equal to,

Φ (s) =

Nr∏

j=1

(1 − sλjµ)−1
(6.5)

where λj are the eigenvalues of RRx and µ = |st|2 + |s|2 − 2Re{sts
∗}RTx(ℓt, ℓ) .
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Substituting (6.5) and (6.4) in (6.1) and using the Chernoff bound, the ABER for SM over

correlated Rayleigh channels is,

ABER
SM

≤ 1

2π

∑

ℓt,st

∑

ℓ,s

Nr∏

j=1

N (xℓt,st
,xℓ,s)

η

1

2η

(
1 +

λjµ

4σ2
n

)−1

(6.6)

For the case of uncorrelated Rayleigh channels, the ABER for SM is,

ABER
SM

≤ 1

2π

∑

ℓt,st

∑

ℓ,s

N (xℓt,st
,xℓ,s)

η

1

2η

(

1 +
|Ψ|2
4σ2

n

)−Nr

(6.7)

Section 6.4, shows that the two bounds; for uncorrelated and correlated Rayleigh channels, i)

are tight upper bounds for SM, and ii) they validate the experimental results.

6.4 Results

In the following, Monte Carlo simulation results for the ABER performance of SM using the

measured urban channels and simulated Rayleigh channels are compared with the derived an-

alytical bound. Note, each channel of the measured urban channels contains 1024 snapshots.

Furthermore, the performance of SM using the measured urban channel are compared with the

performance of SMX over the same channels for small and large scale MIMO.

6.4.1 Validation of SM analytical ABER performance using experimental results

Fig. 6.2 and Fig. 6.3 show the ABER performance of SM using the measured urban channels

(solid line) and using simulated Rayleigh channels (red dashed line). The results are compared

with the derived analytical bound (blue dotted line), for η = 4 and Nt = Nr = 4. Both figures

show that the results using the measured urban channels validate the results and conclusions

from the previous chapters. Fig. 6.2 shows the ABER for uncorrelated channels and Fig. 6.3

shows the ABER for correlated channels. As can be seen from the figures, the experimental

results closely match the simulation and analytical curves for ABER < 10−2. In Fig. 6.2, SM

offers the same performance for both chosen channels, where both channels are uncorrelated.

However, in Fig. 6.3, there is a slight difference in the performance, since the two chosen

correlated channels have different correlation matrices. Moreover, comparing the results for

uncorrelated channels in Fig. 6.2 with those correlated channels in Fig. 6.3, SM performs

better when the channels are uncorrelated, as it is easier to distinguish the different channel

paths.
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Figure 6.2: ABER versus SNR for SM over an uncorrelated channel. η = 4, Nt = 4 and

Nr = 4.
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Figure 6.3: ABER versus SNR for SM over a correlated channel. η = 4, Nt = 4 and Nr = 4.
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6.4.2 Comparison in the ABER performance of SM and SMX

6.4.2.1 Small Scale MIMO

Figs. 6.4 and 6.5 compare the ABER between SM (solid line) and SMX (dashed line) using

the measured urban channels for η = 4 and Nt = Nr = 4. Once more the results using

the measured urban channels validates the conclusions made in the previous chapters, where

SM offers almost the same as or slightly better performance than SMX. Note, in Fig. 6.4,

the performance of both systems does not change for both channels since the channels are

uncorrelated. However, as shown in Fig. 6.5, this is not the case for the correlated channels,

where the performance is different due to the different correlation coefficients.
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Figure 6.4: ABER versus SNR for SM and SMX over an uncorrelated channel. η = 4, Nt = 4
and Nr = 4.
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Figure 6.5: ABER versus SNR for SM and SMX over a correlated channel. η = 4, Nt = 4 and

Nr = 4.

6.4.2.2 Large Scale MIMO

Fig. 6.6 compares the ABER between SM (solid line) and SMX (dashed line) using the virtual

large scale MIMO channel created using the measured urban channels as explained in Sec.6.2.2,

where η = 8, Nr = 4. For η = 8 the maximum number of transmit antennas that SMX can use

is Nt = 8, where ηSM = Nt log2(M). However, for SM one bit can be transmitted using the

constellation symbol and seven bit using the spatial symbol, i.e. , for η = 8 SM can use up to

Nt = 27 = 128 transmit antennas, making it possible to exploit large scale MIMO. Note that

for SM it holds that: ηSM = log2(Nt) + log2(M).

Finally, in Fig. 6.6, it can be seen that SM with Nt = 128 and Nt = 64 offers 6 dB and 4 dB

better performance than SMXwith Nt = 8 and Nt = 4 respectively. Note that the constellation

size is the same for both SM with Nt = 128 and SMX with Nt = 8, as is for SM with Nt = 64

and SMX with Nt = 4. As the constellation size of the signal symbol is increased, the ABER

of SM and SMX increases, i.e., moving to Nt = 16 for SM it can be seen that SM offers only

a 1 dB performance increase relative to SMX with Nt = 2. Note, the number of bits sent per

transmission for both SM and SMX for all the scenarios is equal, and η = 8.
103



Performance of Spatial Modulation using Measured Real-World Channels

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
it
 E

rr
o
r 

R
a
ti
o

 

 

SM     128−QAM Nt=   2

SM     64 −QAM Nt=   4

SM     32 −QAM Nt=   8

SM     16 −QAM Nt=  16

SM     8  −QAM Nt=  32

SM     4  −QAM Nt=  64

SM     2  −QAM Nt= 128

SMX    256−QAM Nt=   1

SMX    16 −QAM Nt=   2

SMX    4  −QAM Nt=   4

SMX    2  −QAM Nt=   8

Figure 6.6: ABER versus SNR for SM and SMX over real measured channels. η = 8 and

Nr = 4.

6.5 Summary

In this chapter, performance analysis of SM using urban Rayleigh channel measurements for

both correlated and uncorrelated scenarios has been carried out. An analytical bound has been

derived and performance results using simulated channels have been provided. An important

observation is that experimental results confirm the analytical bound as well as computer sim-

ulations of the system. The performance of SM has been compared with the performance of

SMX using the same urban channels. It has been demonstrated that for small scale MIMO,

SM offers similar or slightly better ABER performance. However, for large scale MIMO, SM

exhibits a significant enhancement in the ABER performance at no increase in complexity.
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Chapter 7

Performance of Spatial Modulation in

an Experimental World System

In this chapter the performance of spatial modulation (SM) and spatial multiplexing (SMX) is

characterised with an experimental testbed. Two National Instruments (NI)–PXIe devices are

used for the system testing, one for the transmitter and one for the receiver. The digital signal

processing that formats the information data in preparation for transmission is described along

with the digital signal processing that recovers the information data. In addition, the hardware

limitations of the system are also analysed. The average bit error ratio (ABER) of the system is

validated through both theoretical analysis and simulation results for SM and SMX under line

of sight (LoS) channel conditions.

105



Performance of Spatial Modulation in an Experimental World System

7.1 Introduction

In this chapter, the average bit error ratio (ABER) performance of spatial modulation (SM) is

analysed in a practical testbed and compared with that for spatial multiplexing (SMX). In par-

ticular, the National Instruments (NI)–PXIe–1075 chassis is used at the transmitter and receiver.

The design of the testbed hardware and the software used are explained in detail along with the

transmission chain. The effects of the entire transmission chain on the system performance are

examined. The basic elements of the transmission link are the transmit radio frequency (RF)

chain, the wireless channel, and the receive RF chain. In addition to the effects of the wireless

channel on the phase and amplitude of the signal, the impact of the power imbalances (PIs) on

the system performance in the transmitter and receiver RF chains is discussed. Furthermore,

an analytical upper bound for the ABER performance of SM over non–line of sight (NLoS)

channels with PI is derived, and compared to the experimental and computer simulation results.

The experimental results validate the analytical bound as well as the attained computer simula-

tions. Finally the performance of SM is compared with the theoretical and experimental results

of SMX. As part of the beyond fourth generation (4G), UK-China bridges project, the digital

signal processing algorithms were developed jointly with Dr. Read Mesleh and Dr. Nikola

Serafimovski, along with the collection of the measurement results. Furthermore, the data used

to obtain the channel statistics was collected by Dr. Pat Chambers.

The remainder of this chapter is organised as follows. The system set-up, equipment and digital

signal processing are presented in Section 7.2. The equipment constraints are then considered

in Section 7.3 while the analytical modelling is discussed in Section 7.4. The performance

of SM is then characterised in the experimental and simulation environments in Section 7.5,

where it is compared with the theoretical and experimental results of a SMX system. Finally,

the chapter is summarised in Section 7.6.

Hardware

Figure 7.1: Block sequence of the main steps in the experiment, from the generation of the

binary data to its recovery.
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7.2 Testbed Set–up and System Model

The testbed set–up and transmission chain can be separated into software and hardware parts,

as shown in Fig. 7.1. The hardware consists of the NI–PXIe chassis at the transmitter (PXIe–

Tx) and the NI–PXIe chassis at the receiver (PXIe–Rx), each equipped with the relevant NI

modules. The software consists of the digital signal processing at the transmitter (DSP–Tx)

and the digital signal processing at the receiver (DSP–Rx).

The binary data to be broadcast is first processed by DSP–Tx, before being transmitted through

the fading channel by PXIe–Tx. The channel coefficient on the link between transmit antenna

nt, and receive antenna nr, is denoted by h(nr ,nt). Note that the number of antennas at the

transmitter and the receiver are denoted by Nt and Nr, respectively. At the receiver, PXIe–Rx

records the RF signal and passes it through to DSP–Rx for processing, where the original data

stream is recovered.

7.2.1 Testbed Hardware

The NI–PXIe–1075 chassis is equipped with a 1.8 GHz Intel–i7 processor with 4 GB RAM and

are shown in Fig. 7.2.

The system has two transmit antennas and two receive antennas. Each antenna at the transmitter

and receiver contains two quarter–wave dipoles, and one half–wave dipole placed in the middle.

All three dipoles are vertically polarised. In addition, each antenna has a peak gain of 7 dBi in

the azimuth plane, with an omnidirectional radiation pattern.

(a) PXIe–Tx (b) PXIe–Rx

Figure 7.2: NI–PXIe–1075 chassis with the relevant on–board modules at the transmitter

(PXIe–Tx), and at the receiver (PXIe–Rx).
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7.2.1.1 Transmitter hardware (PXIe–Tx)

The following NI–PXIe modules are used at the transmitter,

• NI-PXIe-5450 16-Bit I/Q Signal Generator (SG–16bit),

• NI-PXIe-5652 RF Signal Generator with a 500 kHz to 6.6 GHz frequency range (SG–

RF),

• NI-PXIe-5611 intermediate frequency (IF) to carrier RF up–converter (up–converter).

The PXIe–Tx has an operational frequency range of 85 MHz to 6.6 GHz and can facilitate a

bandwidth of 100 MHz at a maximum transmission power of 5 dBm.

At the transmitter, the SG–16bit performs a linear mapping of the signed 16-bit range to the

output power and polarisation, i.e. , peak voltage amplitude is assigned to any value in the

transmission vector equal to 215 with a linear scale of the voltage amplitude down to zero. The

output from SG–16bit is fed into the SG–RF, which is connected to the up–converter. The up–

converter outputs the analogue waveform corresponding to the data resulting from DSP–Tx at

a carrier frequency of 2.3 GHz. This completes a single RF chain. The transmission of the RF

signal is synchronised by using a reference signal at 10 MHz.

7.2.1.2 Receiver hardware (PXIe–Rx)

The following NI–PXIe modules are used at the receiver,

• NI-PXIe-5652 used as an on-board reference clock (SG–RF),

• NI-PXIe-5622 16-Bit Digitiser (16-Bit Digitiser),

• NI-PXIe-5601 RF down–converter (down–converter).

The PXIe–Rx can operate in a frequency range of 10 MHz to 6.6 GHz and can facilitate an

operational bandwidth of 50 MHz. For more details about the specifications of each model the

interested reader can refer to [185].

At the receiver, the down–converter is used to detect the analogue RF signal from the antennas.

The signal is then sent to the 16-Bit Digitiser. The 16-Bit Digitiser applies a bandpass filter with
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a real flat bandwidth equal to Bf = (0.4 × fs), where fs is the sampling rate [185]. The sam-

pling rate in the experiment is 10 Ms/s which results in a real flat bandwidth of 4 MHz. This

may result in frequency-selective fading, however, it is not considered since equalisation is not

required for the detection of SM signals. This is because: i) there are no multi–tap delays in the

experimental setup, and ii) maximum–likelihood (ML) detection is used to decode the receiver

signal for SM, and full channel state information (CSI) at the receiver is assumed [17]. Fur-

thermore, the 16–Bit Digitiser is synchronised with the SG–RF on-board reference clock and

writes the received binary files. The PXIe–Rx has two RF chains and the sequence described

above defines a single RF chain. The simultaneous recording of the two signals coming from

Tx1 and Tx2 is enabled by the use of the multiple processing cores and the multiple NI-PXIe

modules. Finally, the recorded files are then processed by DSP–Rx.

7.2.2 Testbed Software

Matlab is used to facilitate the digital signal processing required at the transmitter and receiver,

DSP–Tx and DSP–Rx, respectively. DSP–Tx serves to process the incoming information data

and generate files that can be transmitted by PXIe–Tx. DSP–Rx serves to process the data re-

ceived by PXIe–Rx and recover the original binary data stream. Fig. 7.3 outlines the processing

algorithms at the DSP–Tx and the DSP–Rx.

Framing

SM Modulation

Pilot and Zero 
Padding

Up Sampling and

Filtering

Sync and SNR 

Binary Data 

Tuning 

Signal 

Power

Binary file for Tx1

Binary file for Tx2

DSP-Tx

Frequency Offset

Correction

Down Sampling and 

Filtering

Extract Frames

SNR Calculation

Synchronisation

Channel 

Estimation

SM De-Modulation

Binary Data

Binary file from Rx1

Binary file from Rx2

DSP-Rx

Figure 7.3: A step-by-step layout of the binary data encoder (DSP–Tx) and decoder (DSP–Rx)

processes.
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7.2.2.1 DSP–Tx

The DSP–Tx process takes the incoming binary information data and performs the following,

1.1 Framing: The incoming data is split into frames consisting of 100 symbols per frame.

1.2 Modulation:The data in each frame is modulated using SM or SMX:

• SM: The bit stream is divided into blocks containing η = log2 (Nt M) bits each,

where η is the spectral efficiency, and M is the signal constellation size. The follow-

ing mapping rule is then used [16]:

(a) The first log2 (Nt) bits determine which transmit antenna is active, i.e. , they

determine the spatial constellation point of SM. In this chapter, the transmit

antenna broadcasting is denoted by ℓt with ℓt ∈ {1, 2, . . . , Nt}.
(b) The second log2 (M) bits are used to choose a symbol in the signal–constellation

diagram. Without loss of generality, quadrature amplitude modulation (QAM)

is considered. The actual complex symbol emitted by the transmit antenna ℓt is

denoted by st, with st ∈ {s1, s2, . . . , sM}.

By following the above steps, the Nt × 1 dimensional transmit vector is:

xℓt,st
=
[
01×(ℓt−1), st,01×(Nt−ℓt)

]T
, (7.1)

where [·]T denotes the transpose operation, and 0p×q is a p × q all–zero matrix.

• SMX: In this case, the bit stream is divided into blocks of Nt log2 (M) bits, then,

according to [2]:

(a) Each log2 (M) bits are separately modulated using M–QAM modulation.

(b) The modulated symbols are then transmitted simultaneously from the Nt trans-

mit antennas.

1.3 Pilot and Zero Padding: The least squares (LS) channel estimation algorithm with local

orthogonal pilot sequences is used to estimate the channel [186]. Two pilot signals are

added for each frame, one at the start of the frame, and one at the end. Each pilot signal

contains ten pilot sequences, where the orthogonal pilot sequence for the nt–th transmit

antenna is defined as,

Θnt(ℓ) = exp

(
2πj

ntℓ
¯̄Θ

)
(7.2)

where Θnt(ℓ) is the ℓ–th element of the pilot sequence Θnt transmitted from antenna nt, ¯̄a

is the cardinality of a, and j =
√
−1 is the imaginary unit. In this work, the length of each
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pilot sequence is ¯̄Θ = 10. To avoid inter–frame interference (IFI), an all zero sequence of

50 zero valued symbols is added to both the start and the end of the frame. Furthermore, a

sequence of constant valued symbols is added to enable frequency offset (FO) estimation

at the receiver. The length of the FO estimation sequence is 1000 symbols.

1.4 Up Sampling and Filtering: To maximise the signal to noise ratio (SNR) and reduce

inter-symbol interference (ISI), up–sampling and matched filtering (pulse shaping) are used

[187]. Each frame is up–sampled with an up-sampling ratio of 4, and then passed through

a root raised cosine (RRC)-finite impulse response (FIR) filter with 40 taps and a roll–off

factor of 0.75. The long tap–delay and the large roll–off factor are necessary to ensure that

the power is focused in a short time and ensure that only a single RF chain is active when

using SM.

1.5 Tuning Signal Power: To obtain the ABER, the SNR is varied by changing the power of

the transmitted signal. This is done by multiplying each transmission vector with a “Tuning

Signal Power” factor to obtain the desired transmit power.

1.6 Synchronisation and SNR: Several preamble–autocorrelation based methods for frame

synchronisation were tested [188, 189, 190]. However, despite the introduction of an inter-

polation filter at the receiver and due to the channel attenuations, the estimated start of the

signal was typically in error by one or two samples. This meant that sample synchronisation

could not be achieved consistently, resulting in off-by-one errors. Therefore, as a temporary

measure, peak detection is used for synchronisation. In particular, a sequence of 20 sym-

bols with maximum power, separated by 50 zero valued symbols between each, are added

to the start of the transmitted signal. The large power difference between the maximum

power peaks and the power of the “Data section” symbols is reasonable since the instan-

taneous channel power may fluctuate by as much as 20 dB due to fast fading [191, 192].

The power difference between the synchronisation section and the remaining sections is

set to be larger than the maximum channel variation, so that a successful peak detection is

guaranteed. If this is not the case, no peak may be detected at the receiver and all further

decoding would be erroneous.

To facilitate SNR calculations at the receiver, two sequences of power and no power are

added after the synchronisation pulses of the transmitted signal, indicated by “SNR sec-

tion” in Fig. 7.4. Each sequence contains 5 blocks of 50000 symbols and 50000 zeros. The

first sequence is transmitted from the first antenna while the second antenna is off. The

second sequence is transmitted from the second antenna while the first antenna is off.
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After the DSP–Tx process is completed, the transmit vector symbols are converted to I16 format

and are recorded to a binary file. This binary file is then loaded and broadcasted by PXIe–Tx.

Fig. 7.4 shows the absolute value representation of the processed incoming data that is passed

to the first transmit antenna (Tx1) and Fig. 7.5 shows the absolute value representation of

each frame. Note that the “Data section” is a series of concatenated frames. In Fig. 7.5, it

can be seen that each frame contains 26, 100 samples. Therefore, the period of each frame is

TFrame = 26100/fs = 2.6ms, which is much less than the coherence time of the channel given

that, typically, the coherence time for a stationary indoor environment is approximately 7ms,

[192, and references therein]. Hence, the channel estimation at the receiver is valid for the

frame duration.
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Figure 7.4: The absolute value representation of the transmission vector being sent to Tx1.
The synchronisation, SNR estimation and Data sections are shown. The value of

the peak must equal 215 since the 16 bit–Digitiser operates using an I16 format be-

fore tuning the signal power of the data. The highest value in the SNR section is the

same as the highest value in the information data section. There is approximately

a 21.1 dB difference between the peak power in the synchronisation section and

the peak power in the SNR estimation and data sections. This is apparent when

looking at the two data points shown in the figure.
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Figure 7.5: The absolute value representation of a single frame from the vector being trans-

mitted by Tx1 in the I16 data format which is a signed 15 bit representation of an

integer number. Each frame is composed of the pilot and FO estimation along with

the information data section. Each frame has at most 26, 100 samples.

7.2.2.2 DSP–Rx

The data received by the PXIe–Rx is processed by DSP–Rx to recover the original data stream.

To accomplish this, the following steps are required:

2.1 Synchronisation: This is achieved by searching for the peaks with a value above a certain

threshold in the received signal. The threshold is set as 70% of the highest value in the

received vector. This threshold level accounts for the natural voltage variations in the

system, i.e. , the difference between peak voltage and root-mean-square voltage. If the

number of peaks found is less than 20, then the received vector is discarded from further

calculations.

2.2 SNR Calculation: The SNR is defined as,

SNR =
E
[
‖Hx‖2

F

]

σ2
n

(7.3)

where H is the Nr × Nt channel matrix, x is the Nt × 1 transmitted vector, E [·] is the
expectation operator, σn is the noise variance, and ‖·‖F is the Forbenius norm.
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Assuming that the noise at the receiver is additive white Gaussian noise (AWGN), the

received signal for the duration of the SNR sequence can be written as follows:

y = hntst + n (7.4)

where y is the Nr × 1 received vector, hnt is nt column of the channel matrix H, n is

the Nr × 1 AWGN vector with σ2
n variance and µn mean, and st is the transmitted symbol

from the nt antenna. As mentioned in Section 7.2.2.1, only a single transmit antennas is

active when broadcasting the SNR sequence and st is either equal to the maximum value

in the “Data section” xmax or zero, as shown in Fig. 7.4. Hence, the received signal in (7.4)

can be re–written as,

y =





hntxmax + n, st = xmax

n, st = 0
(7.5)

Proceeding from (7.5),

E
[
‖Hx‖2

F

]
= E

[
‖y − n‖2

F

]
(7.6)

σ2
n = E

[
‖n‖2

F

]
− E [‖n‖F]2 (7.7)

where [·]H is the hermitian operation. As discussed in Section 7.2.2.1, each SNR sequence

contains 50, 000 symbols and 50, 000 zero valued symbols. Since the noise in the system

represents an ergodic processed, the ensemble average in (7.6) can be replaced with time

averaging,

E
[
‖Hx‖2

F

]
=

50000∑

i=1

(
‖yi − ni‖2

F

)
(7.8)

σ2
n =

50000∑

i=1

‖ni‖2
F −

[
50000∑

i=1

‖ni‖F

]2

(7.9)

where yi and ni are the i–th received vector. To get a more accurate estimation, the SNR is

calculated for the 5 transmitted SNR sequences received at both antennas and then averaged

again over those measurements.

2.3 Extract Frames: After finding the start of the transmission and calculating the SNR, DSP–

Rx performs a serial to parallel conversion to separate the received frames.

2.4 Down Sampling and Filtering: To complete the matched filter described in Section 7.2.2.1,

each frame is down–sampled by a factor of 4 and passed through an RRC–FIR filter.
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2.5 Frequency Offset (FO) Correction: The DSP–Rx estimates the FO for each frame by,

∆f =
∠x1000 − ∠x1

2π × 1000
(7.10)

where ∠x1000,∠x1 are the angles of the first and the last sample of the FO sequence trans-

mitted by the DSP–Tx where the FO sequence has exactly 1000 symbols. These angle

values are obtained by correcting the radian phase angles in a vector by adding multiples

of ±2π as required. This enables a better estimate of the phase offset. Assuming a linear

phase rotation, the FO can be estimated by (7.10). The FO for each frame is then corrected

by,

ŷi = yi × e−j2π∆f i (7.11)

where ŷi, yi is the i–th element of the corrected and the uncorrected received frame, re-

spectively.

2.6 Channel Estimation: The channel estimation is done by using the LS channel estimation

algorithm proposed in [186], where for each frame the channel is estimated by,

ĤLS =
1

NΘ
ΘHHr (7.12)

where Hr is the received pilot sequence. To enable a more accurate evaluation of the

system, the channel is estimated and averaged over 10 pilot sequences. Furthermore, two

channels are estimated per frame, the first channel estimate is used for the first half of the

data symbols in the frame, and the second is used for the second half of the data symbols

in the frame.

2.7 Demodulation: The ML optimum receiver for multiple–input multiple–output (MIMO)

systems is used, which can be written as,

x̂
(ML)
t = arg min

x∈Q

{
‖y − Hx‖2

F

}
(7.13)

where Q contains every possible (Nt × 1) transmit vector, and ·̂ denotes the estimated

transmission vector.

Finally, the recovered binary data along with the estimated SNR are used to obtain the ABER

performance of SM.
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Figure 7.6: Experimental setup in the laboratory.

7.2.3 Propagation Environment (Channel)

The physical layout of the experimental set-up is shown in Fig. 7.6 and the relative antenna

spacing is provided in Fig. 7.7. In particular, the two transmit and two receive antennas are

identical and are placed directly across from each other. As such, the channel between the

transmitter and receiver has a strong line of sight (LoS) component. Therefore, the transmit-

ter to receiver channel is defined as a Rician fading channel with a large K-factor due to the

distance between the transmit and receive antennas where K is the ratio of the coherent power

component, usually the LoS, to the non-coherent power components, usually NLoS. In addi-

tion, the omnidirectional transmit antennas broadcast on a frequency of 2.3 GHz at 10 Ms/s.

Figure 7.7: Physical experimental layout: A pair of receive and a pair of transmit antennas are

set 2.2m apart from each other with a direct line of sight. Each pair of antennas

is 1.5m from the ground and there is a 10 cm spacing between the antennas in

either pair corresponding to 0.77 times the wavelength at 2.3 GHz. All antennas
are omnidirectional.
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Figure 7.8: CDF for each of the fast fading coefficients, h(r,nt), of the four channels in the

experiment. Each is defined by a Rician distribution with a unique K-factor. The

markers denote the measurement points while the lines denote the best fit approxi-

mation. Note that the wireless channel mean values fall in the range of 1.3 mV to

3.6 mV.

Channel measurements were collected to verify that the channel environment followed a Rician

distribution. To achieve this, the transmitter broadcasts pulses at 10 Ms/s on a carrier frequency

of 2.3 GHz at 4 dBm peak power. Each pulse includes a FO estimation section and a total of

105 pulse samples were collected. A best fit approximation is then calculated for the collected

data. In particular, a maximum likelihood estimation is fitted to the collected data. A Chi-

squared goodness-of-fit test is then performed to ascertain that the distribution resulting from

the maximum likelihood estimation fits at least 95% of the data. The empirical cumulative

distribution function (CDF) for each link of the resultant channels are presented in Fig. 7.8.

The CDFs show that the channel does indeed follow a Rician distribution with a K factor

that ranges between 31 − 38 dB. The different K-factors on the links between the transmit

and receive antennas may be explained by the room geometry, the antenna positioning and the

overall propagation environment. However, note that each of the CDFs has a different mean,

which will be discussed in the next section.
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7.3 Equipment Constraints

Fig. 7.7 shows the physical layout of the experiment. Note that the 10 cm inter–antenna separa-

tion used here is sufficient to guarantee very low, if any, spatial correlation when broadcasting

at 2.3 GHz with a 2.2 m separation between the transmitter and receiver [193].

The physical environment through which the signal passes, starting from the SG–RF at the

transmitter, until it reaches the 16–Bit Digitisers at the receiver, suffers from connector losses,

differences in the RF chains, different phase responses, attenuations and similar. To study and

model the effects of the hardware imperfections on the signal power:

• An RF coaxial cable with a 10 dB attenuation is connected between each transmit and

receive antenna.

• A pulse is transmitted at 10 Ms/s on a carrier frequency of 2.3 GHz at −10 dBm peak

power. Each pulse includes a FO estimation section and a total of 105 pulse samples were

collected.

• The CDF for each of the fading coefficients is calculated and is shown in Fig. 7.9.

In an ideal environment, the means of the CDFs in Fig. 7.9 should be equal. However, imper-

fections in the hardware result in different means for each transmit to receiver antenna pair, as

can be seen in Fig. 7.9. The differences between the channels can be modeled as a PI between

the various link pairs in the channel matrix H. Therefore, the channel coefficients are redefined

as,

hPI
(nr,nt)

=
√

α(nr,nt) × h(nr ,nt) (7.14)

where α(r,nt) is the channel attenuation coefficient from receive antenna nr to transmit antenna

nt.

To locate the source of the discrepancy between the different channel attenuations, i.e. , de-

termine if the NI modules or the NI chassis is the source, the RF chains at the receiver were

swapped around and the channels were estimated in configuration (I) and configuration (II).

Fig. 7.9(a) shows the channel CDFs for configuration (I) while Fig. 7.9(b) shows the channel

CDFs for configuration (II).
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Taking h(1,1) as a reference, the channel attenuation coefficients for configuration (I) are,

α(1,1) = 0dB, α(2,1) = 0.25 dB, α(1,2) = 0.88 dB, α(2,2) = 1.1 dB, (7.15)

while the channel attenuation coefficients for configuration (II) are,

α(1,1) = 0dB, α(2,1) = 0.29 dB, α(1,2) = 1.13 dB, α(2,2) = 1.17 dB. (7.16)

Comparing Fig. 7.9(a) and Fig. 7.9(b), and the attenuations in (7.15) to that in (7.16) shows

that they are very similar, and that the swapping of the RF chains has a minimal impact on the

estimated mean of each channel attenuation. Thus, it can be assumed that the NI modules that

compose the receive RF chains are the source of the hardware imperfections, and consequently

lead to the differences in the means of the estimated CDFs. Unfortunately, due to the warranty

restrictions on the hardware, we are unable to specify the exact components responsible for

the observed effects. Nonetheless, to account for these imperfections, the channel attenuation

coefficients in (7.15) and (7.16) are taken into consideration by deriving an analytical model

in Section 7.4. The accuracy of the derived analytical bound using the channel attenuation

coefficients in (7.15) and (7.16) is demonstrated in Section 7.5 by comparing it to empirical

results.
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(a) Configuration (I) of the receive RF chains.
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(b) Configuration (II) of the receive RF chains.

Figure 7.9: CDF for each of the fast fading coefficients, h(r,nt), of the four channels in the

experiment. Each is defined by a Rician distribution with a unique K-factor. The

markers denote the measurement points while the lines denote the best fit approxi-

mation. Despite using a coaxial cable with a 10 dB attenuation to connect the RF

chains, each channel exhibits a unique mean.
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7.4 Analytical Modeling

An analytical model for the ABER performance of the experimental system is developed by

considering the system model presented in Section 7.2 and the system constraints in Section 7.3.

The performance of SM and SMX over a single link in a noise-limited scenario is characterised

by,

ABER ≤ 1

2η

∑

ℓt,st

∑

ℓ,s

N (xt,x)

η
EH

{
Pr
error

}
(7.17)

where N (xt,x) is the number of bits in error between the transmitted vector xt where the

symbol st is sent from the antenna ℓt and x where the symbol s is transmitted from the antenna

ℓ, EH{·} is the expectation across the channel H, and Pr
error

is the conditional pairwise error

probability (PEP) of deciding on x given that xt is transmitted,

Pr
error

= Pr

(
‖y − Hxt‖2

F > ‖y − Hx‖2
F

∣∣∣∣H
)

= Q

(√
ϕ ‖H (xt − x)‖2

F

)
(7.18)

where ϕ = 1/(2σ2
n), and Q(ω) = 1√

2π

∫∞
ω exp

(
− t2

2

)
dt is the Q-function. As Fig. 7.7 indi-

cates, the transmit and receive antennas in the experiment experience a very strong LoS environ-

ment. Accordingly, the channel between each transmit to receive antenna pair is characterised

by Rician fading. A generic Rician channel is defined as

h(r,nt) =

√
K

1 + K
+

√
1

1 + K
h′

(r,nt)
, (7.19)

where h′
(r,nt)

∼ CN (0, 1) is a complex normal, circular symmetric random variable with zero

mean and unit variance. nt ∈ {1, 2}, r ∈ {1, 2} are the index of the transmit and receive

antenna respectively.

To account for the hardware imperfections that result from the power imbalances, the fast fading

channel coefficients are redefined according to (7.14) and (7.15). Section 7.5 validates the

derived analytical bound by comparing it to experimental and simulation results.
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7.5 Experimental Results and Numerical Analysis

The simulation, analytical and experimental results for the ABER performance of SM in a

LoS channel are illustrated in Fig. 7.10, where a stream of 105 information bits is sent per

transmission to obtain the experimental results, and the presented SNR along the x–axis is

equivalent to the SNR on h1,1. The results validate the theoretical work done in the field [20].

As the experimental results approximate the performance of the simulation results with PIs and

both the simulation, and experimental results, are closely approximated by the derived upper

bound at a low ABER.

The large error between the experimental, simulation and analytical curves at high ABER is the

results of incorrect frequency offset estimation, timing recovery errors synchronisation prob-

lems, and poor channel estimation. However, as the SNR increases, frequency offset estima-

tion, timing recovery and channel estimation improve, resulting in a lower ABER as shown

in Fig. 7.10. Quantifying those imperfections is deemed important and requires channel mod-

elling and interference measurement. However, addressing these effects is beyond the scope of

this work and will be subject of future works.

SM performs best when the channel between each transmit and receive antenna is unique, i.e. ,

the larger the Euclidean distance between two received vectors is, the better the ABER perfor-

mance of SM. The channel uniqueness can be the result of a rich scattering environment, or as

in this experiment the channel uniqueness is the result of PIs caused by hardware tolerances.

This is demonstrated in Fig. 7.10, where the performance of SM in a Rician environment is

largely enhanced by introducing PIs between the transmit and receive paths. Please note that

the PIs between the links are always obtained relative to the channel with the greatest attenua-

tion, i.e. , the values of the PI factors in (7.15) and (7.16) are always positive.

Furthermore, PIs between the transmitting antennas are shown to offer improved performance

in terms of the ABER when only the spatial constellation of SM is used, i.e. , when space shift

keying (SSK) is the underlying modulation technique. In particular, an optimised power allo-

cation for a various number of transmit antennas is addressed in [155], where the authors show

that there is an optimal power allocation between the transmitting antennas which can serve to

increases the Euclidean distance between the channel signatures and improve the ABER per-

formance of SM. Indeed, SM has also been successfully applied to an AWGN optical wireless

channel where it is shown that PIs greatly improve the ABER performance [168].
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Figure 7.10: ABER for SM in an experimental set-up with 2 transmit antennas, 2 receive an-

tennas and a spectral efficiency of 2 bits/s/Hz. The SNR is set as measured on

h(1,1) with α(1,1) = 0dB. The solid black line with square markers denotes the

experimental results. The green diamond markers denote simulation results with

no PI between the links while the green dashed line is the analytical prediction.

The remaining curves denote the simulation (Sim) and analytical (Ana) results.

The simulation, analytical and experimental results for the ABER performance of SMX in a

LoS channel are illustrated in Fig. 7.11. In particular, the experimental results closely follow

the performance of the simulation results with PIs and both the simulation, and experimental

results, are closely approximated by the derived upper bound at low ABER when the hardware

imperfections are taken into account. This result serves to validate theoretical work done in

the field. The results in Fig. 7.11 demonstrate that the SMX system, like the SM system, also

benefits from the PIs in the hardware. The SMX system exhibits approximately a 3 dB coding

gain when compared to SM at an ABER of 10−4. The coding gain of SMX relative to SM is

expected when there are few transmit antennas. The Euclidean distance between the transmit

vectors, and therefore the variance in (7.18), in SMX is larger than in SM. However, the aim of

this chapter is to show that empirical results validate the simulation and analytical work done
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in the field, which can be seen in both Fig. 7.10 and Fig. 7.11. Unfortunately, due to the limited

number of transmitter and receiver RF chains available, there are no experimental results for

systems with a larger number of transmit or receive antennas where SM is shown to perform

better than SMX. These empirical results will be the focus of future research. Nonetheless,

the accuracy of the theoretical and simulation results of SMX and SM with a large number of

transmit and receive antennas can be extrapolated from the presented results.

This work demonstrates that the hardware tolerances of practical communication systems are

beneficial for the ABER performance of both SM and SMX. This behaviour along with the

requirement for a single RF chain, make SM a viable candidate for future wireless networks.
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Figure 7.11: ABER for SMX in an experimental set-up with 2 transmit antennas, 2 receive

antennas and a spectral efficiency of 2 bits/s/Hz. The SNR is set as measured on

h(1,1) with α(1,1) = 0dB. The solid black line with square markers denotes the

experimental results. The green diamond markers denote simulation results with

no PI between the links while the green dashed line is the analytical prediction.

The remaining curves denote the simulation (Sim) and analytical (Ana) results.
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7.6 Summary

For the first time ever, the ABER performance of SM and SMX has been validated using a

practical testbed, in particular NI kits were used. The design of the testbed, hardware and

software, were explained in detail along with the transmission chain. Moreover, the channel

conditions were described and the ABER performance for SM and SMX over LoS channels

was obtained. The ABER results were compared to both simulation and analytical results,

and shown that a Rician channel with different PIs closely described the behaviour of SM

and SMX in this particular physical environment. Furthermore, the PIs caused by the hardware

imperfections were analysed and studied. The induced power imbalances resulted in significant

coding gains for the practical systems compared to the theoretical results without PIs. To this

extent, SM and SMX performed as expected relative to the theoretical work when the power

imbalances were introduced in the analytical model. The experimental results validated the

SM principle, and the performance gains exhibited by SM in the practical implementation as a

result of the hardware tolerances made SM a viable candidate for future wireless networks.
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8.1 Summary and Conclusions

In Chapter 3, an analytical bound for the average bit error ratio (ABER) of spatial modulation

(SM) over Rayleigh, Rician and Nakagami–m fading channels is proposed. The bound is an

easy to calculate closed form upper bound for the ABER of SM, which can be used for corre-

lated and uncorrelated channels, small and large scale multiple–input multiple–output (MIMO),

and for any modulation scheme. The performance of SM is also compared with the performance

of spatial multiplexing (SMX), where it is shown that SM offers nearly the same or slightly bet-

ter performance than SMX.

Chapter 4 introduced and analysed the performance/complexity trade–off of two sphere de-

coders (SDs) designed specifically for SM. The proposed SDs provide a substantial reduction

of the computational complexity while retaining the same ABER as the maximum–likelihood

(ML)–optimum detector. The closed–form analytical upper bound for the ABER of SM–SD in

identical and independently distributed (i.i.d.) Rayleigh flat–fading channels has been derived,

and analytical and simulation results were shown to closely agree. Furthermore, numerical

results have highlighted that no SD is superior to the others, and that the best solution to use

depends on the MIMO setup, and the signal to noise ratio (SNR) at the receiver. In general,

Rx–SD is the best choice for lower spectral efficiencies, and Tx–SD is the best option for higher

spectral efficiencies. Finally, simulation results showed that SM using SD offers a significant

reduction in computational complexity, up to 97% reduction in computational complexity, and

nearly the same ABER performance as SMX using ML decoder or SD.

In Chapter 5, the idea of SM was generalised by sending the same symbol from more than

one transmit antenna at a time, and two new MIMO systems, variable generalised spatial

modulation (VGSM) and generalised spatial modulation (GNSM), were proposed. Note, the

basic idea of SM is no longer limited to a power of two number of transmit antenna and an

arbitrary number of transmit antennas can be used. Moreover, three receivers were proposed.

The first receiver is based on ML principle, and the last two receivers, Tx–SD and Rx–SD, are

based on the SM–SD principle presented in Chapter 4. Furthermore, a tight closed form upper

bound for the ABER of GNSM and VGSM, over correlated and uncorrelated Rayleigh and Ri-

cian fading channels was provided. Finally, results showed that the proposed schemes, VGSM

and GNSM, use much fewer antennas than SM, and have significantly lower computational

complexity than SMX, while having a small penalty in the ABER performance. Thus, GNSM

and VGSM are good candidates for low number of transmit antennas and low computational

complexity MIMO solutions.
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In Chapter 6, performance analysis of SM using urban Rayleigh channel measurements for both

correlated and uncorrelated scenarios has been carried out. An analytical bound was derived and

performance results using simulated channels have been provided. An important observation

is that experimental results confirm the analytical bound as well as computer simulations of

the system. The performance of SM is compared with the performance of SMX using the

same urban channels. It was demonstrated that for small scale MIMO, SM offers similar or

slightly better ABER performance. However, for large scale MIMO, SM exhibits a significant

enhancement in the ABER performance compared to SMX at no increase in complexity.

Finally in Chapter 7, the ABER performance of SM and SMX has been validated using a prac-

tical testbed, in particular National Instruments (NI) kits were used. The design of the testbed,

hardware and software, were explained in detail along with the transmission chain. Moreover,

the channel conditions were described and the ABER performance for SM and SMX over line

of sight (LoS) channels was obtained. The ABER results were compared to both simulation and

analytical results, and shown that a Rician channel with different power imbalance (PI) closely

described the behaviour of SM and SMX in this particular physical environment. Furthermore,

the PIs caused by the hardware imperfections were analysed and studied. The induced power

imbalances resulted in significant coding gains for the practical systems compared to the the-

oretical results without PIs. To this extent, the experimental results validated the analytical

bound as well as the computer simulations.

The contributions of the thesis can be summarised as follows:

• A tight closed form analytical upper bound for the ABER performance of SM over cor-

related and uncorrelated, Rayleigh, Rician, and Nakagami–m channels, small and large

scale MIMO, and for any modulation scheme, has been derived. For Rayligh channels,

the bound was validated using experimental results carried out over urban channels.

• The ABER performance of SM was compared to the ABER performance of SMX over

small and large scale MIMO, different modulation schemes, correlated and uncorrelated,

Rayleigh, Rician, and Nakagami–m channels. Furthermore, for Rayleigh channels urban

measured channels were also use, and for Rician channels an experimental system was

used to validate the developed theories. For small scale MIMO, SM offers similar or

slightly better ABER performance than SMX. However, for large scale MIMO, SM

exhibits a significant enhancement in the ABER performance.
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• The complexity of SM using a ML decoder was calculated and compared to the com-

plexity of SMX using a ML decoder. It was shown that SM–ML offers a large reduction

in complexity when compared to SMX–ML, where the complexity of SM–ML does not

depend on the number of transmit antennas. Moreover, the complexity of SM was further

reduced by the use of SD principle. Two SDs were proposed, Tx–SD and Rx–SD, and

shown that no SD is superior to the other, and that the best solution to use depends on

the MIMO setup and the SNR at the receiver. Furthermore, the complexity of SM–SDs

was compared with SMX–SD and was shown that SM–SD offers up to 97% reduction in

computational complexity.

• Two MIMO systems, VGSM and GNSM, were proposed to overcome the limitation in

the number of antennas in SM. This was carried out by sending the same symbol from

more than one transmit antenna at a time. Furthermore, three receivers were proposed.

The first receiver is based on ML principle, and the last two receivers, Tx–SD and Rx–

SD, are based on the SM–SD principle.

From all above, SM is an ideal candidate for low complexity, large scale MIMO.

8.2 Limitations and Future Works

SM has been studied extensively in the academic community. This thesis has explored some

of the advantages that SM offers and proposed solutions to overcome some of its limitations.

However, there is still scope for extensive academic research into the advantages, possible uses

and possible constraints of spatial modulation. Various issues in the area present a wide scope

for further academic investigation, for example:

• The performance of spatial modulation over urban channels and practical systems is a

field that offers a wide scope for further academic exploration. It has been explored for

the first time in a thesis, but only for Rayleigh in the case of Urban channels, and 2 × 2

binary phase shift keying (BPSK) systems with Rician channels for practical systems.

This should be extended to different constellations sizes, small and large scale MIMO

and different channels, as it is an important step toward developing SM to be introduced

to future mobile communication standards.
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• The switching between the different antennas is an area which has yet to be explored

academically. Academic investigation of this area would provide extremely useful and

relevant information for the future development of SM to be used for high data rate

practical systems.

• The possible effect of channel imperfections and channel estimation errors on spatial

modulation is also a pertinent issue in the field. Academic investigation of this field

would also provide valuable information and data to further the development of spatial

modulation.
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Appendix A
Proof of the intervals (4.12), (4.13)

Proof:

1. First (4.11) can be thought of as an inequality,

R2 ≥
{
‖ȳ − H̄x̄ℓ,s‖2

F

}
(A.1)

Add ǫx̄T
ℓ,sx̄ℓ,s to both sides of (A.1),

R2 + ǫx̄T
ℓ,sx̄ℓ,s ≥

{
‖ȳ − H̄x̄ℓ,s‖2

F + ǫx̄T
ℓ,sx̄ℓ,s

}
(A.2)

≥
{
ȳT ȳ − ȳT H̄x̄ℓ,s + x̄T

ℓ,sH̄
T ȳ + x̄T

ℓ,sḠx̄ℓ,s

}
(A.3)

where Ḡ = H̄T H̄ + ǫĪNt is a (2Nt × 2Nt) positive definite matrix, with a Cholesky

factorisation defined as Ḡ = D̄T D̄, where D̄ is a (2Nt × 2Nt) upper triangular matrix.

Now by defining ρ̄ = Ḡ−1H̄T ȳ a (2Nt × 1) vector, and adding ρ̄ ¯DT Dρ̄ to the both side

of (A.3), it can be re–written as,

R2
ǫ ≥

{
‖z̄ − D̄x̄ℓ,s‖2

F

}

≥
2Nt∑

i=1



z̄i −
2Nt∑

j=i

D̄i,j x̄ℓ,s (j)




2

(A.4)

where, z̄ = D̄ρ̄ and,

R2
ǫ = R2 + ǫx̄T

ℓ,sx̄ℓ,s + ȳT H̄ρ̄ − ȳT ȳ (A.5)

ǫ =





σ2

n Nt > Nr

0 Nt ≤ Nr

(A.6)

For simplicity R2
ǫ = R2 is assumed.
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2. Second, note that a necessary condition that the points of the transmit search space need

to satisfy to belong to the subset ΘR is (for all i = 1, 2, . . . , 2Nt):

R2 ≥



z̄i −
2Nt∑

j=i

D̄i,jx̄ℓ,s (j)




2

(A.7)

which is a condition similar to conventional SD algorithms [140].

3. Takeing into account that in SM only a single antenna is active at any time instance. In

the equivalent real–valued signal model in (4.4), this is equivalent to having only two,

out of 2Nt, non–zero entries in the signal vectors x̄ℓt,st
and x̄ℓ,s, respectively. By taking

this remark into account, it follows that: a) if i = Nt + 1, Nt + 2, . . . , 2Nt, then only the

imaginary part of x̄ℓ,s plays a role in (A.7), and, thus, only one entry x̄ℓ,s(ℓ + Nt) can

be non–zero; and b) if i = 1, 2, . . . , Nt, then both real and imaginary parts of x̄ℓ,s play

a role in (A.7), and, thus, only two entries x̄ℓ,s(ℓ), x̄ℓ,s(ℓ + Nt) can be non–zero. The

considerations in a) and b) lead to the intervals in (4.12) and (4.13), respectively, which

are directly obtained by solving the inequality in (A.7).

4. Last, every time a point is found inside the sphere, the radius R, is updated with the

Euclidean distance of that point, thus,

R2
new =

{
‖z̄ − D̄x̄ℓ,s‖2

F

}

=

2Nt∑

i=Nt+1

(
z̄i − D̄(i,ℓ+Nt)Im{s}

)2
+

Nt∑

i=1

(
zi − D(i,ℓ)Re {s} − D(i,ℓ+Nt)Im {s}

)2

= (R2 − R′2) +

Nt∑

i=1

(
zi − D(i,ℓ)Re {s} − D(i,ℓ+Nt)Im {s}

)2
(A.8)

where R′2 is defined in (4.15).

�
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Generalised Sphere Decoding for
Spatial Modulation

Abdelhamid Younis, Sinan Sinanović, Marco Di Renzo, Raed Mesleh, and Harald Haas

Abstract—In this paper, Sphere Decoding (SD) algorithms for
Spatial Modulation (SM) are developed to reduce the computa-
tional complexity of Maximum–Likelihood (ML) detectors. Two
SDs specifically designed for SM are proposed and analysed in
terms of Bit Error Ratio (BER) and computational complexity.
Using Monte Carlo simulations and mathematical analysis, it is
shown that by carefully choosing the initial radius the proposed
sphere decoder algorithms offer the same BER as ML detection,
with a significant reduction in the computational complexity. A
tight closed form expression for the BER performance of SM–SD
is derived in the paper, along with an algorithm for choosing the
initial radius which provides near to optimum performance. Also,
it is shown that none of the proposed SDs are always superior to
the others, but the best SD to use depends on the target spectral
efficiency. The computational complexity trade–off offered by the
proposed solutions is studied via analysis and simulation, and is
shown to validate our findings. Finally, the performance of SM–
SDs are compared to Spatial Multiplexing (SMX) applying ML
decoder and applying SD. It is shown that for the same spectral
efficiency, SM–SD offers up to 84% reduction in complexity
compared to SMX–SD, with up to 1 dB better BER performance
than SMX–ML decoder.

Index Terms—Multiple-input-multiple-output (MIMO) sys-
tems, spatial modulation (SM), spatial multiplexing (SMX),
sphere decoding (SD), large scale MIMO.

I. INTRODUCTION

MULTIPLE–input multiple–output (MIMO) systems of-

fer a significant increase in spectral efficiency in com-

parison to single antenna systems [1]. An example is Spatial

Multiplexing (SMX) [2], which transmits simultaneously over

all the transmit antennas. This method achieves a spectral

efficiency that increases linearly with the number of transmit

antennas. However, these systems cannot cope with the expo-

nential increase of wireless data traffic, and a larger number
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of transmit antennas (large scale MIMO) should be used [3].

Large scale MIMO studied in [4]–[6], offers higher data rates

and better bit error rate (BER) performance.However, this

comes at the expense of an increase in:

1) Computational complexity: A SMX maximum likeli-

hood (ML) optimum receiver searches across all possi-

ble combinations, and tries to resolve the inter–channel

interference (ICI) caused by transmitting from all an-

tennas simultaneously, on the same frequency. Sphere

decoder (SD) was proposed to reduce the complexity of

the SMX–ML algorithm while retaining a near optimum

performance [7], [8]. The SD reduces the complexity

of the ML decoder by limiting the number of possible

combinations. Only those combinations that lie within

a sphere centred at the received signal are considered.

However, even though SMX–SD offers a large reduction

in complexity compared to SMX–ML, it still has a high

complexity which increases with the increase of the

number of transmit antennas.

2) Hardware complexity: In SMX the number of radio

frequency (RF) chains is equal to the number of transmit

antennas. From [9], RF chains are circuits that do

not follow Moore’s law in progressive improvement.

Therefore, increasing the number of transmit antennas

and consequently the number of RF chains increases

significantly the cost of real system implementation [10].

3) Energy consumption: RF chains contain Power Ampli-

fiers (PAs) which are responsible for 50–80% of the total

power consumption in the transmitter [11]. Therefore,

increasing the number of RF chains results in a decrease

in the energy efficiency [10].

Thus, SMX may not always be feasible and a more energy

efficient and low complexity solution should be considered.

Spatial Modulation (SM) is a transmission technology

proposed for MIMO wireless systems. It aims to increase

the spectral efficiency, (m), of single–antenna systems while

avoiding ICI [12]. This is attained through the adoption of a

new modulation and coding scheme, which foresees: i) the

activation, at each time instance, of a single antenna that

transmits a given data symbol (constellation symbol), and

ii) the exploitation of the spatial position (index) of the active

antenna as an additional dimension for data transmission (spa-

tial symbol) [13]. Both the constellation symbol and the spatial

symbol depend on the incoming data bits. An overall increase

by the base–two logarithm of the number of transmit–antennas

of the spectral efficiency is achieved. This limits the number

of transmit antennas to be a power of two unless fractional bit

encoding SM (FBE–SM) [14], or generalised SM (GSM) [15]

0090-6778/13$31.00 c© 2013 IEEE
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are used. Activating only one antenna at a time means that

only one RF chain is needed, which significantly reduces

the hardware complexity of the system [16]. Moreover, as

only one RF chain is needed, SM offers a reduction in the

energy consumption which scales linearly with the number

of transmit antennas [10], [17]. Furthermore, the computa-

tional complexity of SM–ML is equal to the complexity of

single–input multiple–output (SIMO) systems [18], i.e. the

complexity of SM–ML depends only on the spectral efficiency

and the number of receive antennas, and does not depend

on the number of transmit antennas. Recently the potential

benefits of SM have been validated not only by simulations

but also via experiments [19], [20]. Moreover, in [21] for the

first time the performance of SM is analysed using real–world

channel measurements. Accordingly, SM appears to be a good

candidate for large scale MIMO [22]–[25].

In spite of its low–complexity implementation, there is

still potential for further reductions, by limiting the number

of possible combinations using the SD principle. However,

existing SD algorithms in literature do not consider the basic

and fundamental principle of SM, that only one antenna is

active at any given time instance. Therefore, two modified SD

algorithms based on the tree search structure that are tailored

to SM are proposed. The first SD will be called receiver–

centric SD (SM–Rx), which was first presented in [26]. The

algorithm in [26] combines the received signal from the

multiple receive antennas, as long as the Euclidean distance

from the received point is less than a given radius. This

SD–based detector is especially suitable when the number

of receive–antennas is very large. This technique reduces the

size of the search space related to the multiple antennas at

the receiver (we denote this search space as “receive search

space”). It will be shown later that there is no loss in either the

diversity order or the coding gain, i.e. the BER is very close to

that of the ML detector. However, the main limitation is that

it does not reduce the search space related to the number of

possible transmitted points (we denote this as “transmit search

space”). This limitation prevents the detector from achieving a

significant reduction in computational complexity when high

data rates are required.

The second SD, which is called Transmit–centric (SM–

Tx) was first presented in [27]. It aims at reducing the

transmit search space by limiting the number of possible

spatial and constellation points. The SM–Tx algorithm avoids

an exhaustive search by examining only those points that

lie inside a sphere with a given radius. However, SM–Tx is

limited to the overdetermined MIMO setup (Nt ≤ Nr), where

Nt and Nr are the number of transit and receiver antennas

respectively. In [28], [29], it is shown that SM–Tx in [27] can

still be used for the case of (2Nr−1) ≥ Nt > Nr, where SM–

Tx is referred to as enhanced Tx–SD (E–Tx–SD). Moreover,

in [28], [29] a detector for the case of Nt > Nr referred

to as generalised Tx–SD (G–Tx–SD) is proposed. By using

the division algorithm the G–Tx–SD technique: 1) Divides the

set of possible antennas to a number of subsets. 2) Performs

E–Tx–SD over each subset. 3) Takes the minimum solution

of all the sets. However, in this paper we propose a simple

solution, in which all that is needed is to set a constant ϕ to

0 for Nt ≤ Nr and ϕ = σ2
n for Nt > Nr, where σ2

n is the

noise variance. In [28], [29], the normalised expected number

of nodes visited by the SM–Tx algorithm is used to compare

its complexity with the complexity of the SM–ML algorithm.

This does not take into account pre–computations needed by

SM–Tx. In this paper, when comparing the complexity of SM–

Tx with the complexity of SM–ML and SM–Rx, we take into

account the pre–computations needed by the SM–Tx. We show

that because of those pre–computations, the SM–Tx technique

is not always the best solution, where in some cases it is even

more complex than SM–ML. The performance of both SDs

is closely tied to the choice of the initial radius. The chosen

radius should be large enough for the sphere to contain the

solution. On the one hand, the larger the radius is, the larger

the search space, which increases the complexity. On the other

hand, a small radius may cause the algorithm to fail in finding

a point inside the sphere.

In this paper, a careful study of the performance of these

two detectors is provided, along with an accurate comparison

of their computational complexity. Numerical results show that

with no loss in the BER performance, the proposed solutions

provide a substantial reduction in computational complexity

with respect to the SM–ML decoder. We also derive a closed

form expression for the BER performance of SM–SD and

show that the initial radius can be chosen such that SM–

SD gives an optimum performance. Furthermore, it is shown

that SM–Rx is less complex than SM–Tx for lower spectral

efficiencies, while SM–Tx is the best solution for higher

spectral efficiencies. Finally, using numerical results we show

that SM–SD offers a significant reduction and nearly the same

performance when compared to SMX with ML decoder or SD.

The remainder of this paper is organised as follows: In

section II, the system model along with the ML–optimum

detector is summarised. In section III, the new SM–Rx and

SM–Tx receivers are described. In section IV, an accurate

analysis of the computational complexity of both SM–Rx

and SM–Tx is performed. In section V, the analytical BER

performance for SM–SDs is derived along with the initial

radius selection method. Numerical results are presented in

section VI, and the paper is concluded in section VII.

II. SYSTEM MODEL

A. SM Modulator

In SM, the bit stream emitted by a binary source is divided

into blocks containing m = log2 (Nt) + log2 (M) bits each,

where M is the constellation size. Then the following mapping

rule is used [12]:

• The first log2 (Nt) bits are used to select the antenna

which is switched on for data transmission, while the

other transmit antennas are kept silent. In this paper, the

actual transmit antenna which is active for transmission

is denoted by ℓt with ℓt ∈ {1, 2, . . . , Nt}.

• The second log2 (M) bits are used to choose a sym-

bol in the signal–constellation diagram. Without loss of

generality, Quadrature Amplitude Modulation (QAM) is

considered. In this paper, the actual complex symbol

emitted by the transmit antenna ℓt is denoted by st, with

st ∈ {s1, s2, . . . , sM}.
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Accordingly, the Nt × 1 transmitted vector is:

xℓt,st =
[

01×(ℓt−1), st,01×(Nt−ℓt)

]T
, (1)

where [·]T denotes transpose operation, and 0p×q is a p × q
matrix with all–zero entries. Note, a power constraint on the

average energy per transmission of unity is assumed (i.e. Es =
E[xHx] = 1), where E{·} is the expectation operator.

From above, the maximum achievable spectral efficiency by

SM is,

mSM = log2(Nt) + log2(M) (2)

However, for SMX,

mSMX = Nt log2(M) (3)

From (2) and (3), we can see that the spectral efficiency

of SM does not increase linearly with the number of transmit

antennas as SMX does. Therefore, SM needs a larger number

of transmit antennas/ larger constellation size to arrive at the

same spectral efficiency as SMX. However, because in SM

only one antenna is active:

• The computational complexity of SM does not depend

on the number of transmit antennas. Unlike SMX where

the computational complexity increases linearly with the

number of transmit antennas, the computational complex-

ity of SM is the same as the computational complexity

of SIMO systems.

• The number of RF chains needed by SM is significantly

less than the number of RF chains needed by SMX. In

fact, only one RF chain is required for SM.

For these reasons we believe that SM is a strong candidate

for large scale MIMO systems, which strongly motivates this

work.

B. Channel Model

The modulated vector, xℓt,st , in (1) is transmitted through

a frequency–flat Nr ×Nt MIMO fading channel with transfer

function H, where Nr is the number of receive antennas. In

this paper, a Rayleigh fading channel model is assumed. Thus,

the entries of H are modelled as complex independent and

identically distributed (i.i.d.) entries according to CN (0, 1).
Moreover, a perfect channel state information (CSI) at the

receiver is assumed, with no CSI at the transmitter.

Thus, the Nr× 1 received vector can be written as follows:

y = Hxℓt,st + n

= hℓtst + n (4)

where n is the Nr–dimensional Additive White Gaussian

Noise (AWGN) with zero–mean and variance σ2 per dimen-

sion at the receiver input, and hℓ is the ℓ–th column of H.

Note, the signal-to-noise-ratio is SNR = Es/No = 1/σ2
n.

C. ML–Optimum Detector

The ML optimum receiver for MIMO systems can be

written as,

x̂
(ML)
t = argmin

x∈Qm

{

‖y −Hx‖2F
}

(5)

where Qm is a 2m space containing all possible (Nt × 1)
transmitted vectors, ‖·‖F is the Frobenius norm, and ·̂ denotes

the estimated spatial and constellation symbols.

Note, in SM only one transmit antenna is active at a time.

Therefore, the optimal receiver in (5) can be simplified to,
[

ℓ̂
(ML)
t , ŝ

(ML)
t

]

= argmin
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

‖y − hℓs‖2F
}

= argmin
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

Nr
∑

r=1

|yr − hℓ,rs|2
}

(6)

where yr and hℓ,r are the r–th entries of y and hℓ respectively.

III. SPHERE DECODERS FOR SM

In this section we introduce two SDs tailored for SM,

SM–Rx and SM–Tx. SM–Rx aims at reducing the number

of summations over Nr required by the ML receiver in (6).

SM–Tx aims at reducing the number of points (ℓ, s) the ML

receiver searches over.

First, for ease of derivation, we introduce the real–valued

equivalent of the complex–valued model in (4) following [30],

ȳ = H̄x̄ℓt,st + n̄

= h̄ℓt s̄t + n̄ (7)

where,

ȳ =
[

Re
{

yT
}

, Im
{

yT
}]T

(8)

H̄ =

[

Re {H} Im {H}
−Im {H} Re {H}

]

(9)

x̄ℓ,s =
[

Re
{

xT
ℓ,s

}

, Im
{

xT
ℓ,s

}]T
(10)

n̄ =
[

Re
{

nT
}

, Im
{

nT
}]T

(11)

h̄ℓ =
[

H̄ℓ, H̄ℓ+Nt

]

(12)

s̄ =

[

Re{s}
Im{s}

]

(13)

where Re {·} and Im {·} denote real and imaginary parts

respectively, and H̄ℓ is the ℓ–th column of H̄.

A. SM–Rx Detector

The SM–Rx is a reduced–complexity and close–to–

optimum BER–achieving decoder, which aims at reducing the

receive search space. The detector can formally be written as

follows:

[

ℓ̂
(Rx)
t , ŝ

(Rx)
t

]

= argmin
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}







Ñr(ℓ,s)
∑

r=1

∣

∣ȳr − h̄ℓ,r s̄
∣

∣

2







(14)
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R2
i+1 =

∥

∥z̄− D̄x̄ℓ,s

∥

∥

2

F
= (R2

i −R′2) +

Nt
∑

ν=1

(

zν −D(ν,ℓ)Re {s} −D(ν,ℓ+Nt)Im {s}
)2

(22)

where h̄ℓ,r is the r–th row of h̄ℓ, and,

Ñr (ℓ, s) = max
n∈{1,2,...2Nr}

{

n

∣

∣

∣

∣

∣

n
∑

r=1

|yr − hℓ,rs|2 ≤ R2

}

(15)

The idea behind SM–Rx is that it keeps combining the

received signals as long as the Euclidean distance in (14) is

less or equal to the radius R. Whenever a point is found to be

inside the sphere, the radius, R, is updated with the Euclidean

distance of that point. The point with the minimum Euclidean

distance and Ñr (·, ·) = 2Nr is considered to be the solution.

B. SM–Tx Detector

The conventional SD is designed for SMX, where all anten-

nas are active at each time instance [7], [31]–[33]. However,

in SM only one antenna is active at a time. Therefore, a

modified SD algorithm tailored for SM, named SM–Tx, is

presented. More specifically, similar to conventional SDs,

the SM–Tx scheme reduces the number of points (ℓ, s) for

ℓ ∈ {1, 2, . . .Nt} and s ∈ {s1, s2, . . . sM} to be searched

through in (6), i.e., the transmit search space, by computing

the Euclidean distances only for those points that lie inside

a sphere with radius R and are centred around the received

signal. However, unlike conventional SDs, in our scheme the

set of points inside the sphere are much simpler to compute,

as there is only a single active antenna in SM. In this section,

we show how to compute the set of points.

The Cholesky factorisation of the (2Nt × 2Nt) positive

definite matrix Ḡ = H̄T H̄+ ϕĪNt
is Ḡ = D̄D̄T , where

ϕ =

{

σ2
n Nt > Nr

0 Nt ≤ Nr
(16)

Then the SM–Tx can be formally written as follow,

[

ℓ̂
(Tx−SD)
t , ŝ

(Tx−SD)
t

]

= argmin
(ℓ,s)∈ΘR

{

∥

∥z̄− D̄x̄ℓ,s

∥

∥

2

F

}

(17)

where ΘR is the subset of points (ℓ, s) for ℓ ∈ {1, 2, . . .Nt}
and s ∈ {s1, s2, . . . sM} in the transmit search space that lie

inside a sphere with radius R and centred around the received

signal z̄, z̄ = D̄ρ̄ and ρ̄ = Ḡ−1H̄T ȳ.

Unlike SM–Rx, SM–Tx reduces the computational com-

plexity of the ML receiver by reducing the transmit search

space, which is done by the efficient computation of the

subset ΘR. After some algebraic manipulations as shown in

Appendix A, the subset of points ΘR lie in the intervals:

−Ri + z̄ℓ+Nt

D̄(ℓ+Nt,ℓ+Nt)

≤ Im {s} ≤ Ri + z̄ℓ+Nt

D̄(ℓ+Nt,ℓ+Nt)

(18)

−R′ + z̄ℓ|ℓ+Nt

D̄ℓ,ℓ
≤ Re {s} ≤ R′ + z̄ℓ|ℓ+Nt

D̄ℓ,ℓ
(19)

where

z̄a|b = z̄a − D̄(a,b)Im {s} (20)

R′2 = R2 −
2Nt
∑

ν=Nt+1

z̄2ν|ℓ+Nt
(21)

Note, every time a point is found inside the sphere, the

radius R is updated as shown in (22), with the Euclidean

distance of that point. Moreover, (19) needs to be computed

only for those points that lie inside the interval in (18), for

the reason that (19) depends implicitly on (18).

Because of the unique properties of SM the intervals in (18)

and (19) needs to be calculated only once for each possible

transmit point, unlike conventional SDs where the intervals

have to be calculate Nt times for each transmit point. Further-

more, we note that SM–Tx works for both underdetermined

MIMO setup with Nt > Nr, and overdetermined MIMO setup

with Nt ≤ Nr.

As opposed to the SM–Rx scheme, the SM–Tx scheme

uses some pre–computations to estimate the points that lie

inside the sphere of radius R. These additional computations

are carefully taken into account in the analysis of the compu-

tational complexity of the SM–Tx scheme and its comparison

with the ML–optimum detector in section IV.

IV. COMPUTATIONAL COMPLEXITY OF SM–RX AND

SM–TX

In this section, we analyse the computational complexity of

SM–ML, SM–Rx and SM–Tx. The complexity is computed

as the number of real multiplication and division operations

needed by each algorithm [34].

A. SM–ML

The computational complexity of SM–ML receiver in (6),

yields,

CSM–ML = 8Nr2
m, (23)

as the ML detector searches through the whole transmit and

receive search spaces. Note, evaluating the Euclidean distance
(

|yr − hℓ,rs|2
)

requires 8 real multiplications.

The computational complexity of SMX–ML receiver in (5)

is equal to

CSMX–ML = 4 (Nt + 1)Nr2
m. (24)

Note,
(

|y −Hx|2
)

in (5) requires (Nt + 1) complex multi-

plications.

From (23) and (24), the complexity of SM does not depend

on the number of transmit antennas, and it is equal to the

complexity of SIMO systems. However, the complexity of

SMX increases linearly with the number of transmit antennas.
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Thus, the reduction of SM–ML receiver complexity relative

to the complexity of the SMX–ML decoder for the same

spectral efficiency is given by,

CML
rel = 100×

(

1− 2

Nt + 1

)

. (25)

From (25), the reduction in complexity offered by SM in-

creases with the increase in the number of transmit antennas.

For example for Nt = 4 SM offers a 60% reduction in

complexity compared to SMX, and as the number of transmit

antennas increases the reduction increases.

B. SM–Rx

The complexity of the SM–Rx receiver is given by:

CRx−SD = 3

Nt
∑

ℓ=1

M
∑

s=1

Ñr (ℓ, s) (26)

It is easy to show that CRx−SD lies in the interval 3×2m ≤
CRx−SD ≤ 6Nr2

m, where the lower bound corresponds to

the scenario where Ñr (ℓ, s) = 1, and the upper bound

corresponds to the scenario where Ñr (ℓ, s) = 2Nr for

ℓ ∈ {1, 2, . . .Nt} and s ∈ {s1, s2, . . . sM}. An interesting

observation is that SM–Rx offers a reduction in complexity

even for the case of Nr = 1, where the complexity lies in the

interval 3× 2m ≤ CRx−SD ≤ 6× 2m. We note that the SM–

Rx solution requires no pre–computations with respect to the

ML–optimum detector. In fact, Ñr (ℓ, s) for ℓ ∈ {1, 2, . . .Nt}
and s ∈ {s1, s2, . . . sM} in (15) are implicitly computed when

solving the detection problem in (14).

C. SM–Tx

The computational complexity of SM–Tx can be upper–

bounded by,

CTx−SD ≤ CΘR
+ 3Ntcard {ΘR} (27)

where card{·} denotes the cardinality of a set, and CΘR
is the

complexity of finding the points in the subset ΘR,

CΘR
= CPre-Comp + CInterval (28)

where,

1) CPre-Comp is the number of operations needed to com-

pute the Cholesky decomposition. Calculating the upper

triangular matrix D̄ using Cholesky decomposition has

the complexity [34],

CCH = 4N3
t /3 (29)

It can be easily shown that the calculation of Ḡ, ρ̄ and

z̄ requires 2NrNt(2Nt + 1), 2Nt(2Nt + 2Nr + 1) and

Nt(2Nt + 1) real operations respectively, where back–

substitution algorithm was used for calculating ρ̄ [34].

Hence,

CPre-Comp = CCH +Nt(4NrNt + 6Nr + 6Nt + 3) (30)

2) CInterval is the number of operations needed to compute

the intervals in (18),(19),

Cinterval = 2Nt + (2Nt + 3)N(19) (31)

where,

• For (18): 2Nt real divisions are needed.

• For (19): (2Nt + 3)N(19) real multiplications are

needed, where (2Nt + 3) is the number of real

computations needed to compute (19), and N(19) is

the number of times (19) is computed, which is

calculated by simulations. Note, i) the interval in

(19) depends on the antenna index ℓ and only the

imaginary part of the symbol s, ii) some symbols

share the same imaginary part. Therefore, (19) is

only calculated for those points (ℓ, s) which lie in

the interval in (18) and does not have the same ℓ
and Im{s} as a previously calculated point.

V. ERROR PROBABILITY OF SM–SDS AND INITIAL

RADIUS SELECTION METHOD

In this section, we derive an analytical expresion for the

BER performance of SM–SD, and we show that SM–SD

offers a near optimum performance. The BER for SM–SD is

estimated using the union bound [35], which can be expressed

as follows,

BER
SM–SD

≤
∑

ℓt,st

∑

ℓ,s

N (x̄ℓt,st , x̄ℓ,s)

m

EH {Pre,SM–SD}
2m

(32)

where N (x̄ℓt,st , x̄ℓ,s) is the number of bits in error between

x̄ℓt,st and x̄ℓ,s, and,

Pr
e,SM–SD

= Pr
((

ℓ̃SM–SD, s̃SM–SD

)

�= (ℓt, st)
)

(33)

is the pairwise error probability of deciding on the point
(

ℓ̃SM–SD, s̃SM–SD

)

given that the point (ℓt, st) is transmitted.

The probability of error Pre,SM–SD can be thought of as

two mutually exclusive events depending on whether the

transmitted point (ℓt, st) is inside the sphere. In other words,

the probability of error for SM–SD can be separated in two

parts, as shown in (34) [36]:

• Pr
(

(ℓ̃SM–ML, s̃SM–ML) �= (ℓt, st)
)

: The probability of de-

ciding on the incorrect transmitted symbol and/or used

antenna combination, given that the transmitted point

(ℓt, st) is inside the sphere.

• Pr ((ℓt, st) /∈ ΘR): The probability that the transmitted

point (ℓt, st) is outside the set of points ΘR considered

by the SD algorithm.

Pr
e,SM–SD

≤
(

Pr
(

(ℓ̃SM–ML, s̃SM–ML) �= (ℓt, st)
)

+ Pr ((ℓt, st) /∈ ΘR)
)

(34)
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EH

{

Pr
e,SM–SD

}

=

[

ζ

(

σ2
s

4σ2
n

)]Nr Nr−1
∑

r=0

(

Nr − 1 + r

r

)[

1− ζ

(

σ2
s

4σ2
n

)]r

(46)

However, the probability of error for the ML decoder is,

Pr
e,SM–ML

≤ Pr
(

(ℓ̃, s̃) �= (ℓt, st)
)

(35)

Thus, SM–SD will have a near optimum performance when,

Pr ((ℓt, st) /∈ ΘR) << Pr
(

(ℓ̃, s̃) �= (ℓt, st)
)

(36)

The probability of not having the transmitted point (ℓt, st)
inside ΘR can be written as,

Pr ((ℓt, st) /∈ ΘR) = Pr

(

2Nr
∑

r=1

∣

∣ȳr − h̄ℓt,rs̄t
∣

∣

2
> R2

)

= Pr

(

κ >

(

R

σn/
√
2

)2
)

= 1−
γ

(

Nr,
(

R
σn

)2
)

Γ(Nr)
(37)

where,

κ =

2Nr
∑

r=1

∣

∣

∣

∣

n̄r

σn/2

∣

∣

∣

∣

2

(38)

is a central chi-squared random variable with 2Nr degree

of freedom having a cumulative distribution function (CDF)

equal to [35],

Fκ(a, b) =
γ(b/2, a/2)

Γ(b/2)
(39)

where γ(c, d) is the lower incomplete gamma function given

by,

γ(c, d) =

∫ d

0

tc−1e−tdt (40)

and Γ(c) is the gamma function given by,

Γ(c) =

∫ ∞

0

tc−1e−tdt (41)

The initial sphere radius considered in SM–SD is a function

of the noise variance as given in [37],

R2 = 2αNrσ
2
n (42)

where α is a constant chosen to satisfy (36). This can be done

by setting Pr ((ℓt, st) /∈ ΘR) = 10−6 and back solving (37).

For Nr = 1, 2, 4, α = 13.8, 8.3, 5.3 respectively.

Finally, Pre,SM–SD can be formulated as,

Pr
e,SM–SD

= Pr
(

∥

∥ȳ − h̄ℓs̄
∥

∥

2
>
∥

∥ȳ − h̄ℓt s̄t
∥

∥

2
)

= Pr
(

ξ >
∥

∥h̄ℓt s̄t − h̄ℓs̄
∥

∥

)

(43)

where,

ξ = 2Re
{

(

h̄ℓt s̄t − h̄ℓs̄
)T

n̄
}

∼ N
(

0, 2σ2
n

(∥

∥h̄ℓt s̄t − h̄ℓs̄
∥

∥

))

(44)

Thus,

Pr
e,SM–SD

= Q





√

∥

∥h̄ℓt s̄t − h̄ℓs̄
∥

∥

2

2σ2
n



 (45)

where Q(x) = (1/
√
2π)

∫ +∞

x
e−t2/2dt.

In the case of Rayleigh fading, we can derive the closed

form solution for EH {Pre,SM–SD} in (32) by employing the

solution from [38, eq. (62)]. Note that the argument of the

Q-function in (45) can be represented as the summation of

2Nr squared Gaussian random variables, with zero mean and

variance equal to 1. This means that the argument in the Q–

function can be described by a central chi–squared distribution

with 2Nr degrees of freedom.

The result for EH {Pre,SM–SD} is as given in (46), where

σ2
s = ‖x̄ℓt,st − x̄ℓ,s‖2F and,

ζ(c) =
1

2

(

1−
√

c

1 + c

)

(47)

Plugging (46) into (32) gives a closed form expression for

the BER of SM–SD. In the next section, we show that (32)

gives a tight approximation of the BER of SM–SD, and that

SM–SD offers a near optimum performance.

VI. RESULTS

In the following, Monte Carlo simulation results for at least

106 Rayleigh fading channel realisations are shown to compare

the performance and computational complexity of large scale

MIMO, SM–ML, SM–SD and SMX–SD.

A. Analytical performance of SM–SD

Figs. 1-2 show the BER simulation results for SM–ML,

SM–Rx and SM–Tx compared with the analytical bound
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Fig. 1. BER against SNR. m = 6, and Nr = 4.
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Fig. 2. BER against SNR. m = 8, and Nr = 4.

derived in section V, where m = 6, 8 and Nr = 4. From

the figures we can see that both SM–Tx and SM–Rx offer

a near optimum performance, where the results overlap with

SM–ML. Furthermore, Figs. 1-2 validate our analytical bound

as for BER < 10−2 all graphs closely match the analytical

results. Note, it is will–known that the union bound is loose

for low SNR [35].

B. Comparison of the BER performance of SM and SMX

Figs. 3 and 4 show a BER comparison between all possible

combinations of SM and SMX for m = 6 and Nr = 2, 4. In

Fig. 3, we can observe that the BER performance depends on

the the number of transmit antennas used and, consequently,

the constellation size. The smaller the constellation size, the

better the performance. Another observation that can be made

is that SM and SMX offer nearly the same performance when

using the same constellation size. In Fig. 4, where the number

of receive antennas is increased, we notice that SM performs
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Fig. 3. BER against SNR. m = 6, and Nr = 2.
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Fig. 4. BER against SNR. m = 6, and Nr = 4.
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Fig. 5. BER against SNR. m = 8, and Nr = 2.
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Fig. 6. BER against SNR. m = 8, and Nr = 4.
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Fig. 7. Computational complexity against SNR. m = 6, and Nr = 2.
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Fig. 8. Computational complexity against SNR. m = 6, and Nr = 4.

better than SMX. In particular, BPSK–SM provides a 1 dB

better performance than BPSK–SMX. Also 8–QAM SM offers

a slightly better performance (∼ 0.5 dB) than 8-QAM SMX.

In Figs. 5 and 6, the BER comparisons for m = 8
and Nr = 2, 4 are shown. In Fig. 5, SM and SMX offer

similar performance for the same constellation size. However,

SM offers a better performance when the number of receive

antennas increases as shown in Fig. 6.

In summary, SM offers a similar or better performance than

SMX, where the performance of both systems depends on the

size of the constellation diagram and the number of receive

antennas. We also note that the BER performance of SM can

be improved by increasing the number of receive antennas.

C. Complexity Analysis

In Figs. 7-10, the computational complexity of SM–Rx and

SM–Tx provided in (26) and (27) respectively is compared

with the computational complexity of SMX–SD, where the
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Fig. 9. Computational complexity against SNR. m = 8, and Nr = 2.
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Fig. 10. Computational complexity against SNR. m = 8, and Nr = 4.

initial radius is chosen according to (42). In particular, the

figures show the relative computational complexity of the SDs

with respect to the SM–ML detector, i.e Crel (%) = 100 ×
(CSD/CML). Note, for SM the SD with the lowest complexity

is chosen.

In Figs. 7 and 8, the relative computational complexities

for m = 6 and Nr = 2, 4 are shown. Fig. 7, shows that

for large constellation sizes the lowest relative computational

complexity is offered by SM–Tx Nt = 2. The relative

computational complexity ranges between 40% for low SNR

and 16% for high SNR. However, for lower constellation sizes

SM–Rx provides the lowest relative computational complexity,

which is between 56% for low SNR and 26% for hight SNR.

As SM–Rx reduces the receive search space, the reduction

in the computational complexity offered by SM–Rx does not

depend on the number of transmit antennas. Therefore, only

SM–Rx with Nt = 4, 32 are shown, where both scenarios offer

nearly the same relative computational complexity. Finally,

from Fig. 7 we can see that SMX–SD Nt = 2 and Nt = 3
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are less complex than SM–ML with a relative computational

complexity 48% and 79%−82% respectively. However, com-

paring SM–SD to SMX–SD Nt = 2, for 32–QAM SM–SD

is 32% less complex than SMX—SD, and for BPSK SM–SD

is 22% less complex than SMX–SD. In Fig. 8, it can be seen

that for large constellation sizes SM–Tx is still the best choice

with a relative complexity that ranges between 22% for low

SNR and 12% for hight SNR, which is 15% less than SMX–

SD Nt = 2. For smaller constellation sizes SM–Rx is the

best choice with relative complexity that ranges between 55%
for low SNR and 14% for high SNR, offering a 23% extra

reduction in complexity when compared to SMX–SD Nt = 2.

Note, i) SMX–SD Nt = 6 is not shown in the figure, because

this scenario has a complexity higher than the complexity of

SM–ML, ii) the complexity of SMX–SD Nt = 3 increased

with the increase of SNR, for the reason that, in the under-

determined case ϕ depends on the SNR (52).

The relative complexity for m = 8 and Nr = 2, 4 is shown

in Fig. 9 and 10. Since SM–Tx reduces the transmit search

space, the reduction in complexity increased by more than

10% with the increase in the wordsize and consequently the

constellation size. In Fig. 9 for high constellation sizes SM–

Tx Nt = 2 is the best choice with a relative complexity that

reaches 4% for high SNR,. In Fig. 10 for high constellation

sizes SM–Tx Nt = 2 and Nt = 4 are the best choice with

a relative complexity that reaches 3% and 10% respectively.

On the other hand, SM–Rx reduces the receive search space,

therefore, it still offers nearly the same relative complexity.

However, the complexity reduces with the increase of Nr,

where SM–Rx Nr = 4 is (∼ 10%) less complex than SM–Rx

Nr = 2. Finally, from both figures it can be seen that although

SM–ML is much less complex than SMX–ML, SMX–SD is

less complex than SM–ML. For that reason, SM–SD has to

be developed, where SM–SD is (∼ 20%) less complex than

SMX–SD for Nr = 2, and (∼ 10%) less complex than SMX–

SD for Nr = 4. Note, the complexity of both SM–Tx and

SMX–SD decreases with the increase of Nr, because for the

case of Nr < Nt, the less under-determined the system, the

fewer pre–computations are needed.

To summarize, two SDs for SM are introduced: SM–Tx

which reduces the transmit search space, and SM–Rx which

reduces the receive search space. Both detection algorithms

are shown to offer a significant reduction in computational

complexity while maintaining a near optimum BER perfor-

mance. For systems with few transmit antennas, SM–Tx is

shown to be the better choice. For systems with with a larger

number of receive antennas, SM–Rx is shown to be the better

candidate in terms of complexity reduction. The decision for

the most appropriate SD depends on the particular deployment

scenario.

VII. CONCLUSION

In this paper we have introduced and analysed the perfor-

mance/complexity trade–off of two SDs designed specifically

for SM. The proposed SDs provide a substantial reduction

in the computational complexity while retaining the same

BER as the ML–optimum detector. The closed–form analytical

performance of SM in i.i.d. Rayleigh flat–fading channels

has been derived, and analytical and simulation results were

shown to closely agree. Furthermore, numerical results have

highlighted that no SD is superior to the others, and that the

best solution to use depends on the MIMO setup, and the SNR

at the receiver. In general, SM–Rx is the best choice for lower

spectral efficiencies, and SM–Tx is the best option for higher

spectral efficiencies. Finally, simulation results showed that

SM using SD offers a significant reduction in computational

complexity and nearly the same BER performance as SMX

using ML decoder or SD.
Overall, SM–SD offers i) hardware complexity and power

consumption that does not depend on the number of transmit

antennas, ii) BER performance that increases with the increase

of the number of transmit antennas, and iii) a large reduction

in computational complexity compared to SMX. Thus, we

believe that SM–SD is an ideal candidate for large scale

MIMO systems.

APPENDIX

PROOF OF THE INTERVALS (18), (19)

Proof:

1) First (17) can be thought of as an inequality,

R2 ≥
{

‖ȳ − H̄x̄ℓ,s‖2F
}

(48)

Then add ϕx̄H
ℓ,sx̄ℓ,s to both sides of (48) to get (49),

where Ḡ = H̄HH̄ + ϕĪNt
is a (2Nt × 2Nt) positive

definite matrix, with a Cholesky factorisation defined as

Ḡ = D̄HD̄, where D̄ is a (2Nt×2Nt) upper triangular

matrix.

Now by defining ρ̄ = Ḡ−1H̄Hȳ, and adding ρ̄ ¯DHDρ̄
to both sides of (49), it can be re–written as,

R2
ϕ ≥

{

‖z̄− D̄x̄ℓ,s‖2F
}

≥
2Nt
∑

i=1



z̄i −
2Nt
∑

j=i

D̄i,jx̄ℓ,s (j)





2

(50)

where, z̄ = D̄ρ̄ and,

R2
ϕ = R2 + ϕx̄T

ℓ,sx̄ℓ,s + ȳTH̄ρ̄− ȳTȳ (51)

ϕ =

{

σ2
n Nt > Nr

0 Nt ≤ Nr
(52)

For simplicity, in this paper we assume R2
ϕ = R2.

R2 + ϕx̄H
ℓ,sx̄ℓ,s ≥

{

‖ȳ − H̄x̄ℓ,s‖2F + ϕx̄H
ℓ,sx̄ℓ,s

}

≥
{

ȳH ȳ − ȳHH̄x̄ℓ,s + x̄H
ℓ,sH̄

H ȳ + x̄H
ℓ,sḠx̄ℓ,s

}

(49)
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2) Second, we note a necessary condition that the points

of the transmit search space need to satisfy to belong to

the subset ΘR is (for all i = 1, 2, . . . , 2Nt):

R2 ≥



z̄i −
2Nt
∑

j=i

D̄i,j x̄ℓ,s (j)





2

(53)

which is a condition similar to conventional SD algo-

rithms [31].

3) We need to take into account that in SM only a

single antenna is active at any time instance. In the

equivalent real–valued signal model in (10), this is

equivalent to having only two, out of 2Nt, non–zero

entries in the signal vectors x̄ℓt,st and x̄ℓ,s, respectively.

By taking this remark into account, it follows that:

a) if i = Nt + 1, Nt + 2, . . . , 2Nt, then only the

imaginary part of x̄ℓ,s plays a role in (53), and, thus,

only one entry x̄ℓ,s(ℓ+Nt) can be non–zero; and b)

if i = 1, 2, . . . , Nt, then both real and imaginary parts

of x̄ℓ,s play a role in (53), and, thus, only two entries

x̄ℓ,s(ℓ), x̄ℓ,s(ℓ+Nt) can be non–zero. The considera-

tions in a) and b) lead to the intervals in (18) and (19),

respectively, which are directly obtained by solving the

inequality in (53).

�
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Sinan Sinanović (S’98-M’07) is a lecturer at Glas-
gow Caledonian University. He has obtained his
Ph.D. in electrical and computer engineering from
Rice University, Houston, Texas, in 2006. In the
same year, he joined Jacobs University Bremen in
Germany as a post doctoral fellow. In 2007, he
joined the University of Edinburgh in the UK where
he has worked as a research fellow in the Insti-
tute for Digital Communications. While working
with Halliburton Energy Services, he has developed
acoustic telemetry receiver which was patented. He

has also worked for Texas Instruments on development of ASIC testing. He
is a member of the Tau Beta Pi engineering honor society and a member
of Eta Kappa Nu electrical engineering honor society. He won an honorable
mention at the International Math Olympiad in 1994.

Marco Di Renzo (S’05–AM’07–M’09) was born
in L’Aquila, Italy, in 1978. He received the Laurea
(cum laude) and the Ph.D. degrees in Electrical and
Information Engineering from the Department of
Electrical and Information Engineering, University
of L’Aquila, Italy, in April 2003 and in January
2007, respectively.

From August 2002 to January 2008, he was
with the Center of Excellence for Research DEWS,
University of L’Aquila, Italy. From February 2008
to April 2009, he was a Research Associate with the

Telecommunications Technological Center of Catalonia (CTTC), Barcelona,
Spain. From May 2009 to December 2009, he was an EPSRC Research Fellow
with the Institute for Digital Communications (IDCOM), The University of
Edinburgh, Edinburgh, United Kingdom (UK).

Since January 2010, he has been a Tenured Researcher (“Chargé de
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Abstract—In this paper, we seek to characterize the perfor-
mance of spatial modulation (SM) and spatial multiplexing (SMX)
with an experimental testbed. Two National Instruments (NI)
PXIe devices are used for the system testing: one for the transmit-
ter and one for the receiver. The digital signal processing (DSP)
that formats the information data in preparation for transmission
is described, along with the DSP that recovers the information
data. In addition, the hardware limitations of the system are also
analyzed. The average bit-error ratio (ABER) of the system is
validated through both theoretical analysis and simulation results
for SM and SMX under the line-of-sight (LoS) channel conditions.

Index Terms—Experimental results, multiple-input multiple-
output (MIMO) systems, spatial modulation (SM), spatial multi-
plexing (SMX), wireless testbed.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) systems of-

fer a significant increase in spectral efficiency in com-

parison with single-antenna systems [1], [2]. An example is

spatial modulation (SM), which increases the spectral effi-

ciency of single-antenna systems while avoiding interchannel

interference (ICI) [3]. This is attained, as shown in Fig. 1,

through the adoption of a new modulation and coding scheme,

which foresees the activation, at each time instance, of a sin-

gle antenna that transmits a given data symbol (constellation

symbol) and the exploitation of the spatial position (index)

of the active antenna as an additional dimension for data
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Fig. 1. Unique 3-D constellation diagram for SM. The lower two bits, in the
4-bit word, define the spatial-constellation point, which identifies the active
antenna. These are shown in parentheses. The remaining two bits determine
the signal-constellation point that is to be transmitted.

transmission (spatial symbol) [4]. Both the constellation and

spatial symbols depend on the incoming data bits. An overall

increase by the base-two logarithm of the number of transmit

antennas of the spectral efficiency is achieved. This limits the

number of transmit antennas to be a power of two, unless

fractional-bit-encoded SM [5] or generalized SM (GSM) [6]

is used. In particular, in [6], it is shown that the number of

spatial symbols does not need to be equal to the number of

transmit antennas. For example, if GSM is used, the number

of spatial symbols is equal to the number of unique channel

signatures between the transmitter and the receiver, where the

unique channel signatures can be obtained by activating various

combinations of the available transmit antennas. In this paper,

however, these unique channel signatures are assumed to be due

to the activation of individual transmit antennas.

Activating only one antenna at a time means that only

one radio-frequency (RF) chain is needed, which significantly

reduces the hardware complexity of the system [7]. Moreover,

the most energy-consuming parts of a base station (BS) are the

power amplifiers and the RF chains that are associated with

each transmitter [8], where the power requirements of a BS are

shown to linearly increase with the number of RF chains that are

added [9]. However, as only one RF chain is needed, SM offers

a reduction in the energy consumption, which linearly scales

with the number of transmit antennas [10], [11]. Furthermore,

the computational complexity of the ML detector for SM

0018-9545 © 2013 IEEE
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Fig. 2. Block sequence of the main steps in the experiment from the genera-
tion of the binary data to its recovery.

[SM-maximum likelihood (ML)] is equal to the complexity

of single-input multiple-output (SIMO) systems [12], i.e., the

complexity of SM-ML depends only on the spectral efficiency

and the number of receive antennas and does not depend

on the number of transmit antennas. Moreover, in [13]–[15],

the complexity of SM is further reduced by using the sphere

decoder (SD).

Several papers that seek to understand and improve the per-

formance of SM in various scenarios are available in literature.

In [16] and [17], the average bit-error ratio (ABER) perfor-

mance of SM is improved by introducing trellis coding on the

transmitting antennas. The optimal detector is derived with and

without channel state information at the receiver in [12], [18],

and [19]. The ABER performance is given when considering

channel estimation errors in [20]–[22]. The optimal power

allocation for the case of two transmit antennas and one receive

antenna system is given in closed form in [23], and the ABER

performance of SM in correlated fading channels is considered

in [24]. In [25] and [26], spectral efficiency and diversity gains

are obtained by combining SM with space–time block codes

(STBC-SM). Applying SM to relaying systems is also shown

to result in significant signal-to-noise-ratio (SNR) gains when

compared with noncooperative decode and forward techniques

[27]. In [28], the overall power performance of a BS employ-

ing SM is studied. More recently, a comprehensive analytical

framework to compute the ABER of SM over generalized

fading channels has been introduced in [29]. Moreover, in [30],

for the first time, the performance of SM is analyzed using real-

world channel measurements. The latest research achievements

and an outline of some relevant open research issues for SM are

reviewed in [31]. All research thus far is strictly theoretical.

In this paper, the ABER performance of SM is analyzed

in a practical testbed and compared with that for spatial mul-

tiplexing (SMX). In particular, the National Instruments (NI)

PXIe-1075 chassis are used at the transmitter and the receiver.

The design of the testbed hardware and the software used are

explained in detail, along with the transmission chain. The

effects of the entire transmission chain on the system perfor-

mance are examined. The basic elements of the transmission

link are the transmit RF chain, the wireless channel, and the

receive RF chain. In addition to the effects of the wireless

channel on the phase and the amplitude of the signal, the impact

on the system performance of the power imbalances (PIs) in the

transmitter and receiver RF chains is discussed. Furthermore, an

analytical upper bound for the ABER performance of SM over

non-line-of-sight (NLoS) channels with PI is derived and com-

pared with the experimental and computer simulation results.

The experimental results validate the analytical bound, as well

as the attained computer simulations. Finally, the performance

Fig. 3. NI-PXIe-1075 chassis with the relevant onboard modules at (a) the
transmitter (PXIe-Tx) and (b) the receiver (PXIe-Rx).

of SM is compared with the theoretical and experimental results

of SMX.

This paper is organized as follows: The system setup, equip-

ment, and digital signal processing (DSP) are presented in

Section II. The equipment constraints are then considered

in Section III, while the analytical modeling is discussed in

Section IV. In addition, the computational complexity of the

SM decoder algorithm is presented in Section V. The perfor-

mance of SM is then characterized in the experimental and

simulation environments in Section VI, where it is compared

with the theoretical and experimental results of an SMX system.

Finally, this paper is summarized in Section VII.

II. TESTBED SETUP AND SYSTEM MODEL

The testbed setup and the transmission chain can be sep-

arated into software and hardware parts, as shown in Fig. 2.

The hardware consists of the NI-PXIe chassis at the transmitter

(PXIe-Tx) and the NI-PXIe chassis at the receiver (PXIe-Rx).

The software consists of the DSP at the transmitter (DSP-Tx)

and the DSP at the receiver (DSP-Rx).

The binary data to be broadcasted are first processed by the

DSP-Tx, before being transmitted through the fading channel

by the PXIe-Tx. The channel coefficient on the link between

transmit antenna nt and receive antenna r is denoted by h(r,nt).

Note that the number of antennas at the transmitter and the

receiver are denoted by Nt and Nr, respectively. At the receiver,

the PXIe-Rx records the RF signal and passes it through to

the DSP-Rx for processing, where the original data stream is

recovered.

A. Testbed Hardware

The NI-PXIe-1075 chassis are equipped with a 1.8-GHz

Intel-i7 processor with 4-GB random access memory and are

shown in Fig. 3. The system has two transmit antennas and

two receive antennas. Each antenna at the transmitter and the

receiver contains two quarter-wave dipoles and one half-wave

dipole placed in the middle. All three dipoles are vertically

polarized. In addition, each antenna has a peak gain of 7 dBi

in the azimuth plane, with an omnidirectional radiation pattern.

1) Transmitter Hardware (PXIe-Tx): The following

NI-PXIe modules are used at the transmitter:

I) NI-PXIe-5450 16-bit I/Q Signal Generator (SG-16bit);

II) NI-PXIe-5652 RF Signal Generator with a 500-kHz to

6.6-GHz frequency range (SG-RF);

III) NI-PXIe-5611 intermediate frequency to carrier RF up-

converter (upconverter).
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The PXIe-Tx has an operational frequency range of 85 MHz

to 6.6 GHz and can facilitate a bandwidth of 100 MHz at a

maximum transmission power of 5 dBm.

At the transmitter, the SG-16bit performs a linear mapping

of the signed 16-bit range to the output power and polarization,

i.e., the peak voltage amplitude is assigned to any value in the

transmission vector that is equal to 215 with a linear scale of

the voltage amplitude down to zero. The output from SG-16bit

then goes to SG-RF, which is connected to the upconverter. The

upconverter outputs the analog waveform corresponding to the

data resulting from DSP-Tx at a carrier frequency of 2.3 GHz.

This completes a single RF chain. The transmission of the RF

signal by the upconverters is synchronized by using a 10-MHz

reference signal.

2) Receiver Hardware (PXIe-Rx): The following NI-PXIe

modules are used at the receiver:

I) NI-PXIe-5652 an onboard reference clock (SG-RF);

II) NI-PXIe-5622 16-bit digitizer, which records data sam-

ples in an I16 format (16-Bit Digitizer);

III) NI-PXIe-5601 RF downconverter (downconverter).

The PXIe-Rx can operate in a frequency range of 10 MHz

to 6.6 GHz and can facilitate an operational bandwidth of

50 MHz. For more details about the specifications of each

module, see [32] and [33].

At the receiver, each antenna is associated with a com-

plete RF chain. For each antenna, the downconverter is used

to detect the analog RF signal from its dedicated antenna.

The signal is then sent to the dedicated 16-Bit Digitizer. The

16-Bit Digitizer applies a bandpass filter with a real flat

bandwidth that is equal to Bf = (0.4 × fs), where fs is the

sampling rate [32]. The sampling rate in the experiment is

10 Ms/s, which results in a real flat bandwidth of 4 MHz.

This may result in frequency-selective fading. Nonetheless,

equalization is not required for the detection of SM or SMX

signals in this experiment because of the following: 1) There

are no multitap delays in the experimental setup due to very

small distance between the transmit and receiver antennas.

2) ML detection is used to decode the received signal for both

SM and SMX. The use of ML detection is applied to the

complete SM symbol, i.e., the spatial and signal symbols are

jointly decoded. Finally, after the synchronization of the 16-Bit

Digitizer with the onboard reference clock of the SG-RF, the

16-Bit Digitizer writes the received binary files. The simulta-

neous recording of the two signals coming from Tx1 and Tx2

is facilitated by utilizing multiple processing cores and mul-

tiple NI-PXIe modules. The recorded files are then processed

according to DSP-Rx in Fig. 4.

B. Testbed Software

MATLAB was used to facilitate the DSP-Tx and the

DSP-Rx. The DSP-Tx processes the information data and gen-

erates binary files that can be transmitted by the PXIe-Rx. The

DSP-Rx processes the received data from the PXIe-Rx and

recover the original information data stream. Fig. 4 outlines the

processing algorithms at the DSP-Tx and the DSP-Rx.

Fig. 4. Step-by-step layout of the binary data encoder (DSP-Tx) and decoder
(DSP-Rx) processes.

1) DSP-Tx: The DSP-Tx process takes the incoming binary

information data and performs the following.

1.1 Framing: The incoming data is split into frames consisting

of 100 symbols per frame.

1.2 Modulation: The data in each frame is modulated using SM

or SMX:

• SM: The bit stream is divided into blocks contain-

ing log2(Nt M) bits each, where M is the signal-

constellation size. The following mapping rule is then

used [4]:

a) The first log2(Nt) bits determine which trans-

mit antenna is active, i.e., they determine the

spatial-constellation point of SM. In this paper,

the transmit antenna broadcasting is denoted by

nt with nt ∈ {1, 2, . . . , Nt}.

b) The second log2(M) bits are used to choose

a symbol in the signal-constellation diagram.

Without loss of generality, quadrature amplitude

modulation (QAM) is considered. The actual

complex symbol emitted by the transmit antenna

nt is denoted by st, with st ∈ {s1, s2, . . . , sM}.

By following the aforementioned steps, the Nt × 1

dimensional transmit vector is

xnt
, st =

[
01×(nt−1), st,01×(Nt−nt)

]T
(1)

where [·]T denotes the transpose operation, and 0p×q

is a p× q matrix with all-zero entries. Equation (1)

is a representation of the transmission vector for SM.

Since SM activates only one transmit antenna at any

transmission instance, only one transmit antenna can

broadcast a symbol, while all others remain silent.

To this extent, the transmit vector is composed of

all zeros, except for the single symbol st, which is

broadcasted from antenna nt. In this manner, SM

avoids ICI and allows single-stream ML decoding. In

addition, SM is energy efficient since only a single

RF chain is active while still providing a multiplexing

gain [10].
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• SMX: In this case, the bit stream is divided into

blocks of Nt log2(M) bits; then, according to [34],

the following mapping rule is used.

a) Each log2(M) bit is separately modulated using

M -QAM modulation.

b) The modulated symbols are then simultaneously

transmitted from the Nt transmit antennas.

1.3 Pilot and zero padding: The least-square (LS) channel

estimation algorithm with local orthogonal pilot sequences

is used to estimate the channel [35]. Two pilot signals are

added for each frame, one of which at the start of the

frame and one at the end. Each pilot signal contains ten

pilot sequences, where the orthogonal pilot sequence for

the ntth transmit antenna is defined as

Θnt
(ℓ) = exp

(
2πj

ntℓ

NΘ

)
(2)

where Θnt
(ℓ) is the ℓth element of the pilot sequence Θnt

transmitted from antenna nt, j =
√
−1 is the imaginary

unit, and NΘ is the cardinality of the pilot sequence. In

this paper, the length of each pilot sequence is NΘ = 10.

To avoid interframe interference, an all-zero sequence of

50 zero-valued symbols is added to both the start and the

end of the frame. Furthermore, a sequence of constant-

valued symbols is added to enable frequency-offset (FO)

estimation at the receiver. The length of the FO estimation

sequence is 1000 symbols.

1.4 Upsampling and filtering: Upsampling and matched fil-

tering (pulse shaping) are used to maximize the SNR and

reduce intersymbol interference [36]. Each frame is

upsampled with an upsampling ratio of 4 and then

passed through a root-raised-cosine (RRC) finite-impulse-

response (FIR) filter with 40 taps and a rolloff factor of

0.75. The large rolloff factor is necessary to ensure that

the power is focused in a short-time instance to ensure that

only a single RF chain is active when using SM.

1.5 Tuning signal power: The SNR is varied by changing the

power of the transmitted signal to obtain the ABER. This

is done by multiplying each transmission vector with a

“tuning signal power” factor to obtain the desired transmit

power. In particular, the amplitude of the “data section”

in the transmission vector is changed by using the “tuning

signal power” factor.

1.6 Synchronization and SNR: Several preamble-

autocorrelation-based methods for frame synchronization

were tested [37]–[39]. However, despite the introduction

of an interpolation filter at the receiver and due to the

channel attenuations, the estimated start of the signal

was typically in error by one or two samples. This meant

that sample synchronization could not be consistently

achieved, resulting in off-by-one errors. The investigation

of synchronization techniques is outside the scope of this

paper, but to avoid synchronization via a cable, as is often

done in similar experimental systems, the peak-detection

technique has been applied, which resulted in the desired

outcome. We recognize that this technique is suboptimal

as it results in power-amplifier saturation and potential

signal distortions. Nonetheless, a sequence of 20 symbols

with maximum power, each of which is separated by

50 zero-valued symbols, are added to the start of the

transmitted signal. The large power difference between

the maximum power peaks and the power of the “data

section” symbols is reasonable since the instantaneous

channel power may fluctuate by as much as 20 dB due to

fast fading [40], [41]. The power difference between the

synchronization section and the remaining sections is set

to be larger than the maximum channel variation. In this

manner, successful peak detection is guaranteed. If this

is not the case, no peak may be detected at the receiver,

and all further decoding would be erroneous. To facilitate

SNR calculations at the receiver, two sequences of power

and no power are added after the synchronization pulses

of the transmitted signal, which are indicated by the “SNR

section” in Fig. 5. Each sequence contains five blocks

of 50000 symbols and 50000 zeros. The first sequence

is transmitted from the first antenna, whereas the second

antenna is off. The second sequence is transmitted from

the second antenna, whereas the first antenna is off.

After the DSP-Tx process is completed, the transmit vector

symbols are converted to I16 format and are recorded to a

binary file. This binary file is then broadcast by the PXIe-Tx.

Fig. 5 is an absolute value representation of the processed

incoming data that are passed to the first transmit antenna

(Tx1), and Fig. 6 shows the absolute value representation of

each frame. Note that the “data section” is a series of concate-

nated frames. In Fig. 6, it is shown that each frame contains

26100 samples. Therefore, the period of each frame is TFrame =
26100/fs = 2.6 ms. This is much less than the coherence time

of the channel given that, typically, the coherence time for a

stationary indoor environment is approximately 7 ms (see [41],

and references therein). Hence, the channel estimation at the

receiver is valid for the frame duration.

2) DSP-Rx: The data that are received by the PXIe-Rx are

processed by the DSP-Rx to recover the original data stream.

To accomplish this, the following steps are required.

2.1 Synchronization: This is achieved by searching for the

peaks with a value above a certain threshold in the received

signal. The threshold is set as 70% of the highest value in

the received vector. This threshold level accounts for the

natural voltage variations in the system, i.e., the difference

between the peak voltage and the root-mean-square volt-

age. If the number of peaks found is less than 20, then the

received vector is discarded from further calculations.

2.2 SNR calculation: The SNR is defined as

SNR =
E
[
‖Hx‖2F

]

σ2
n

(3)

where H is the Nr ×Nt channel matrix, x is the Nt ×
1 transmitted vector, E[·] is the expectation operator, and

‖ · ‖F is the Forbenius norm. Assuming that the noise at

the receiver is additive white Gaussian noise (AWGN), the

received signal for the duration of the SNR sequence can

be written as follows:

y = hnt
st + n (4)
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Fig. 5. Absolute value representation of the transmission vector being sent
to Tx1. The synchronization, SNR estimation, and data sections are shown. The
value of the peak must be equal to 215 since the 16bit-Digitizer operates using
an I16 format before tuning the signal power of the data. The highest value
in the SNR section is the same as the highest value in the information data
section, which in this example, is a value of 2896. The peak value is 215. There
is approximately a 21.1 dB difference between the peak power in the synchro-
nization section and the peak power in the SNR estimation and data sections.
This is apparent when looking at the two data points shown in the figure.

Fig. 6. Absolute value representation of a single frame from the vector
being transmitted by Tx1 in the I16 data format, which is a signed 15-bit
representation of an integer number.

where y is the Nr×1 received vector, hnt
is the nt column

of the channel matrix H, n is the Nr×1 AWGN vector with

σ2
n variance and µn mean, and st is the transmitted symbol

from the nt antenna. As mentioned in Section II-B1, only

a single transmit antenna is active when broadcasting the

SNR sequence, and st is either equal to the maximum value

in the “data section” xmax or zero, as shown in Fig. 5.

Hence, the received signal in (4) can be rewritten as

y =

{
hnt

xmax + n, st = xmax

n, st = 0.
(5)

Proceeding from (5)

E
[
‖Hx‖2F

]
=E

[
‖y − n‖2F

]
(6)

σ2
n =E

[
‖n‖2F

]
− E [‖n‖]2 (7)

Fig. 7. Experimental setup in the laboratory.

where [·]H is the Hermitian operation. As discussed in

Section II-B1, each SNR sequence contains 50000 symbols

and 50000 zero-valued symbols. Since the noise in the sys-

tem represents an ergodic process, the ensemble average in

(6) can be replaced with a time average, i.e.,

E
[
‖Hx‖2F

]
=

50000∑

i=1

(
‖yi‖2F − ‖ni‖2F − 2yH

i ni

)
(8)

σ2
n =

50000∑

i=1

‖ni‖2F −
[
50000∑

i=1

‖ni‖F
]2

(9)

where yi and ni are the ith received vector. To get a

more accurate estimation, the SNR is calculated for the five

transmitted SNR sequences that are received at both anten-

nas and then averaged again over those measurements.

2.3 Extract frames: After finding the start of the transmission

and calculating the SNR, the DSP-Rx performs a serial-to-

parallel conversion to separate the received frames.

2.4 Downsampling and filtering: To complete the matched

filter that is described in Section II-B1, each frame is

downsampled by a factor of 4 and passed through an RRC-

FIR filter.

2.5 FO correction: The DSP-Rx estimates the FO for each

frame by

∆f =
∠x1000 − ∠x1

2π × 1000
(10)

where ∠x1000, ∠x1 are the angles of the first and last sam-

ples of the FO sequence transmitted by the DSP-Tx, where

the FO sequence has exactly 1000 symbols. These angle

values are obtained by correcting the radian phase angles

in a vector by adding multiples of ±2π as required. This

enables a better estimate of the phase offset. Assuming a

linear phase rotation, the FO can be estimated using (10).

The FO for each frame is then corrected by

ỹi = yi × e−j2π∆f i (11)

where ỹi and yi are the ith elements of the corrected and

uncorrected received frames, respectively.

2.6 Channel estimation: The channel estimation is done by

using the LS channel estimation algorithm that is proposed

in [35], where, for each frame, the channel is estimated by

H̃LS =
1

NΘ
ΘHHr (12)
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Fig. 8. Physical experimental layout. A pair of receive antennas and a pair of transmit antennas are set 2.2 m apart from each other with a direct LoS. Each pair
of antennas is 1.5 m from the ground, and there is a 10-cm spacing between the antennas in either pair corresponding to 0.77 times the wavelength at 2.3 GHz. All
antennas are omnidirectional.

Fig. 9. CDFs for each of the fast-fading coefficients h(r,nt) of the four chan-
nels in the experiment. Each is defined by a Rician distribution with a unique
K-factor. (Markers) Measurement points. (Lines) Best-fit approximation. Note
that the wireless channel mean values fall in the range of 1.3–3.6 mV.

where Hr is the received pilot sequence. To enable a more

accurate evaluation of the system, the channel is estimated

and averaged over ten pilot sequences. Furthermore, two

channels are estimated per frame; the first channel estimate

is used for the first half of the data symbols in the frame,

and the second is used for the second half of the data

symbols in the frame.

2.7 Demodulation: The ML optimum receiver for MIMO

systems is used, which can be written as

x̂
(ML)
t = argmin

x∈Q

{
‖y −Hx‖2F

}
(13)

where Q contains every possible (Nt × 1) transmit vector,

and ·̂ denotes the estimated transmission vector. However,

since only one transmit antenna is active at a time for a SM

system, the optimal receiver in (13) can be simplified to

[
n̂
(ML)
t , ŝ

(ML)
t

]
= argmin

nt∈{1,2,...,Nt}

s∈{s1,s2,...,sM}

{
Nr∑

r=1

∣∣yr−h(r,nt)s
∣∣2
}

(14)

where yr is the rth entries of y.

Finally, the recovered binary data, along with the estimated

SNR, are used to obtain the ABER performance of both SM

and SMX.

C. Propagation Environment (Channel)

The physical layout of the experimental setup is shown in

Fig. 7, and the relative antenna spacing is provided in Fig. 8.

In particular, the two transmit and two receive antennas are

identical and are placed directly across from each other. As

such, the channel between the transmitter and the receiver has a

strong line-of-sight (LoS) component. Therefore, the channel is

assumed to be a Rician fading channel with a large K-factor due

to the short distance between the transmit and receive antennas,

where K is the ratio of the coherent power component, which is

usually the LoS, to the noncoherent power components, which

is usually the NLoS. The omnidirectional transmit antennas

broadcast on a frequency of 2.3 GHz at 10 Ms/s.

Channel measurements were collected to verify that the

channel environment followed a Rician distribution. To achieve

this, the transmitter broadcasts pulses at 10 Ms/s on a carrier

frequency of 2.3 GHz at 4 dBm peak power. Each pulse in-

cludes a FO estimation section, and a total of 105 pulse samples

are collected. A best-fit approximation is then calculated for the

collected data. In particular, a maximum-likelihood estimation

is fitted to the collected data. A Chi-squared goodness-of-fit

test is then performed to ascertain that the distribution resulting

from the maximum-likelihood estimation fits at least 95% of

the data. The empirical cumulative density function (CDF)

for each link is shown in Fig. 9. The results show that the

channel does follow a Rician distribution with a K factor that

ranges between 31–38 dB. The different K-factors on the links

between the transmit and receive antennas may be explained

by the room geometry, the antenna positioning, and the overall

propagation environment. However, note that each of the CDFs

has a different mean, which will be discussed in the next

section.

III. EQUIPMENT CONSTRAINTS

Fig. 8 shows the physical layout of the experiment. Note

that the 10-cm interantenna separation that is used here is

sufficient to guarantee very low, if any, spatial correlation when

broadcasting at 2.3 GHz with a 2.2-m separation between the

transmitter and the receiver [42].

The physical environment through which the signal passes,

starting from the SG-RF at the transmitter until it reaches

the 16-Bit Digitizers at the receiver, suffers from connector

losses, differences in the RF chains, different phase responses,

attenuations, and similar problems. To study and model the
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Fig. 10. CDFs for each of the fast-fading coefficients h(r,nt) of the four channels in the experiment. Each is defined by a Rician distribution with a unique
K-factor. (Markers) Measurement points. (Lines) Best-fit approximation. Despite using a coaxial cable with a 10 dB attenuation to connect the RF chains, each
channel exhibits a unique mean. Configurations (a) (I) and (b) (II) of the receive RF chains.

effects of the hardware imperfections on the signal power, we

have the following.

1) An RF coaxial cable with a 10 dB attenuation is con-

nected between each transmit and receive antenna.

2) A pulse is transmitted at 10 Ms/s on a carrier frequency

of 2.3 GHz at −10 dBm peak power. Each pulse includes

an FO estimation section, and a total of 105 pulse samples

were collected.

3) The CDF for each of the fading coefficients is calculated

and is shown in Fig. 10.

In an ideal environment, the means of the CDFs in Fig. 10

should be equal. However, imperfections in the hardware result

in different means for each transmit-to-receiver antenna pair, as

shown in Fig. 10. The differences between the channels can be

modeled as a PI between the various link pairs in the channel

matrix H. Therefore, the channel coefficients are redefined as

hPI
(r,nt)

=
√
α(r,nt) × h(r,nt) (15)

where α(r,nt) is the channel attenuation coefficient from the

receive antenna r to the transmit antenna nt.

To locate the source of the discrepancy between the different

channel attenuations, i.e., determine if the NI modules or

the NI chassis are the source, the RF chains at the receiver

were swapped around, and the channels were estimated in

configurations (I) and (II). To clarify, configuration (I)

represents the default modular setup of the testbed, whereas

configuration (II) refers to swapping the front-end modules

around the transmit chassis. Fig. 10(a) shows the channel CDF

for each transmit-to-receive antenna pair in configuration (I),

whereas Fig. 10(b) shows the channel CDF for each transmit-

to-receive antenna pair in configuration (II). By considering

the means of the CDFs in Fig. 10(a) and (b) and taking h(1,1)

as a base, the various channel attenuations that result when

the receiver is in configuration I or II are given in (16) and

(17), shown at the bottom of the page, respectively. Comparing

Fig. 10(a) and (b), as well as the attenuations in (16) to those

in (17), shows that they are very similar. Indeed, the swapping

of the RF chains has a minimal impact on the estimated mean

of each channel attenuation. Thus, it can be assumed that

the NI modules that compose the receive RF chains are the

source of the hardware imperfections and consequently lead

to the differences in the means of the estimated CDFs. To

account for the hardware imperfections, the channel attenuation

coefficients in (16) and (17) are taken into consideration in the

derivation of the analytical model in Section IV. The accuracy

of the derived analytical bound using the channel attenuation

coefficients in the following is demonstrated in Section VI,

where it is compared with empirical results.

IV. ANALYTICAL MODELING

An analytical model for the ABER performance of the exper-

imental system is developed by considering the system model

that is presented in Section II and the system constraints in

Section III. The performance of SM and SMX over a single

link in a noise-limited scenario is characterized by

ABER ≤ 1

2m

∑

xt

∑

x

N(xt,x)

m
EH

{
Pr
error

}
(18)

α(1,1) =0 dB, α(2,1) = 0.25 dB, α(1,2) = 0.88 dB, α(2,2) = 1.1 dB (16)

α(1,1) =0 dB, α(2,1) = 0.29 dB, α(1,2) = 1.13 dB, α(2,2) = 1.17 dB (17)
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Fig. 11. Relative receiver complexity reduction of the SM-ML receiver versus
the SMX-ML receiver.

where N(xt,x) is the number of bits in error between the trans-

mitted vector xt and x, EH{·} is the expectation across channel

H, and Prerror is the conditional pairwise error probability of

deciding on x given that xt is transmitted [43], i.e.,

Pr
error

= Pr
(
‖y −Hxt‖2F > ‖y −Hx‖2F |H

)

=Q

(√
γex ‖H(xt − x)‖2F

)
(19)

where γex=(Em/2N0) is half of the SNR between the transmit-

ter and the receiver, and Q(ω)=(1/
√

2π)
∫∞
ω

exp(−(t2/2)) dt

is the Q-function. As shown in Fig. 8, the transmit and receive

antennas in the experiment experience a very strong LoS en-

vironment. Accordingly, the channel between each transmit-

to-receive antenna pair is characterized by Rician fading. A

generic Rician channel is defined as

h(r,nt) =

√
K

1 +K
+

√
1

1 +K
h̃(r,nt) (20)

where h̃(r,nt) ∼ CN (0, 1) is a complex normal circular sym-

metric random variable with zero mean and unit variance. nt ∈
{1, 2} is the index of the transmit antenna, and r ∈ {1, 2} is the

index of the receive antenna.

To account for the hardware imperfections that result from

the PIs, the fast-fading-channel coefficients are redefined ac-

cording to (15), (16), and (20). Section VI validates the derived

analytical bound by comparing it to experimental and simula-

tion results.

V. COMPLEXITY ANALYSIS

The computational complexity of SM-ML is compared with

that of the ML detector for SMX (SMX-ML). The complexity

is computed as the number of real multiplicative operations

(×,÷) needed by each algorithm. The detailed derivation

of each expression is considered in [13] and references

therein.

• SMX-ML: The computational complexity of the SMX-

ML receiver that is outlined in (13) is equal to

CSMX−ML = 4(Nt + 1)Nr2m (21)

where m is the spectral efficiency of the system. Note

that (|y −Hx|2) in (13) requires (Nt + 1) complex

multiplications.

• SM-ML: The computational complexity of the SM-ML

receiver that is outlined in (14) is equal to

CSM−ML = 8Nr2m (22)

where the ML detector searches through the entire trans-

mit and receive search spaces. Note that evaluating the

Euclidean distance (|yr − h(r,nt)st|2) requires two com-

plex multiplications, where each complex multiplication

requires four real multiplications.

Considering (21) and (22), for the same spectral efficiency,

the reduction in complexity of the SM-ML receiver relative to

that of the SMX-ML receiver is given by

Crel = 100 ×
(

1 − 2

Nt + 1

)
. (23)

On one hand, as shown in (22), the complexity of the SM

receiver does not depend on the number of transmit antennas,

and it is equal to the complexity of SIMO systems. On the

other hand, the complexity of SMX linearly increases with

the number of transmit antennas. Therefore, as the number of

transmit antennas increases, the relative gain of the SM receiver

increases. This is shown in Fig. 11, where the relative complex-

ity for Nt ∈ {2, 4, 8, . . . , 128} is shown for both systems. In

fact, Fig. 11 shows that, for Nt = 4, SM offers a 60% reduction

in complexity, whereas a 98% reduction in complexity can be

seen for Nt = 128. The theoretical, simulation, and empirical

results for SM and SMX are now discussed.

VI. EXPERIMENTAL RESULTS AND NUMERICAL ANALYSIS

A. Measurement Campaign

A stream of 105 information bits is sent per transmission

to obtain the experimental results. Two transmit antennas are

available and binary phase-shift keying is used for the signal

constellation. As mentioned in Section II-A2, the real flat

bandwidth is 4 MHz. The information data are put in 50 frames

with 2000 bits each, as shown in the “data section” in Fig. 5.

The channel is estimated at the beginning and the end of every

frame, resulting in 100 channel estimations per transmission

vector. The experiment is repeated 1000 times for every SNR

point. In addition, analytical and simulation ABER curves are

shown for SM in a Rician environment with and without the PIs

that are given in (16).

B. Results

The simulation, analytical, and experimental results for the

ABER performance of SM in an LoS channel are shown in

Fig. 12. In particular, the experimental results approximate the

performance of the simulation results with PIs, and both the

simulation and experimental results are closely approximated

by the derived upper bound at a low ABER.

This result serves to validate the theoretical work that is

done in the field where the presented SNR along the x-axis is

equivalent to the SNR on h(1,1). The large error between the

experimental, simulation, and analytical curves at high ABER

can be attributed to a number of factors, including incorrect FO

estimation, timing recovery errors, synchronization problems,
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and poor channel estimation and decoding. Notably, incorrect

FO estimation can result in a systematic error that is signifi-

cantly contributing to the 30% error that are shown at low SNRs

in the figure. As the SNR increases, however, FO estimation,

timing recovery, and channel estimation improve, leading to

a lower ABER, as shown in Fig. 12. Differences between

the measured and simulated ABER curves can be attributed

to channel imperfections such as channel correlations, mutual

coupling, and interference signals from the surrounding envi-

ronment. Quantifying these imperfections is deemed important

and requires channel modeling and interference measurement.

However, addressing these effects is beyond the scope of this

paper and will be the subject of future works.

SM performs best in a rich scattering environment where the

channel between each transmit and receive antenna is unique.

In particular, the larger the Euclidean distance between two

received vectors is, the better the ABER performance of SM

becomes. Conversely, the more similar the channels are, the

worse the ABER of SM is. However, the channel uniqueness

can be the result of the scattering environment or PIs that are

caused by hardware tolerances. The analytical and simulation

results in Fig. 12 show the poor performance of SM in a Rician

environment with no PI between the various transmitter-to-

receiver links. Fig. 12 also shows the analytical and simulation

ABERs for SM when PI are introduced. Indeed, the ABER

of SM significantly improves when these PIs are introduced,

as each channel becomes more separable. This increases the

Euclidean distance and improves performance.

If the channels between each transmit antenna to each receive

antenna are similar, then the ABER performance of SM de-

grades. This is seen when looking at the SM system without PIs,

which is shown by the dashed green line with triangular markers

in Fig. 12. In fact, the ABER of SM can be approximated

by separating the error that originates from the estimation of

the spatial-constellation symbol and the error that originates

from the estimation of the signal-constellation symbol [44].

Therefore, depending on the environment, the main contributor

to the overall ABER of a SM system will be the erroneous

detection of the spatial or signal constellation.

When PIs are introduced, the Euclidean distance between the

channel signatures increases. This decreases the error contribu-

tion of the spatial component of SM. Hence, when the SNR is

sufficiently high to have near-perfect channel estimation, the

error of the system is bounded by the error from the signal

component of SM. This separation can be only shown when

iterative detection is used, which is proven to be suboptimal

[12]. In addition, in [45], it is shown that the error, when only

the spatial constellation of SM is used for data transmission,

gets worse for an increasing K factor in a Rician environment.

This is the opposite of conventional modulation techniques

since a larger K factor for SM means a smaller Euclidean

distance between the spatial-constellation points, which results

in an increased ABER performance. Indeed, it is the Euclidean

distance between the different channels that determines the

error in the spatial-constellation detection. However, since ML-

optimal detection is used at the receiver, separating the error

from the spatial and signal symbols is strictly not permitted.

Please note that the PIs between the links are always obtained

Fig. 12. ABER for SM in an experimental setup with two transmit antennas,
two receive antennas, and a spectral efficiency of 2 bits/(s · Hz−1

). The SNR
is set as measured on h(1,1) with α(1,1) = 0 dB. (Solid black line with square
markers) Experimental results. (Green diamond markers) Simulation results
with no PI between the links. (Green dashed line) Analytical prediction. The
remaining curves denote the simulation (Sim) and analytical (Ana) results.

relative to the channel with the greatest attenuation, i.e., the

values of the PI factors in (16) and (17) are always positive.

Furthermore, PIs between the transmitting antennas are

shown to offer improved performance in terms of the ABER

when only the spatial constellation of SM is used, i.e., when

space shift keying (SSK) is the underlying modulation tech-

nique. In particular, an optimized power allocation for a various

number of transmit antennas is addressed in [23], where the

authors show that there is optimal power allocation between

the transmitting antennas, which can serve to increases the

Euclidean distance between the channel signatures and im-

prove the ABER performance of SM. Indeed, SM has been

also successfully applied to an AWGN optical wireless chan-

nel, where it is shown that PIs greatly improve the ABER

performance [46].

The simulation, analytical, and experimental results for the

ABER performance of SMX in a LoS channel are shown in

Fig. 13. In particular, the experimental results closely follow

the performance of the simulation results with PIs, and both the

simulation and experimental results are closely approximated

by the derived upper bound at low ABER when the hardware

imperfections are taken into account. This result serves to

validate the theoretical work that is done in the field. The results

in Fig. 13 show that the SMX system, like the SM system,

also benefits from the PIs in the hardware. The SMX system

approximately exhibits a 3 dB coding gain when compared with

SM at an ABER of 10−4. This coding gain is also shown at an

ABER of 10−3 in Fig. 14, where the simulation and analytical

results for the ABER performance of SM and SMX are shown

when there are no PIs between the links.
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Fig. 13. ABER for SMX in an experimental setup with two transmit antennas,
two receive antennas, and a spectral efficiency of 2 bits/(s · Hz−1

). The SNR
is set as measured on h(1,1) with α(1,1) = 0 dB. (Solid black line with square
markers) Experimental results. (Green diamond markers) Simulation results
with no PI between the links. (Green dashed line) Analytical prediction. The
remaining curves denote the simulation (Sim) and analytical (Ana) results.

The coding gain of SMX relative to SM is expected when

there are few transmit antennas. The Euclidean distance be-

tween the transmit vectors and, therefore, the variance in (19)

in SMX is larger than in SM. However, the aim of this paper

is to show that empirical results validate the simulation and

analytical works that are done in the field, which are shown in

both Figs. 12 and 13. Unfortunately, due to the limited number

of transmitter and receiver RF chains that are available, there

are no experimental results for systems with a larger number

of transmit or receive antennas where SM is shown to perform

better than SMX. These empirical results will be the focus of

future research. Nonetheless, the accuracy of the theoretical

and simulation results of SMX and SM with a large number

of transmit and receive antennas can be extrapolated from the

presented results.

Fig. 15 compares the ABER between SM (see solid lines)

and SMX (see dashed lines) in a system with a large number of

transmit antennas. Each system operates in a Rayleigh fading

environment with a spectral efficiency of 8 bits/(s · Hz−1) and

four receive antennas. The results demonstrate the coding gains

available to a SM system, as compared with SMX when a

large number of transmit antennas are available. In particular,

SM with Nt = 64 offers a coding gain of up to 4 dB with

respect to SMX with Nt = 8 and a coding gain of 6 dB

with respect to SMX with Nt = 4. These performance gains

stem from the greater Euclidean distance between the transmit

vectors for SM. It is important to note that, although SM is

simulated as having 64 transmit antennas available, it requires

only a single RF chain, whereas SMX requires eight RF chains

for the eight transmit antennas. Furthermore, to achieve the

Fig. 14. ABER for SM and SMX in a Rician fading channel where K =

33 dB with two transmit antennas, two receive antennas, a spectral efficiency
of 2 bits/(s · Hz−1

), and no PIs between the channels. (Markers) Simulation
(Sim) and (lines) analytical (Ana) results.

Fig. 15. Simulation results for the ABER for SM and SMX in a Rayleigh
fading environment with a spectral efficiency of 8 bits/(s · Hz−1

) and no PIs
between the channels.

ABER performance that is shown in Fig. 15, SM requires 64

unique channels. In this paper, a unique channel is assumed

to be available only with the addition of a single transmit

antenna. However, the work in [6], [25], and others, look at

creating multiple channel signatures without the need for a

large number of physical transmit antennas while maintaining a

similar ABER performance to the traditional SM scheme.
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This paper demonstrates that the hardware tolerances of

practical communication systems are beneficial for the ABER

performance of both SM and SMX. This behavior, along with

the requirement for a single RF chain, makes SM a viable

candidate for future wireless networks.

VII. SUMMARY AND CONCLUSION

In this paper, the ABER performance of SM and SMX has

been experimentally validated for the first time. In particular,

the encoding and decoding processes have been presented. The

experimental testbed, equipment, and channel conditions have

been described in detail, and the ABERs of SM and SMX

have been obtained in a practical testbed environment. In ad-

dition, the experimental results have been compared with both

simulation and analytical approaches. As a result, it has been

shown that a Rician channel with different channel attenuations

closely describe the behavior of SM and SMX in the physical

environment. Furthermore, it has been demonstrated that the

different channel attenuations resulted from various hardware

imperfections at the transmitter and receiver RF chains. In fact,

the induced PIs resulted in significant coding gains for the

practical systems that are relative to the theoretical predictions

without such PIs. To this extent, SM and SMX performed as

expected, relative to the theoretical work when the PIs have

been introduced in the analytical model. This result validated

the SM principle. The performance gains exhibited by SM in

the practical implementation make SM a viable candidate for

future wireless networks and, particularly, for systems with a

large number of transmit antennas available.

It is worth noting that this paper may be extended in a

number of different ways that would broaden its applicability.

Empirical results that demonstrate the performance of SM

and SMX with a large number of transmit and receive an-

tennas remain to be obtained. In light of the aforementioned

results, the ABER performance of SM and SMX is expected to

follow the theoretical models, but these results are essential

to validate the ABER performance for both SM and SMX

systems. In addition, channel imperfections such as channel

correlations and mutual antenna coupling, along with the im-

pact of interfering signals from neighboring transmitters on the

same frequency, should be analyzed. Furthermore, obtaining

empirical results for the capacity and the energy efficiency

of SM are of great interest for future research, particularly

since SM is projected to have large energy efficiency gains

when compared with other traditional MIMO schemes since

it requires only a single RF chain. As a consequence, the

quiescent power and circuit power can be kept at low levels.

Acquiring the hardware, which would enable the accurate

measurement of these aspects, is key. Finally, the implemen-

tation of the SM detection algorithm on a DSP or a field-

programmable gate array (FPGA) brings with it a number

of optimization challenges such as the use of multithread-

ing, pipelining, fixed-point computations, and others. The

deployment of SM on an FPGA or a DSP has yet to be

demonstrated.

It has been shown that SM is a simple low-cost MIMO

technique, which has now demonstrated excellent performance

in an LoS wireless channel. Therefore, this paper has shown

that SM is a promising practical approach to obtaining the

enhanced performance of SMX without introducing high pro-

cessor complexity and high power consumption that would

occur when using other SMX approaches. The aim now is to

investigate the performance of SM in a range of experimental

channel conditions and further study its potential.
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Abstract—In this paper, Sphere Decoding (SD) algorithms for
Spatial Modulation (SM) are developed to reduce the compu-
tational complexity of Maximum–Likelihood (ML–) optimum
detectors, which have a complexity that linearly increases with
the product of number of transmit–antenna, receive–antenna, and
size of the modulation scheme. Three SDs specifically designed
for SM are proposed and analysed in terms of Bit Error
Probability (BEP) and computational complexity. By judiciously
choosing some key parameters, e.g., the radius of the sphere
centered around the received signal, it is shown that the proposed
algorithms offer the same BEP as ML–optimum detection, with
a significant reduction of the computational complexity. Also, it
is shown that none of the proposed SDs is always superior to
the others, but the best SD to use depends on the system setup,
i.e., the number of transmit–antenna, receive–antenna, and the
size of the modulation scheme. The computational complexity
trade–off offered by the proposed solutions is studied via analysis
and simulation, and numerical results are shown to validate our
findings.

Index Terms—Multiple–Input–Multiple–Output (MIMO) Sys-
tems, Spatial Modulation (SM), Sphere Decoding (SD).

I. INTRODUCTION

Spatial Modulation (SM) is a recently proposed transmis-

sion technology for Multiple–Input–Multiple–Output (MIMO)

wireless systems, which has been originally proposed to in-

crease the spectral efficiency of single–antenna systems by

avoiding Inter–Channel Interference (ICI) [1]. This is attained

through the adoption of a new modulation and coding scheme,

which foresees: i) the activation, at each time instance, of a sin-

gle antenna that transmits a given data symbol (constellation

symbol), and ii) the exploitation of the spatial position (index)

of the active antenna as an additional dimension for data

transmission (spatial symbol). Both constellation symbol and

spatial symbol depend on the incoming data bits. Thereby, an

overall increase, by the base–two logarithm of the number of

transmit–antenna, of the spectral efficiency is achieved, while

still retaining a complexity comparable to single–antenna

systems.

In particular, at the receiver the Maximum Likelihood (ML)

optimum decoder is a simple single–stream detector, which

performs an exhaustive search over the whole constellation

symbol and spatial symbol space, and whose computational

complexity (C) linearly increases with the product of transmit–

antenna (Nt), receive–antenna (Nr), and size of the modula-

tion scheme (M ), i.e., C ∝ MNtNr [2]. Unlike other spatial

multiplexing schemes for MIMO systems, such as the V–

BLAST (Vertical Bell Laboratories Layered Space–Time) [3],

[4], there is a substantial reduction in receiver complexity,

as no multi–stream detectors with exponential–growing com-

plexity with Nt are required. In addition to this significant

complexity reduction, SM also outperforms many conventional

single–antenna and multi–antenna wireless systems [1], [5],

thus potentially being an appealing transmission concept for

the next generation of wireless systems.

In spite of its low–complexity implementation and superior

performance results, there still is potential for further computa-

tional complexity reductions, especially when: i) high spectral

efficiencies are required (i.e., the product MNt is large), or

ii) high diversity gains and, thus, low error probabilities, are

needed (i.e., Nr is large). Furthermore, complexity issues

become even more pressing when both MNt and Nr are

large. Motivated by these considerations, some recent research

works have focused on developing low–complexity detectors

for SM. For example, in [1] and [6] two sub–optimal two–

step detectors based on heuristics are proposed. However, in

[2] it is shown that the detector in [1] belongs to the family of

non–exact methods, and in general it is a few dB worse than

the ML–optimum detector. On the other hand, in [7] an exact

low–complexity detector for SM has been proposed, which is

based on the Sphere Decoding (SD) algorithm [8]. Therein,

it is shown that the proposed solution has a computational

complexity that is bounded by 8MNt ≤ C ≤ 8MNtNr, and it

provides an error performance very close to the ML–optimum

detector. This SD–based detector is especially suitable when

the number of receive–antenna Nr is very large, as it reduces

the size of the search space related to the multiple antennas

at the receiver (we denote this search space as “receive search

space”). However, it has two main limitations: i) it does

not reduce the dimension of the search space due to the

number, Nt, of transmit–antenna and the size, M , of the signal

modulation diagram (we denote this search space as “transmit

search space”), which prevents the detector from achieving a

significant reduction in computational complexity when high

data rates are required (i.e., when both Nt and M are large),

and ii) the detector has the same complexity as the ML–

optimum decoder when Nr = 1. In general, the reduction
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in decoding complexity is not very high when Nr is small, as

often happens in the downlink of cellular systems. The detector

in [7] is here called Receiver–centric SD (Rx–SD).

Motivated by these considerations, in this paper we move

from the results in [7] and propose two new low–complexity

detectors for SM, which are based on the SD principle. The

first solution aims at reducing the “transmit search space”,

and, thus, can be seen as a complementary solution to [7].

In particular, as opposed to [7], the proposed decoder is

suitable when either Nt or M , or both Nt and M are large.

On the other hand, it keeps the “receive search space” the

same as the original ML–optimum decoder. This detector is

called Transmitter–centric SD (Tx–SD). On the other hand, the

second solution combines both Rx–SD and Tx–SD with the

aim of reducing the complexity of the ML–optimum receiver

in both the receive and transmit search spaces. This detector

is called Combined–SD (C–SD). More specifically, the Tx–

SD detector is based on a simplified implementation of the

conventional SD proposed in [8], which exploits the peculiar

property of SM that only a single antenna is active at any

time instance. Due to space constraints, in this paper we

focus on the so–called non–underdetermined MIMO setup

with Nt ≤ Nr. In the recent period, some efficient SD methods

for the underdetermined MIMO setup have been proposed

(see, e.g., [9], [10] and references therein). However, the

analysis of this setup for SM is postponed to a future research

contribution.

In this paper, we provide a careful study of the performance

of these three detectors, along with an accurate comparison

of their computational complexity. Numerical results show

that the proposed solutions provide a substantial reduction in

computational complexity with respect to the ML–optimum

detector, and no loss in the Bit Error Probability (BEP).

Furthermore, it is shown that the Rx–SD is less complex than

the C–SD when M is not very large, while the C–SD is the

best solution when either M is large or Nr is small.

The reminder of this paper is organised as follows. In

Section II, the system model along with the ML–optimum

and Rx–SD detectors are summarised. In Section III, the new

Tx–SD and C–SD receivers are described. In Section IV, an

accurate analysis of the computational complexity of Tx–SD

and C–SD is performed. In Section V, some numerical results

are shown to compare the proposed receivers. Finally, Section

VI concludes the paper.

II. SYSTEM MODEL

A. SM Modulator

SM works as follows [1]. The bitstream emitted by a binary

source is divided into blocks containing log2 (Nt)+ log2 (M)
bits each, with log2 (Nt) and log2 (M) being the number of

bits needed to identify the spatial symbol and the constellation

symbol, respectively. Each block is split into two sub–blocks of

log2 (Nt) and log2 (M) bits each, and the following mapping

rule is used:

• The bits in the first sub–block are used to select the an-

tenna that is switched on for data transmission, while all

the other transmit–antenna are kept silent. In this paper,

the actual transmit–antenna that is active for transmission

is denoted by ℓt, with ℓt ∈ {1, 2, . . . , Nt}.

• The bits in the second sub–block are used to choose a

symbol in the signal–constellation diagram. Without loss

of generality, Quadrature Amplitude Modulation (QAM)

is considered. In this paper, the actual complex symbol

emitted by the transmit–antenna ℓt is denoted by st, with

st ∈ {s1, s2, . . . , sM}.

Accordingly, the Nt × 1 transmitted vector is:

xℓt,st
=

[

01×(ℓt−1), st,01×(Nt−ℓt)

]T
(1)

where [·]
T

denotes transpose operation, and 0p×q is a p × q

matrix with all–zero entries.

B. Channel Model

The modulated vector, xℓt,st
, in (1) is transmitted through

a frequency–flat Nr ×Nt MIMO fading channel with transfer

function H. In this paper, a Rayleigh fading channel model is

assumed, and, thus, the entries of H are modeled as complex

independent and identically distributed (i.i.d.) Gaussian ran-

dom variables with zero–mean and unit–variance. Moreover,

a perfect channel state information (CSI) at the receiver is

assumed, with no CSI at the transmitter.

Thus, the Nr × 1 received vector can be written as follows:

y = Hxℓt,st
+ n (2)

where n is the Nr–dimensional Additive White Gaussian

Noise (AWGN) with zero–mean and variance σ2 per dimen-

sion at the receiver input.

From (1), (2) simplifies as follows:

y = hℓt
st + n (3)

where hℓt
is the ℓt–th column of H.

C. ML–Optimum Detector

The optimum detector based on the ML principle has been

derived in [2]:
[

ℓ̂
(ML)
t , ŝ

(ML)
t

]

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

‖y − hℓs‖
2
F

}

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

Nr
∑

r=1

|yr − hℓ,rs|
2

} (4)

where ‖·‖
2
F is the Frobenius norm, ·̂ identifies the estimated

spatial and constellation symbols, and yr and hℓ,r is the r–th

entry of y and hℓ, respectively.

The computational complexity of (4), in terms of real

multiplications, is equal to:

CML = 8MNtNr (5)

as the ML detector searches through the whole transmit and

receive search spaces. Note that evaluating the Euclidean

distance
(

|yr − hℓ,rs|
2
)

requires 8 real multiplications.
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D. Rx–SD Detector

In [7], a reduced–complexity and close–to–optimal BEP–

achieving decoder is proposed, which, as mentioned in Section

I, aims at reducing the receive search space. The detector can

formally be written as follows:

[

ℓ̂
(Rx−SD)
t , ŝ

(Rx−SD)
t

]

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

Ñr(ℓ,s)=Nr







Ñr(ℓ,s)
∑

r=1

∣

∣yr − hℓ,rs
∣

∣

2







(6)

where 1 ≤ Ñr (ℓ, s) ≤ Nr is the number of Euclidean distance

evaluations
(

|yr − hℓ,rs|
2
)

, that have to be computed by the

Rx–SD detector. Note that Ñr (·, ·) can be different for each

point in the transmit search space, i.e., for ℓ ∈ {1, 2, . . . Nt}
and s ∈ {s1, s2, . . . sM}.

More specifically, given a sphere with radius R, the receiver

computes the set of optimal Ñr (ℓ, s) for ℓ ∈ {1, 2, . . . Nt} and

s ∈ {s1, s2, . . . sM} as follows:

Ñr (ℓ, s) = max
n∈{1,2,...Nr}

{

n

∣

∣

∣

∣

∣

n
∑

r=1

|yr − hℓ,rs|
2
≤ R2

}

(7)

In other words, for each ℓ ∈ {1, 2, . . . Nt} and s ∈
{s1, s2, . . . sM}, the Rx–SD receiver does not combine, ac-

cording to the Maximal Ratio Combining (MRC) principle [2],

the signals received by all the Nr antennas at the receiver, but

it keeps combining the received signals until the Euclidean

norm in (6) gives a point that lies inside a sphere of radius R

and centered around the received signal itself. However, since

the points in the actual search space are only those for which

we have Ñr(·, ·) = Nr, it can be shown that there is no loss in

either the diversity or the coding gain: the BEP is very close

to that of the ML detector in (4).

In [7] the interested reader can find an accurate analysis of

the computational complexity of the Rx–SD detector along

with an efficient method to choose the radius R, which

significantly affects the performance of the algorithm. In this

paper, we simply mention that:

• The complexity of the Rx–SD receiver is given by:

CRx−SD = 8

Nt
∑

ℓ=1

M
∑

s=1

Ñr (ℓ, s) (8)

It is easy to show that CRx−SD lies in the interval

8MNt ≤ CRx−SD ≤ 8MNtNr, where the lower bound

corresponds to the scenario where Ñr (ℓ, s) = 1 for

ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM}, and the upper

bound corresponds to the scenario where Ñr (ℓ, s) = Nr

for ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM}. In other

words, in the best–case scenario Rx–SD has the same

complexity as a Multiple–Input–Single–Output (MISO)

system, while in the worst-case scenario it has the same

complexity as the ML–optimum detector in (4). These

results suggest that the larger Nr, the higher the potential

gain with respect to the ML–optimum receiver. Let us

note that the Rx–SD solution has no pre–computations

with respect to the ML–optimum detector. In fact,

Ñr (ℓ, s) for ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM} in

(7) are implicitly computed when solving the hypothesis–

detection problem in (6).

• The radius R can be chosen as R = 2αNrσ
2, where α

is the solution of the equation as follows [8], [7]:

γ (Nr, 2αNr)

Γ (Nr)
= 1 − ε (9)

and γ (x, a) =
∫ a

0
ξx−1 exp (−ξ) dξ is the lower incom-

plete Gamma function, Γ (x) =
∫ +∞

0
ξx−1 exp (−ξ) dξ

is the Gamma function, and ε is an arbitrary small value

close to zero, e.g., ε = 10−6.

III. NEW LOW–COMPLEXITY SPHERE DECODERS FOR SM

As anticipated in Section I, in this section two new SDs for

SM are introduced. The first one (Tx–SD), aims at reducing the

transmit search space, as opposed to the Rx-SD search space,

and the second one (C–SD) combines Rx–SD and Tx–SD

decoders in order to reduce both transmit and receive search

spaces.

A. Tx–SD Detector

The Tx–SD for SM is a modified version of the well–

known SD for MIMO systems [8]. It, however, exploits the

peculiar property of SM that only a single antenna is active for

transmission. More specifically, similar to conventional SDs,

the Tx–SD scheme reduces the number of points (ℓ, s) for

ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM} to be searched

through in (4), i.e., the transmit search space, by computing

the Euclidean distances only for those points that lie inside a

sphere with radius R and centered around the received signal.

However, unlike conventional SDs, in our scheme the set of

points inside the sphere are much simpler to be computed, as

there is only a single active antenna in SM. In this section,

using the condition that the point has to lie inside a sphere with

radius R, an intervals are computed, while in the next section

we provide an estimate of the computational complexity of

the proposed detector.

The analytical derivation follows the notations in [8], which

here are briefly summarised to make the paper self–contained.

First, for ease of analytical derivation, the complex–valued

model in (2) is replaced by its real–valued equivalent, as

follows [11]:

ȳ = H̄x̄ℓt,st
+ n̄ (10)

where ȳ is a 2Nr×1 receive vector, H̄ is a 2Nr×2Nt channel

matrix, x̄ℓt,st
is 2Nt × 1 transmit vector, and n̄ is a 2Nr × 1

noise vector, defined as follows:

ȳ =
[

Re
{

yT
}

, Im
{

yT
}]T

(11)

H̄ =

[

Re {H} Im {H}
−Im {H} Re {H}

]

(12)

x̄ℓt,st
=

[

Re
{

xT
ℓt,st

}

, Im
{

xT
ℓt,st

}]T
(13)

n̄ =
[

Re
{

nT
}

, Im
{

nT
}]T

(14)

where Re {·} and Im {·} denote real and imaginary parts

respectively.
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ΘR =
{

(ℓ, s) with ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM}|
∥

∥ȳ − H̄x̄ℓ,s

∥

∥

2

F
≤ R2

}

=











(ℓ, s) with ℓ ∈ {1, 2, . . . Nt} and s ∈ {s1, s2, . . . sM}|

2Nt
∑

i=1



z̄i −

2Nt
∑

j=i

p̄i,j x̄j (ℓ, s)





2

≤ R2
Q











(17)

By performing QR factorisation of the matrix H̄, (10) can

be re–written as follows [8]:

ȳ = Q̄

[

P̄

0(2Nr−2Nt)×2Nt

]

x̄ℓt,st
+ n̄ (15)

where P̄ is a 2Nt × 2Nt upper triangular matrix, Q̄ =
[

Q̄1 Q̄2

]

, and Q̄1, Q̄2 are 2Nr × 2Nt and 2Nr ×
(2Nr − 2Nt) matrices, respectively.

The Tx–SD scheme can be formally written as follows:
[

ℓ̂
(Tx−SD)
t , ŝ

(Tx−SD)
t

]

= arg min
(ℓ,s)∈ΘR

{

∥

∥ȳ − H̄x̄ℓ,s

∥

∥

2

F

}

(16)

where ΘR is the subset of points (ℓ, s) for ℓ ∈ {1, 2, . . . Nt}
and s ∈ {s1, s2, . . . sM} in the transmit search space that lie

inside a sphere with radius R and centered around the received

signal ȳ. The subset ΘR determined as shown in (17) on top

of this page, where: i) z̄ = QT
1 ȳ, ii) R2

Q = R2 −
∥

∥Q̄T
2 ȳ

∥

∥

2

F
,

iii) z̄i and x̄i (ℓ, s) are the i–th entry of vectors z̄ and x̄ℓ,s,

respectively, and iv) p̄i,j is the (i, j)–th entry of matrix P̄.

The main reason why the Tx–SD enjoys reduced compu-

tational complexity compared to the ML-optimum detector is

the efficient computation of the subset ΘR, which should avoid

an exhaustive search in the whole transmit search space. As

far as SM is concerned, these points can be computed in a

very simple way, as summarised in Lemma 1.

Lemma 1: The subset of points ΘR in (17) lie in the

intervals:

−RQ + z̄i

p̄i,i

≤ x̄i (ℓ, s) ≤
RQ + z̄i

p̄i,i

(18)

−RQ + z̄i,i+Nt

p̄i,i

≤ x̄i (ℓ, s) ≤
RQ + z̄i,i+Nt

p̄i,i

(19)

for i = 2Nt, 2Nt − 1, . . . , Nt + 1 in (18), i = Nt, Nt −
1, . . . , 1 in (19), and we have defined z̄i,i+Nt

= z̄i −
p̄i,i+Nt

x̄i+Nt
(ℓ, s).

Proof:

1) First, we note that a necessary condition that the points

of the transmit search space need to satisfy in order

to belong to the subset ΘR in (17) is (for all i =
1, 2, . . . , 2Nt):



z̄i −

2Nt
∑

j=i

p̄i,j x̄j (ℓ, s)





2

≤ R2
Q (20)

which is a condition similar to conventional SD algo-

rithms [8].

2) Second, we need to take into account that in SM only a

single antenna is active at any time instance, i.e. there

are only two non–zero entries in the signal vectors x̄ℓt,st

and x̄ℓ,s respectively. By taking this remark into account,

it follows that: a) if i = Nt + 1, Nt + 2, . . . , 2Nt, then

only the imaginary part of x̄ℓ,s plays a role in (20), and,

thus, only one entry x̄j (ℓ, s) can be non–zero; and b)

if i = 1, 2, . . . , Nt, then both real and imaginary parts

of x̄ℓ,s play a role in (20), and, thus, only two entries

x̄j (ℓ, s) can be non–zero. The considerations in a) and

b) lead to the intervals in (18) and (19), respectively,

which are directly obtained by solving the inequality in

(20). �

By comparing the intervals in (18) and (19) with those of

a conventional SD [8], we notice that (18) and (19) are much

simpler, and this is due to the fact that in SM there is only

one active antenna element, while in conventional SDs all the

antennas transmit simultaneously. Note that, as (19) depends

implicitly on (18), this means that (19) needs to be computed

for all the points that lie in the interval in (18).

With respect to the Rx–SD scheme, the Tx–SD scheme

requires some pre–computations to estimate the points that lie

inside the sphere of radius R. These additional computations

are carefully taken into account in the analysis of the compu-

tational complexity of the Tx–SD scheme and its comparison

with the ML–optimum detector (see Section IV). Furthermore,

we note that the radius R in (17) can still be computed from

(9).

B. C–SD Detector

In Section II-D and Section III-A, we have seen that Rx–

SD and Tx–SD aim at reducing the complexity of the ML–

optimum detector by minimising the size of the receive and

transmit search spaces, respectively. So, it is natural to com-

bine both of them to further decrease the receiver complexity

by reducing the size of both search spaces. The proposed C–

SD is a two–step detector that works as follows:

1) First, the Tx–SD algorithm is used to reduce the transmit

search space. The subset of points ΘR is computed as

shown in (17).

2) Second, the Rx–SD algorithm is used to reduce the re-

ceive search space. More specifically, Rx–SD is applied

only on the subset of points ΘR computed in the step

above.

In formulas, we have:

[

ℓ̂
(C−SD)
t , ŝ

(C−SD)
t

]

= arg min
(ℓ,s)∈ΘR

Ñr(ℓ,s)=Nr







Ñr(ℓ,s)
∑

r=1

|yr − hℓ,rs|
2







(21)

where ΘR and Ñr (ℓ, s) are computed by using (17) and (7),

respectively.
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IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY

In this section, we analyse the computational complexity of

Tx–SD and C–SD algorithms by taking into account the pre–

computations needed to estimate the points of the reduced

search space. In this paper, the complexity is defined as the

total number of real multiplications and divisions required.

Note, that long multiplication and division have the same

computational complexity.

A. Tx–SD

The computational complexity of Tx–SD can be estimated

by taking into account that:

1) The QR factorisation in (15), when computed by using

the Householder algorithm [12], requires a number of

real multiplications equal to:

CQR =

N
∑

k=1

[

2f (k) + f2 (k) + 2f3 (k) + 1
]

−N3
r (22)

where f (k) = Nr + 1− k and N = min {Nr − 1, Nt}.

2) The computation of z̄ = QT
1 ȳ in (17) needs 4NtNr real

multiplications, i.e., Cz̄ = 4NtNr.

3) The computation of
∥

∥Q̄T
2 ȳ

∥

∥

2

F
in (17) needs

C‖Q̄T

2
ȳ‖

2

F

= 2Nr (2Nr − 2Nt + 1) real multiplications,

i.e., C‖Q̄T

2
ȳ‖

2

F

= 2Nr (2Nr − 2Nt + 1).

4) The computation of the intervals in (18) and (19) re-

quires: i) 2Nt real divisions to compute (18) for Nt

antenna indexes; and ii) 1 real multiplication and 2
real divisions for a number of times equal to the total

number of points that satisfy (18). In the worst–case

scenario, the number of points computed in (18) is equal

to the size, MI , of the imaginary constellation diagram

composing the QAM constellation symbol. Accordingly,

we have MINt real multiplications and 2MINt real

divisions, and, thus, the complexity of computing the

intervals in (18) and (19) can be upper–bounded by

Cinterval = 2Nt + 3MINt.

In summary, the analytical complexity resulting from the

computation of the points in the subset ΘR can be upper–

bounded by:

CΘR
≤ CQR + Cz̄ + C‖Q̄T

2
ȳ‖

2

F

+ Cinterval (23)

Since (16) requires 8 real multiplications for each computed

Euclidean distance, it follows that the computational complex-

ity of the Tx–SD receiver can be upper–bounded as follows:

CTx−SD ≤ CΘR
+ 8Nrcard {ΘR} (24)

where card {·} denotes the cardinality, i.e., the number of

points, in a set.

B. C–SD

The computational complexity of C–SD follows immedi-

ately from (8) and (24), as follows:

CC−SD ≤ CΘR
+ 8

∑

(ℓ,s)∈ΘR

Ñr (ℓ, s) (25)

V. NUMERICAL RESULTS

In this section, Monte Carlo simulation results for at least

106 channel realisation are shown to compare the performance

and computational complexity of ML–optimum and SD–based

receivers. The numerical examples are obtained by assuming

the system model in Section II. Furthermore, the radius R is

chosen as described in (9) with ε = 10−6.

In Fig. 1, the BEP averaged over Rayleigh fading is

shown by considering two different constellation sizes, and

Nt = Nr = 4. We notice that all the SDs have the same

performance, and all of them overlap with the ML–optimum

detector. As expected, the performance of SM improves when

M decreases.

In Fig. 2, Fig. 3, and Fig. 4, the computational complexity

C is compared using the derivations provided in the sections

IV. In particular, the figures show the relative computational

complexity of the SDs with respect to the ML–optimum

detector, i.e., Crel (%) = 100 × (CML − CSD)/CML. In Fig.

2, we observe that C–SD is always better than Tx–SD, while

it is better than Rx–SD only for high SNRs. The reason for

this latter result is because of the additional pre–computations

required by both C–SD and Tx–SD solutions. As mentioned in

Section I, we notice that the Rx–SD scheme is more effective

in reducing the complexity when the number of antennas at

the receiver is large.

Figures 3 and 4 show an interesting setup where it is clearly

highlighted that none of the proposed SDs is superior to the

others, and that it depends on the MIMO configuration and the

SNR which SD is the best. In particular, in Fig. 3 we notice

that when M = 64 the best receiver to use is the C–SD, while

if we look at Fig. 3 when M = 8 and Fig. 4 when M = 32
we notice that the Rx–SD detector is optimum. The reason

is that in the former case the transmit search space is large

enough to compensate for the pre–computations required by

Tx–SD and C–SD receivers. On the contrary, in the latter case

the transmit search space is not extensive, and, therefore, there

is little to be gained in reducing it, and the fixed amount of

pre-computations dominate.

Finally, in Fig. 4 when M = 64, Rx–SD and C–SD are

almost equivalent, as the transmit search space is large and

there are many antennas at the receiver creating a large receive

search space.

In summary, we can conclude that Rx–SD is the best choice

when the number of antennas at the receiver is large, as

it can significantly reduce the receiver search space without

any pre–computations. On the other hand, C–SD is the best

choice when the transmit search space is very large and the

number of antennas at the receiver is low. It is interesting to

note that the Tx–SD scheme is never the best choice in the

investigated system scenarios. Since this latter decoder is most

closely related to conventional SDs for MIMO systems, a main

contribution of this paper is that it is required to reduce both,

the transmit search space as well as the receive search space to

arrive at a significant reduction in receiver complexity while

maintaining superior bit-error performance.
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Fig. 1. BEP versus the SNR. Nt = Nr = 4, (left) M = 8; (right) M = 64.
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Fig. 2. Computational complexity versus the SNR. Nt = Nr = 2, (left)
M = 8; (right) M = 16.

VI. CONCLUSION

In this paper, we have introduced and analysed the per-

formance/complexity trade–off of three SDs for SM. We

have shown that the proposed solutions provide a substantial

reduction in the computational complexity while retaining the

same BEP as the ML–optimum detector. Numerical results

have highlighted that no particular SD is strictly superior to

the others, and which SD is optimal, depends on the MIMO

configuration employed, i.e., the triplet (Nt, Nr,M) and the

SNR at the receiver. Furthermore, Rx–SD is the best choice for

large Nr, and C–SD is the best option when either Nr is low

or M is large. In general, the results have shown that specially

tailored SD can significantly reduce the receiver complexity of

SM without deteriorating its BER performance.
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Abstract—In this paper a novel detection algorithm for spatial
modulation (SM) based on sphere decoder (SD) tree search idea
is proposed. The aim is to reduce the receiver complexity of
the existing optimal decoder while maintaining an optimum
performance. The algorithm performs a maximum likelihood
(ML) search, only over those points that lie inside a sphere,
centered at the received signal, of given radius. It is shown with
the aid of analytical derivations, that for a SNR (signal-to-noise
ratio) between 2 dB and 18 dB at least 45% and up to 85%
reduction in the number of complex operations can be achieved
with a close to optimal bit-error-ratio (BER) performance.

Index Terms—Spatial modulation, Sphere decoder, MIMO.

I. INTRODUCTION

To cope with the demand for indoor wireless access to

bandwidth-intensive applications such as the Internet multi-

media streaming applications (Voice over IP (VoIP), stream-

ing video and music, gaming, and network attached storage

(NAS)), there is a need for increasing data throughput of

current networks [1]. The maximum data rate of most wireless

local area networks (WLANs) based on the IEEE 802.11

set of standards (802.11a/b/g) typically ranges from 2 Mbps

up to 54 Mbps net bit rate (excluding the physical layer

protocol overhead). The IEEE 802.11n amendment is proposed

to significantly improve network throughput over previous

standards. The increase in the maximum raw physical net bit

rate is achieved by introducing the multiple-input multiple-

output (MIMO) techniques [1], [2]. A data rate of 600 Mbps

can be achieved for four parallel streams at 40 MHz chan-

nel bandwidth. However, implementing four parallel streams

demands high computational power, which corresponds to

long processing time and high power consumption. There-

fore, complexity reduction algorithms for spatial multiplexing

MIMO systems, such as sphere decoder [3]–[7, and references

therein], are proposed to alleviate this problem.

The SD algorithm avoids an exhaustive search by examining

only those points that lie inside a sphere with radius C. The

performance of the SD algorithm is closely tied to the choice

of the initial radius. The chosen radius should be large enough

so that the sphere contains the solution. However, the larger

the radius is, the longer the search takes, which increases the

complexity. On the other hand, a small radius may cause the

algorithm to fail finding any point inside the sphere.

In this paper, the SD tree search structure is adopted to

reduce the complexity of the optimum ML decoder of SM [8]–

[11]. In SM, multiple antennas exist at the transmitter, but only

one of them transmits at a time, to avoid interchannel interfer-

ence (ICI) at the receiver input. The active antenna transmits

a symbol from the complex signal constellation diagram. The

receiver first determines via an additional antenna detector

which of the antennas has sent information (digital information

is encoded into the antenna constellation). Therefore, there

is information transmission at this stage. In a second step,

conventional data detection in the complex signal space is

carried out. The receiver applies the optimum decoder [11] to

estimate the complex symbol and the spatial symbol, and uses

the two estimations to retrieve the original data bit sequence. It

is shown that the complexity of the optimum receiver increases

linearly with the number of transmit antennas. This is unlike

other spatial multiplexing MIMO techniques applying ML

detection where the complexity increases exponentially with

the number of transmit antennas.

The existing SD algorithms in literature can be applied to

SM by adding a zero as a constellation point. This, however,

does not consider the basic and fundamental principle of SM,

that at any giving time, only one antenna is active. Therefore,

the complexity of such a system increases exponentially with

the number of transmit antennas. In addition, the Euclidean

distances between constellation points decrease by considering

the zero as a constellation point, which significantly degrades

system performance. Thereafter, a modified SD algorithm

based on tree search structure that is tailored to SM is pre-

sented. It is shown with the aid of analytical derivations, that

a reduction of 45% and up to 85% in the number of complex

operations can be achieved by using the proposed SM-SD

algorithm, while maintaining an almost optimum performance

combined with a complexity that increases linearly, and not

exponentially, with the number of transmit antennas.

The remainder of this paper is organised as follows: Sec-

tion II introduces SM system with the optimum ML decoder.

In Section III, the proposed SM-SD algorithm for SM is

presented. Section IV presents analytical calculations for the

complexity of SM-SD and the initial radius selection method.

Simulation results are presented in Section V, and the paper

is concluded in section VI.
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Fig. 1. Spatial modulation system model and the mapping table to antenna indices and BPSK symbols. At each time instance, three bits are transmitted.
Two are encoded in the antenna index and one in the BPSK symbol.

II. SPATIAL MODULATION WITH ML DECODER

The system model of SM with the mapping table to antenna

indices and binary phase shift keying (BPSK) symbols is

depicted in Fig. 1. A MIMO system consisting of four transmit

antennas Nt = 4 and four receive antennas Nr = 4, for

illustration purposes1, is considered.

In Fig. 1, q(n) is the incoming binary data to be transmitted

over the MIMO channel. In SM, each m = log2(MNt) bits,

where M is the QAM constellation size, are transmitted at

a particular time instance. The matrix x(n) is created by

grouping each m bits from q(n) as the column vectors of

x(n). The matrix x(n) is then mapped to another matrix s(n)
according to the mapping table as shown in Fig. 1. Each

column vector in s(n) contains the data to be transmitted

at a particular time instance over the MIMO channel. Since,

however, only one element in each column vector of s(n) is

different from zero; only one antenna will be active at a time

instance.

For instance, an example is shown in Fig. 1 for two

time instances. The incoming data sequence q(n) =
[

1 0 1 0 1 0
]

is mapped to

s(n) =











0 0
−1 0
0 +1

0
(n=1)

0
(n=2)











. (1)

In the first time instance, the second antenna will be active

and transmitting the BPSK symbol s = −1. All other antennas

at this particular time instance will be off. In the second time

instance, all transmit antennas are off except antenna three

which will be transmitting the symbol s = +1. Hence, an

overall increase in spectral efficiency by log2(Nt) as compared

to single input single output (SISO) system is achieved.

1 For different number of antennas and different constellation diagrams of
SM, the reader is kindly requested to refer to [8] for more details.

The transmitted signal experiences an Nr–dim additive

white Gaussian noise (AWGN). The channel is assumed to

be flat fading channel with an independent and identically

distributed (i.i.d.) entries according to CN (0, 1). The received

signal at a specific time instance is given by,

y = Hs + v (2)

where H is an Nr × Nt MIMO channel matrix, and v is an

AWGN vector ∼ CN (0, σ2
n).

At the receiver, the optimum SM decoder is considered to

estimate the complex symbol s̃ and the spatial symbol ℓ̃ as

follows [11]:
[

ℓ̃, s̃
]

= arg
ℓ,s

max py (y|s,H) (3)

= arg
ℓ,s

min ‖gℓ‖2
F
− 2Re

{

yHgℓ

}

, (4)

where gℓ = hℓs is the received vector when transmitting the

symbol s from antenna index ℓ where 1 ≤ ℓ ≤ Nt and s ∈
{M}, hℓ is the channel vector containing the channel path

gains from transmit antenna ℓ to all receive antennas, and Re
is the real part of a complex number. In addition, (·)H denotes

the Hermitian of a vector or a matrix, || · ||F is the Frobenius

norm of a vector/matrix and

py (y|s,H) = π−Nte(−‖y−Hs‖2

F). (5)

The evaluation of (4) is computationally expensive as it

needs to be evaluated for all possible antennas and modulation

symbols. This requires (4Nr−1) complex operations evaluated

NtM times, i.e.,

ψopt = NtM(4Nr − 1) (6)

From (6) it can be seen, and as stated before, that the

receiver complexity increases linearly with the number of

transmit antennas.
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III. SM WITH SD TREE STRUCTURE

The considered SM-SD algorithm in this paper is a modified

version of the SD algorithm presented in [3], by adopting the

tree search structure, as shown in Fig. 2. The SM-SD performs

a ML search only on paths that lead to points (ℓ̃, s̃) with an

error, less than or equal to the sphere radius C. In this paper,

the initial radius of the SM-SD algorithm is adjusted according

to the noise level assuming the knowledge of the SNR at the

receiver side known from previous received data. Then the

radius is adapted when a point is found inside the sphere by

the Euclidean distance of that point. The initial sphere radius

considered in SM-SD is a function of the noise variance as

given in [12],

C2 = 2αNrσ
2
n, (7)

where σ2
n is the noise variance and α is a constant chosen to

maximise the probability of having the transmitted point inside

the sphere. Depending on the SNR value, a major reduction

in the number of calculated paths can be achieved.

The full procedure for SM-SD algorithm is explained in

what follows. Let S be a set containing all possible transmit

antennas and spatial symbol points, S = {(ℓ, s) : ℓ ∈
[1, ..., Nt], s ∈ {M}}, δ the Euclidean distance error, and ϕ
the depth of the search on each path (ℓ, s). Then, the algorithm

can be formulated as follows:

1) for (ℓ, s) ∈ S

a) for i = 1 : Nr

i) δ(ℓ,s)+ = |yi − H(i,ℓ)s|2
ii) if δ(ℓ,s) ≥ C2 then go to 1

iii) ϕ(ℓ,s)+ = 1

b) C2 = δ(ℓ,s)

2) Sϕ = arg
(ℓ,s)

(ϕ(ℓ,s) = max(ϕ))

3)
[

ℓ̃, s̃
]

= arg
(ℓ,s)∈Sϕ

min(δ(ℓ,s))

SM-SD algorithm search the paths leading to each point

(ℓ, s) as long as it is still inside the sphere as depicted in

Fig. 2. Whenever a point is found to be inside the sphere, the

radius, C, is updated with the Euclidean distance of that point.

The path with the minimum Euclidean distance is considered

Fig. 2. The Tree Structure and Sphere Constraint for the Sphere Decoder

to be the solution. A significant advantage of the proposed SM-

SD algorithm is that it avoids the problem of having no points

inside the sphere, which is a major problem of the conventional

SD algorithms. SM-SD algorithm selects the path with the

minimum Euclidean distance even if all the points were outside

the sphere.

IV. COMPLEXITY ANALYSIS AND INITIAL RADIUS

SELECTION METHOD

The ML receiver for SM, given in (3), can be re-written as,

[

ℓ̂ml, ŝml

]

= arg
ℓ,s

min

Nr
∑

i=1

|yi − H(i,ℓ)s|2 (8)

let

zi(ℓ, s) = yi − H(i,ℓ)s (9)

and,

yi = H(i,ℓt)st + v (10)

where st is the transmitted symbol at a particular time instant

from antenna index ℓt, and v ∼ CN (0, σ2
n). Then,

zi(ℓ, s) = v + H(i,ℓt)st − H(i,ℓ)s (11)

from (11), the probability density function (PDF) for zi(ℓ, s)
is

fz

(

zi(ℓ, s)

∣

∣

∣

∣

st, ℓt,H, σ2
n

)

=
1

√

2πσ2
n

e
−

(zi(ℓ,s)−µi(ℓ,s))2

2σ2
n

(12)

where µi(ℓ, s) is

µi(ℓ, s) = H(i,ℓt)st − H(i,ℓ)s (13)

The SM-SD performs a ML search only on paths that lead

to points (ℓ, s) with an error, less or equal to C. In other

words, the SM-SD algorithm calculates

γk(ℓ, s) =
k

∑

i=1

|yi − H(i,ℓ)s|2 (14)

=

k
∑

i=1

|zi(ℓ, s)|2 =
σ2

n

2
κk(ℓ, s) (15)

if γk(ℓ, s) ≤ C2, it continues to the next level k, where k =
[1, ..., Nr] and

κk(ℓ, s) =
k

∑

i=1

(

zi(ℓ, s)

σn/
√

2

)2

(16)

Hence, the probability of having a point (ℓ, s) at a level k
inside the sphere giving a radius C is,

pk(ℓ, s, C) = Pr

(

γk(ℓ, s) ≤ C2

∣

∣

∣

∣

st, ℓt,H, σ2
n

)

= Pr

(

κk(ℓ, s) ≤
(

C

σn/
√

2

)2 ∣

∣

∣

∣

st, ℓt,H, σ2
n

)

(17)
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From (16), κk(ℓ, s) is a squared summation of non zero

mean normal distributed random variables, with variance equal

to one. Thereby, the distribution of the random variable

κk(ℓ, s) is a non central chi-squared random variable with

2k degree of freedom, and the non-central parameter λk(ℓ, s)
equals to [13]

λk(ℓ, s) =

k
∑

i=1

|µi(ℓ, s)|2

σ2
n/2

. (18)

Consequently, the probability of having a point (ℓ, s) at a

level k inside the sphere giving a radius C is

pk(ℓ, s, C) = F

(

(

C

σn/
√

2

)2

, 2k, λk(ℓ, s)

)

(19)

where F (B,n, λ) is the CDF (cumulative distribution func-

tion) of the random variable κ. A closed form expression for

(19) is not available. However, a solution can be obtained as

shown in [13, (2.1-124)] by noting that the degree of freedom

is always a multiple of 2. Therefore, (19) can be expressed in

terms of the generalised Marcum’s Q function as follows,

pk(ℓ, s, C) = 1 − Qk

(

√

λk(ℓ, s),
C

σn/
√

2

)

(20)

From (20), the total number of Euclidean distance equations

completed by SM-SD in each path (ℓ, s) is given by,

ξℓ,s =

Nr
∑

k=1

pk(ℓ, s, C) =

Nr
∑

k=1

(

1 − Qk

(

√

λk(ℓ, s),
C

σn/
√

2

))

(21)

and the total number of Euclidean distance equations com-

pleted by the SM-SD algorithm is

ξ =

Nt
∑

ℓ=1

∑

s∈M -QAM

ξℓ,s (22)

The derived number of Euclidean distance equations in (22)

assumes that, initially, the algorithm knows if the point is

inside or outside the sphere. However, this is not true and a

correction factor is needed to consider the initial calculated

equations. To account for this, the number of Euclidean

distance equations is modified as follows,

ξSM-SD =

{

ξ + NtM ξ ≤ NtM (Nr − 1)
ξ otherwise

(23)

where NtM is the initial number of calculated Euclidean

distance equations.

The SM-SD updates C whenever a point is found inside the

sphere, with the Euclidean distance of that point. Hence, C in

(21), is updated as follows,

C =

Nr
∑

k=1

|v + µk(ℓ, s)|2 (24)

In summary, the calculation for the number of complex

operations for the SM-SD algorithm is as follows,

1) for ℓ = 1 : Nr

a) for s ∈ M -QAM

i) calculate ξℓ,s (21) and pNr
(ℓ, s, C) (20)

ii) if pNr
(ℓ, s) > ς then

C =
∑Nr

k=1 |v + µk(ℓ, s)|2
2) calculate ξ (22)

3) calculate ξSM-SD (23)

where by numerical simulations the optimal value for ς is

found to be 0.9.

Additionally, (14) needs 3 complex operations, yielding a

total number of complex operations equals to,

ψSM-SD = 3 × ξSM-SD (25)

The value of α for the initial radius in (7) is chosen to

increase the probability of having the transmitted point (ℓt, st)
inside the sphere. Hence,

pNr
(ℓt, st, C) = F

(

(

C

σn/
√

2

)2

, 2Nr, λNr
(ℓt, st)

)

= F (4αNr, 2Nr, λNr
(ℓt, st))

= 1 − ε (26)

The probability 1 − ε is set as a value close to 1. For ε =
10−6 and Nr = 4, 8, α = 3, 2 respectively.

V. SIMULATION RESULTS

In the following, Monte Carlo simulation results for at

least 106 channel realisations are considered to compare the

performance of SM with the optimum detection technique

and the proposed SM-SD algorithm. In the analysis, two

spectral efficiencies are considered, m = 4, 6 bits/symbol and

(Nt = Nr = 8).
The BER results versus SNR for the two different spectral

efficiencies are depicted in Fig. 3. An important observation

is that SM-SD algorithm and the optimum detector have an

identical performance. That is because the initial radius (C)
for SM-SD is chosen so it would give a high probability of

having the transmitted point inside the sphere, which is done

by choosing α that increases the probability in (26), where in

the case of Nr = 8 and ε = 10−6, α = 2.

The reduction of computational complexity,

R =
ψopt − ψSM-SD

ψopt

(27)

is depicted in Fig. 4 and Fig. 5 for the two different spectral

efficiencies. A significant reduction of at least 45% and up to

85% is reported. It can be observed that a higher reduction

in computational complexity is achieved for high SNR values

and/or low modulation orders. At high SNR the sphere radius

is small, which leads to lower complexity. The higher com-

plexity reduction for high modulation orders is mainly due

to the increase of the number of calculations of the optimal

decoder.

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

169



Selected Publications

0 2 4 6 8 10 12 14
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it
 E

rr
o

r 
R

a
ti
o

 

 

ML m=6

SM−SD m=6

ML m=4

SM−SD m=4

Fig. 3. BER performance versus SNR for Nt = 8, Nr = 8 and m = 4, 6
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Fig. 4. The percentage of complexity reduction offered by SM-SD versus
SNR, for Nt = 8, Nr = 8 and m = 4

0 2 4 6 8 10 12 14 16 18
50

55

60

65

70

75

80

85

90

SNR (dB)

R
(%

)

 

 

Simulation

Analytical

Fig. 5. The percentage of complexity reduction offered by SM-SD versus
SNR, for Nt = 8, Nr = 8 and m = 6

VI. SUMMARY AND CONCLUSIONS

The complexity of the optimum ML detector for SM is

significantly reduced using the SD tree search applied in

a novel fashion. The existing SD algorithms in literature

are computationally more expensive if directly applied to

SM and will result in performance degradation. The SM-

SD algorithm exploits the fact that only a single antenna is

active and performs a ML search only over the points that

are inside the sphere of a given radius (depending on the

SNR) and centered at the received point. The performance of

the proposed detection algorithm is optimum and it yields in

excess of 45% reduction in the number of complex operations.
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Abstract—In this paper, a generalised technique for spatial
modulation (SM) is presented. Generalised spatial modulation
(GSM) overcomes in a novel fashion the constraint in SM that the
number of transmit antennas has to be a power of two. In GSM, a
block of information bits is mapped to a constellation symbol and
a spatial symbol. The spatial symbol is a combination of transmit
antennas activated at each instance. The actual combination of
active transmit antennas depends on the random incoming data
stream. This is unlike SM where only a single transmit antenna
is activated at each instance. GSM increases the overall spectral
efficiency by base–two logarithm of the number of antenna
combinations. This reduces the number of transmit antennas
needed for the same spectral efficiency. The performance of GSM
is analysed in this paper, and an upper bound on the bit–error–
ratio (BER) performance is derived. In addition, an algorithm to
optimise the antenna combination selection is proposed. Finally,
the performance of GSM is validated through Monte Carlo
simulations. The results are compared with traditional SM. It
is shown that for the same spectral efficiency GSM performs
nearly the same as SM, but with a significant reduction in the
number of transmit antennas.

Index Terms—Spatial modulation, generalised spatial modula-
tion, MIMO.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems offer a

significant increase in spectral efficiency, in comparison to

single antenna systems [1]. An example is the Vertical Bell

Labs layered space-time (V-BLAST) architecture [2], where

the spectral efficiency increases linearly with the number of

transmit antennas. However, transmitting from all antennas at

the same time, on the same frequency, causes inter-channel

interference (ICI) at the receiver.

Spatial Modulation (SM) is a spatial multiplexing MIMO

technique that is proposed in [3] to increase the spectral

efficiency and to overcome inter–channel interference (ICI).

This is attained by activating only a single transmit antenna

at each instance to transmit a certain data symbol, where

the active antenna index and the data sent depend on the

incoming random data bits. Thereby, an overall increase in

the spectral efficiency by base–two logarithm of the number

of transmit antennas is achieved. Note that, the number of

transmit antennas must be a power of two. A detector that

jointly estimates the active antenna index and the sent data

symbol is required at the receiver side. The optimal SM

decoder is proposed in [4] and SM combined with trellis-coded

modulation (TCM) is recently proposed in [5]. Furthermore,

space shift keying (SSK) with partial channel state information

is presented in [6], and a general framework for performance

analysis of SSK for multiple input single output (MISO)

systems over correlated Nakagami-m fading channels is shown

in [7]. It is shown in [3]–[5] that ICI avoidance results

in better BER performance and a significant reduction in

detection complexity, as compared to V-BLAST, for instance.

However, the logarithmic increase in spectral efficiency and

the requirement that the number of antennas must be a power

of two would require large number of antennas.

Fractional bit encoded spatial modulation (FBE-SM) is

proposed in [8] to overcome the limitation in the number of

transmit antennas. FBE-SM is based on the theory of mod-

ulus conversion and allows an arbitrary number of transmit

antennas. However, the system suffers from error propagation.

An alternative approach to limit the number of transmit

antennas is proposed in this paper. Generalised spatial mod-

ulation (GSM) activates more than one transmit antenna at a

time to simultaneously transmit a data symbol. In GSM the

transmitted information is conveyed in the activated combina-

tion of transmit antennas and the transmitted symbol from

a signal constellation. As a result, the number of transmit

antennas required to achieve a certain spectral efficiency is

reduced by more than a half in GSM as compared to SM, and

generalised space shift keying modulation (GSSK) proposed

in [9]. Transmitting the same data symbol from more than

one antenna at a time, retains the key advantage of SM,

which is the complete avoidance of ICI at the receiver.

Moreover, GSM offers spatial diversity gains and increases

the reliability of the wireless channel, by providing replicas

of the transmitted signal to the receiver [10]. Nonetheless,

the activated transmit antennas must be synchronised to avoid

inter-symbol interference (ISI). At the receiver, a maximum

likelihood (ML) detection algorithm is considered to estimate

the activated combination of transmit antennas and the trans-

mitted constellation symbol.

A tight analytical upper bound for the BER performance of

GSM is derived in this paper and analytical results are vali-

dated through Monte Carlo simulation results. Moreover, GSM

performance is shown to be very close to the performance

of SM but with major reduction in the required number of

transmit antennas.

The remainder of this paper is organised as follows: Section

II presents GSM system model and the optimal detection

technique. Section III presents the analytical BER derivation

for GSM and proposes the selection process for the optimal

antenna combinations. The receiver complexity is discussed in
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Fig. 1. Generalised spatial modulation system model. At each instance, four bits are transmitted. Three bits are encoded in the indices of the combination
of transmit antennas and one bit is conveyed in the signal domain using BPSK modulation.

section IV. Monte Carlo Simulation results are presented in

Section V, and the paper is concluded in Section VI.

II. GSM SYSTEM MODEL

GSM uses more than one transmit antenna to send the same

complex symbol. Hence, a set of antenna combinations can be

formed, and used as spatial constellation points. The number of

possible antenna combinations is N
′

c =
(

Nt

Nu

)

, where Nt is the

number of transmit antennas and Nu is the number of active

antennas at each instance. However, the number of antenna

combinations that can be considered for transmission must be

a power of two. Therefore, only Nc = 2mℓ combinations,

can be used, where mℓ = ⌊log2

(

Nt

Nu

)

⌋, and ⌊·⌋ is the floor
operation.

The GSM system model is depicted in Fig. 1 and an

example of data mapping and transmission for two instances

is also shown. The incoming data bits are mapped to a

spatial symbol and a data symbol according to the mapping

table shown in Table I. The mapping procedure maps the

first mℓ bits to the antenna combinations, and the remaining

bits (ms) are modulated using M -QAM modulation, where

M = 2ms . In the example, Nt = 5 and Nu = 2 are

assumed. The resultant antenna combinations are listed in

Table I. For instance, the data bits to be transmitted at the

first instance in Fig. 1 g(n) =
[

0 1 0 1
]

are mapped

to x(n) =
[

+1 0 0 +1 0
]

. Each column vector of

x(n) is transmitted at a specific instance from the existing five
transmit antennas where only two antennas are activated at any

given time. If SM is used instead with the same modulation

order, the number of transmit antennas must be increased to

eight to maintain the same spectral efficiency. In general, the

number of bits that can be transmitted using GSM is given by,

m = mℓ + ms =

⌊

log2

(

Nt

Nu

)⌋

+ log2 M (1)

The GSM modulated signal is transmitted over an Nr ×Nt

MIMO Rayleigh flat fading wireless channel, H, and, thus,

the entries of H are modeled as complex independent and

identically distributed (i.i.d.) Gaussian random variables with

zero–mean and unit–variance, where Nr is the number of

receive antennas.

TABLE I
GSM MAPPING TABLE FOR Nt = 5, Nu = 2 AND BPSK MODULATION,

WHERE (·, ·) INDICATES THE INDICES OF THE ACTIVE ANTENNAS

Grouped Bits Antenna Combination (ℓ) Symbol (s)
0000 (1,2) -1

0001 (1,2) +1

0010 (1,3) -1

0011 (1,3) +1

0100 (1,4) -1

0101 (1,4) +1

0110 (1,5) -1

0111 (1,5) +1

1000 (2,3) -1

1001 (2,3) +1

1010 (2,4) -1

1011 (2,4) +1

1100 (3,5) -1

1101 (3,5) +1

1110 (4,5) -1

1111 (4,5) +1

The received signal at any given time is,

y = h′

ℓs + v (2)

where s ∈ M -QAM is the transmitted symbol, from the an-

tenna combination ℓ = (ℓ1, ℓ2, . . . , ℓNu
) ∈ F, ℓn indicates the

index of the n-th antenna in the antenna combination ℓ, and F

is the set of used antenna combinations. An optimal algorithm

for the selection of F is proposed in next section. Furthermore

the vector h′

ℓ =
∑Nu

n=1 hℓn
contains the summation of the

active antennas channel vectors, and hℓn
is the channel vector

from the active transmit antenna ℓn to all receive antennas.

v is an AWGN vector with zero–mean and variance σ2
n per

dimension at the receiver input.

At the receiver, the spatial symbol and the data symbol are

jointly decoded using the ML principle, as follows,

[ℓ̃, s̃] = arg
ℓ,s

max py (y|x,H)

= arg
ℓ,s

min

Nr
∑

i=1

|yi − h′

ℓ,is|2 (3)
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where,

py (y|s, ℓ,H) =
1

(πσ2
n)Nt

exp

(

−‖y − h′

ℓs‖2
F

σ2
n

)

(4)

is the probability density function (PDF) of y conditional on

s, ℓ and H, ‖·‖2
F is the Frobenius norm.

III. ANALYTICAL DERIVATION AND OPTIMAL

COMBINATION SELECTION

A. Analytical BER calculation of GSM

The analytical performance of GSM is estimated using the

well-known union bounding technique [11]. The average BER

in GSM is,

Pr
e,bit

≤ Ex





∑

ℓ̃,s̃

N
(

xℓ,s, xℓ̃,s̃

)

Pr
(

xℓ,s → xℓ̃,s̃

)

2m



 (5)

where xℓ,s indicates the symbol s transmitted from the antenna

combination ℓ, N
(

xℓ,s, xℓ̃,s̃

)

is the number of bits in error

between xℓ,s and xℓ̃,s̃, and Pr
(

xℓ,s → xℓ̃,s̃

)

denotes the

probability of deciding on xℓ̃,s̃ given that xℓ,s is transmitted.

The probability Pr
(

xℓ,s → xℓ̃,s̃

)

can be computed by us-

ing (3) as follows,

Pr
(

xℓ,s → xℓ̃,s̃

)

= Pr

(

Nr
∑

i=1

|Di(ℓ, s)|2 >

Nr
∑

i=1

∣

∣

∣
Di(ℓ̃, s̃)

∣

∣

∣

2
)

(6)

where

Di(ℓ, s) = yi − h′

ℓ,is, (7)

and,

yi = vi + h′

ℓ,is, (8)

where vi ∼ CN (0, σ2
n). Substituting (8) into (7) result in,

Di(ℓ, s) = vi (9)

and

Di(ℓ̃, s̃) = vi + h′

ℓ,is − h′

ℓ̃,i
s̃ (10)

Hence, Di(ℓ, s) ∼ CN (0, σ2
n), Di(ℓ̃, s̃) ∼ CN (0, σ2

D
ℓ̃,s̃

),

and,

σ2
D

ℓ̃,s̃
= σ2

n +
(

|s|2 + |s̃|2
)

d(ℓ, ℓ̃) + |s − s̃|2
(

Nu − d(ℓ, ℓ̃)
)

= σ2
n + 2 Re{ss̃∗}d(ℓ, ℓ̃) + |s − s̃|2 Nu (11)

where Re(·) is the real part of a complex variable and d(ℓ, ℓ̃)
is the number of elements where ℓ and ℓ̃ differ from each

other.

Let,

κDℓ,s
=

Nr
∑

i=1

∣

∣

∣

∣

Di(ℓ, s)

σn/
√

2

∣

∣

∣

∣

2

(12)

and

κD
ℓ̃,s̃

=

Nr
∑

i=1

∣

∣

∣

∣

∣

Di(ℓ̃, s̃)

σD
ℓ̃,s̃

/
√

2

∣

∣

∣

∣

∣

2

(13)

be the summation of Nr squared complex Gaussian random

variables, with zero mean and variance equal to 1, i.e. κDℓ,s

and κD
ℓ̃,s̃
are a central chi–squared random variables with 2Nr

degrees of freedom [11].

Substituting (12) and (13) in (6) gives,

Pr
(

xℓ,s → xℓ̃,s̃

)

= Pr

(

σ2
n

2
κDℓ,s

>
σ2

D
ℓ̃,s̃

2
κD

ℓ̃,s̃

)

= Pr

(

κD
ℓ̃,s̃

κDℓ,s

<
σ2

n

σ2
D

ℓ̃,s̃

)

(14)

Both κD
ℓ̃,s̃
and κDℓ,s

are chi–square distributed random vari-

ables and have the same degree of freedom. Let,

ϕ =
κD

ℓ̃,s̃

κDℓ,s

(15)

which follows an F–distribution with degrees of freedom ς1 =
ς2 = 2Nr. Substituting (15) in (14),

Pr
(

xℓ,s → xℓ̃,s̃

)

= Pr

(

ϕ <
σ2

n

σ2
D

ℓ̃,s̃

)

= Fϕ

(

σ2
n

σ2
D

ℓ̃,s̃

)

. (16)

Fϕ(·) is the cumulative distribution function (CDF) of the F–
distributed random variable given by,

Fϕ(x) = I ς1x

ς1x+ς2

(ς1/2, ς2/2) , (17)

where Ix(a, b) is the regularised incomplete beta function
given by,

Ix(a, b) =
B(x; a, b)

B(a, b)
=

1

B(a, b)

∫ x

0

t(a−1) (1 − t)
(b−1)

dt

(18)

with

B(a, b) =

∫ 1

0

t(a−1) (1 − t)
(b−1)

dt (19)

From (16) and (17) it follows that,

Pr
(

xℓ,s → xℓ̃,s̃

)

= I σ2
n

σ2
n+σ2

D
ℓ̃,s̃

(Nr, Nr) (20)

Substituting (20) in (5) yields,

Pr
e,bit

≤ Ex











∑

ℓ̃,s̃

N
(

xℓ,s, xℓ̃,s̃

)

I σ2
n

σ2
n+σ2

D
ℓ̃,s̃

(Nr, Nr)

2m











≤
∑

ℓ,s

∑

ℓ̃,s̃

N
(

xℓ,s, xℓ̃,s̃

)

I σ2
n

σ2
n+σ2

D
ℓ̃,s̃

(Nr, Nr)

22m
(21)

It is shown later in section V, that (21) gives a tight

approximation to the GSM BER performance.
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B. Optimal set of antenna combinations selection

The optimal antenna combinationFopt is found by minimis-

ing the average BER given in (21).

G̃opt = arg
G

min Pr
e,bit

(22)

where G is the set of parameters (Nt, Nu,F).
From (21), it can be noted that only N(xℓ,s, xℓ̃,s̃) and σ2

D
ℓ̃,s̃

depend on G. Moreover, it can be found that the relation

between I and σ2
D

ℓ̃,s̃
is,

I σ2
n

σ2
n+σ2

D
ℓ̃,s̃

(Nr, Nr) ∝
1

σ2
D

ℓ̃,s̃

(23)

Hence, the optimisation in (22) can be simplified to,

G̃opt = arg
G

min
∑

ℓ,s

∑

ℓ̃,s̃

N
(

xℓ,s, xℓ̃,s̃

)

σ2
D

ℓ̃,s̃

(24)

Fig. 2 shows GSM BER performance using (21) for differ-

ent set of parameters (G), where m = 5 and Nr = 8. On the
one hand, it can be seen from Fig. 2 that the larger Nt is, the

better the performance. On the other hand, as it will be shown

in the next section, increasing Nt increases the complexity.

Furthermore, increasing Nu increases the possibility of having

the same antenna in different antenna combinations, which will

reduce d(ℓ, ℓ̃), and consequently degrades GSM performance.

To further elaborate on this, it can be seen from Fig. 2 that

there is an optimum number of transmit antennas. Generally

a low number of transmit antennas (e.g. Nt = 4) results in a
worse performance. However, increasing the number of trans-

mit antennas does not necessarily improve the performance.

For example, the performance of GSM with Nt = 5 is better
than with Nt = 6, 7 or 8.
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Fig. 2. GSM BER bounds for different G

Another interesting observation in Fig. 2 is that a different

set of parameters might give very similar performance. In

other words, there might not be a unique solution for the

optimisation problem in (24) which provides useful flexibility

for choosing G.

IV. RECEIVER COMPLEXITY

In this section the receiver complexity for GSM is compared

to the complexity of the SM optimal decoder given in [4, eq.

(4)], using the number of complex operations needed at the

receiver. A complex operation is a complex multiplication or

addition.

The optimum SM receiver is given by,

[ℓ̃SM, s̃SM] = arg
ℓ,s

min ||gℓs||2 − 2 Re{yHgℓs} (25)

where gℓs = hℓs. The complexity of SM optimal decoder

in (25) is equal to NtM(3Nr + 1), where the first term
||gℓs||2 needs Nr + 1 complex operations, and the second
term yHgℓs needs 2Nr complex operations, giving a total

of 3Nr + 1 complex operations to compute the equation

(||gℓs||2 − 2 Re{yHgℓs}), which is evaluated NtM times.

The GSM receiver has a complexity of NrNcM(Nu + 2)
complex operations, where the squared euclidean distance

|yi − h′

ℓ,is|2 needs Nu + 2 complex operations, which is

calculated NrNcM times. Note that h′

ℓ,i requires a Nu − 1
complex summations.

The ratio of GSM receiver complexity to the complexity of

SM optimal decoder for the same mℓ is,

R =
NrNCM(Nu + 2)

NtM(3Nr + 1)
=

Nr(Nu + 2)

3Nr + 1
(26)

where Nt = Nc = 2mℓ . This is plotted in Fig. 3 for Nr = 8.
It can be seen that the complexity of GSM increases with

the increase of Nu, but this increase is compensated by the

substantial reduction in the number of transmit antennas.
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N
u
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Fig. 3. The ratio of GSM receiver complexity to the complexity of SM
optimal decoder

For example, let m = 6 bis/s/Hz,M = 4 and Nr = 8. GSM
would have ∼ 28% increase in complexity in comparison to

SM, when Nu = 2. However, the number of transmit antennas
required by GSM is less than half the number of transmit

antennas required for SM, where Nt = 7 for GSM, and Nt =
16 for SM.
Another observation which can be made from Fig. 3 is that

for Nu = 1 the complexity of GSM is less than the complexity
of SM. This is because, the GSM ML receiver proposed here

174



Selected Publications

is less complex than the SM optimal decoder. Note that, GSM

with only one active antenna resembles traditional SM.

V. SIMULATION RESULTS

In the following, Monte Carlo simulation results for at least

106 channel realisations are considered in order to compare

the performance of GSM with the performance of SM. In the

analysis, two different set of parameters (G) are considered, to

achieve a spectral efficiency of m = 6 bits/s/Hz, usingM = 4
and M = 8 QAM and Nr = 4.
The BER performance versus signal to noise ratio (SNR)

for M = 4 is depicted in Fig. 4, where for GSM Nt = 7
and Nu = 2 and for SM Nt = 16. The performance of
GSM is nearly identical to the performance of SM. The better

performance of SM is mainly due to the higher probability of

error when detecting two active antennas instead of only one.

However, SM requires more than twice the number of transmit

antennas to achieve the same spectral efficiency as compared

to GSM. The result also validates the derived analytical bound

and shows that, indeed, it is very tight.

The results for M = 8 are depicted in Fig. 5 where Nt = 5
and Nu = 2 are considered for GSM and Nt = 8 for SM.
Again, GSM and SM have nearly the same performance, with

a slightly better performance of SM at high SNR.
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Fig. 4. BER performance versus SNR, for M=4
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Fig. 5. BER performance versus SNR, for M=8

VI. SUMMARY AND CONCLUSIONS

In this paper SM was generalised by sending the same

symbol from more than one transmit antenna at a time. Hence,

SM is no longer limited to a number of transmit antennas

which strictly has to follow a power of two. Instead an

arbitrary number of transmit antennas can be used. Moreover,

higher spectral efficiency can be achieved with a much lower

number of transmit antennas, as compared to SM. These,

enhancements are achieved at the cost of a slight increase

in the complexity. This complexity increase depends on the

number of active antennas. The smaller the number of active

transmit antennas the less the complexity increase. In general,

however, the increase in complexity is outweighed by the

significant reduction in the number of transmit antennas.

In this context, it is important to highlight that the BER

performance of SM and GSM are almost identical. Moreover,

GSM retains one of the key advantages of SM, namely that

ICI is avoided while spatial multiplexing gains are obtained.

Furthermore, this paper proposed a novel receiver based on the

ML principle to determine the complete information bits, i.e.,

the antenna combination used and the transmitted complex

symbol. In addition, an algorithm to optimise the selection

of the set of antenna combinations, was proposed. Finally, the

analytical BER performance for GSM was derived, along with

its complexity.
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Abstract—In this paper, for the first time real–world channel
measurements are used to analyse the performance of spatial
modulation (SM), where a full analysis of the average bit error
rate performance (ABER) of SM using measured urban cor-
related and uncorrelated Rayleigh fading channels is provided.
The channel measurements are taken from an outdoor urban
multiple input multiple output (MIMO) measurement campaign.
Moreover, ABER performance results using simulated Rayleigh
fading channels are provided and compared with a derived
analytical bound for the ABER of SM, and the ABER results for
SM using the measured urban channels. The ABER results using
the measured urban channels validate the derived analytical
bound and the ABER results using the simulated channels.
Finally, the ABER of SM is compared with the performance of
spatial multiplexing (SMX) using the measured urban channels
for small and large scale MIMO. It is shown that SM offers
nearly the same or a slightly better performance than SMX for
small scale MIMO. However, SM offers large reduction in ABER
for large scale MIMO.

Index Terms—Spatial modulation (SM), multiple–input
multiple–output (MIMO), experimental results, large scale
MIMO.

I. INTRODUCTION

Multiple input multiple output (MIMO) systems offer a

significant increase in spectral efficiency in comparison to

single antenna systems [1]. An example is spatial multiplexing

(SMX) [2]. SMX achieves a spectral efficiency that increases

linearly with the number of transmit antennas, by transmitting

simultaneously over all the transmit antennas. However, SMX

cannot cope with the exponential increase of wireless data

traffic, and a larger number of transmit antennas (large scale

MIMO) should be used. Large scale MIMO systems studied

in [3], offers a higher data rate and better average bit error

performance (ABER). However, this comes at the expense of

an increase in i) hardware complexity, where the number of

radio frequency (RF) chains is equal to the number of transmit

antennas, ii) receiver computational complexity, where the

SMX complexity increases exponentially with the number of

transmit antennas. Thus, SMX may not be always feasible and

a cheaper solution should be used.

Spatial Modulation (SM) is a transmission technology pro-

posed for MIMO wireless systems. It aims to increase the

spectral efficiency, of single–antenna systems while avoiding

Inter–Channel Interference (ICI) [4]. This is achieved by

i) the activation of a single antenna at each time instance

which transmits a given data symbol (constellation symbol),

and ii) the exploitation of the spatial position (index) of the

active antenna as an additional dimension for data transmission

(spatial symbol). The receiver applies the Maximum Likeli-

hood optimum decoder for SM (SM–ML), which performs

an exhaustive search over the whole constellation symbol

and spatial symbol space. Activating only one antenna at a

time means that only one RF chain is needed, which signif-

icantly reduces the hardware complexity of the system [5].

It also offers a significant reduction in the energy needed.

This reduction increases linearly with the number of transmit

antennas, as only one antenna needs to be powered at a time,

i.e., “green” technology. Moreover, as it will be shown in this

paper the computational complexity of SM–ML is equal to the

complexity of single–antenna systems, i.e., the complexity of

SM–ML does not depend on the number of transmit antennas.

Accordingly, SM is an attractive candidate for large scale

MIMO.

In this paper, for the first time real-world channel measure-

ments are used to analyse the performance of SM, where a full

analysis of the ABER of SM using measured urban correlated

and uncorrelated Rayleigh fading channels is provided. The

channel measurements are taken from an outdoor urban MIMO

measurement campaign. Moreover, an analytical bound for

the ABER of SM is derived and performance results using

simulated Rayleigh fading channels are provided. It is shown

that the results using the measured urban channels validate the

derived analytical bound and the results using the simulated

channels. Furthermore, the ABER of SM is compared with

the performance of SMX using the measured urban channels

for small and large scale MIMO. It is shown that SM offers

nearly the same or a slightly better performance than SMX

for small scale MIMO. However, SM offers large reduction in

ABER for large scale MIMO.

The remainder of this paper is organised as follows. In

Section II, the system model and the ML–optimum receiver

are summarised. In Section III, the channel measurements are

introduced. In Section IV, an analytical bound for SM over

correlated and uncorrelated Rayleigh channels is derived. The

complexity of SM and SMX is discussed and compared in V.

Finally, the results are presented in Section VI, and the paper

is concluded in Section VII.
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II. SYSTEM MODEL

In SM, the bit stream emitted by a binary source is divided

into blocks containing m = log2 (Nt) + log2 (M) bits each,

where m is the spectral efficiency,Nt is the number of transmit

antennas and M is the signal constellation size. Then the

following mapping rule is used [4]:

• The first log2 (Nt) bits are used to select the antenna that

is switched on for data transmission, while all the other

transmit–antennas are kept silent. In this paper, the actual

transmit–antenna that is active for transmission is denoted

by ℓt, with ℓt ∈ {1, 2, . . . , Nt}.
• The second log2 (M) bits are used to choose a sym-

bol in the signal–constellation diagram. Without loss of

generality, Quadrature Amplitude Modulation (QAM) is

considered. In this paper, the actual complex symbol

emitted by the transmit–antenna ℓt is denoted by st, with

st ∈ {s1, s2, . . . , sM}.

Accordingly, the Nt × 1 dimensional transmit vector is:

xℓt,st
=
[

01×(ℓt−1), st,01×(Nt−ℓt)

]T
(1)

where [·]T denotes transpose operation, and 0p×q is a p × q
matrix with all–zero entries.

The transmitted vector, xℓt,st
, in (1) is transmitted over a

flat fading Nr ×Nt MIMO channel with transfer function H,

where Nr is the number of receive antennas. The Kronecker

channel model [6], with an exponential correlation profile for

both the transmitter correlation matrix (RTx) and receiver cor-

relation matrix (RRx), is used to model channel correlation [7],

H = R
1

2

RxH̄R
1

2

Tx (2)

where H̄ has independent and identically distributed (i.i.d.)

entries according to CN (0, 1).

Thus, the Nr × 1 dimensional receive vector can be written

as follows:

y = Hxℓt,st
+ n (3)

where n is the Nr–dimensional Additive White Gaussian

Noise (AWGN) with zero–mean and variance σ2 per dimen-

sion at the receiver input.

At the receiver the ML optimum detector for MIMO systems

is used,

x̂t = arg min
x∈Qm

{

‖y − Hx‖2
F

}

(4)

where Qm is a 2m space containing all possible (Nt × 1)
transmitted vectors, ‖·‖F is the Frobenius norm, and ·̂ denotes
the estimated spatial and constellation symbols.

In SM only one transmit antenna is active at a time.

Therefore, the optimal receiver in (5) can be simplified to,
[

ℓ̂t, ŝt

]

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

‖y − hℓs‖
2
F

}

= arg min
ℓ∈{1,2,...Nt}
s∈{s1,s2,...sM}

{

Nr
∑

r=1

|yr − hℓ,rs|
2

} (5)

where yr and hℓ,r are the r–th entries of y and hℓ respectively.

III. CHANNEL MEASUREMENT AND MODEL

The channel measurements used within this paper were

acquired within the Mobile VCE MIMO elective [8]. MIMO

channel measurements were taken around the centre of Bristol

in the United Kingdom, using a MEDAV RUSK channel

sounder, a 4×4 antenna configuration, with 20 MHz bandwidth

centred at 2 GHz. The transmitter consisted of a pair of

dual polarised (±45◦) Racal Xp651772 antennas [9] separated
by 2 m, positioned atop a building, providing elevated cover-

age of the central business and commercial districts of Bristol

city. At the receiver two different receiver devices are used,

both equipped with four antennas.

The two receiver devices are a reference headset and a

laptop. The reference antenna design is based on 4-dipoles
mounted on a cycle helmet, thus avoiding any shadowing

by the user. The laptop is equipped with 4 PIFA elements,

both devices are detailed in [8]. Fifty–eight measurement

locations were chosen around the city. At each location the

user walked, holding the laptop in front of them and the

reference device on their head, in a straight line roughly 6 m

long, until 4096 channel snapshots have been recorded. A

second measurement was then taken with the user walking

a second path perpendicular to the first. As the measurement

speed is significantly faster than the coherence time of the

channel, the measurements are averaged in groups of four to

reduce measurement noise.

One set of measurement results with the laptop and refer-

ence device, and a second set of only the reference device

measurements taken at the same locations, but on different

days, is also included in the measurement data for analysis.

This provides a total of 348 different measurement sets, each

containing 1024 snapshots of a 4 × 4 MIMO channel, with

128 frequency bins spanning the 20 MHz bandwidth. As the

simulations are carried out using flat fading channels, a single

frequency bin centred around 2 GHz, is chosen from each

measurement snapshot to create the narrowband channel.

A. Small Scale MIMO

For small scale MIMO, Rayleigh fading channels were

distinguished using the Chi-squared goodness of fit test, with

a significance level of 1%, where of the 348 measurements,

only 20 measurements fulfilled this requirement. For each

measurement the transmit and receive correlation matrices are

estimated, then the decay of the correlation, based on the

antenna indices, is fitted to an exponential decay model [7],

Rc =













1 rc r2
c · · · rn−1

c

rc 1 rc

. . .
...

...
. . .

. . .
. . . rc

rn−1
c · · · r2

c rc 1













(6)

where rc = exp (−β), β is the correlation decay coefficient,

and n is the number of antennas. Two channels with the

lowest mean square error between the exponential decay in (6)

and the actual correlation matrices are chosen for the two

correlated channel results. Both of the chosen channels are

from measurements taken using the laptop device, and the

measured decay coefficients for the transmitter and receiver
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are 0.5 and 0.8 for the first channel and 0.7 and 0.4 for the

second channel respectively.

For the uncorrelated channels, the two channels with the

lowest average correlation coefficient between their MIMO

channels were chosen. One is from the laptop measurements,

and the other from the reference headset device measurements.

Selecting the channels in this manner may not provide com-

pletely uncorrelated channels per say, as there may still be

a small correlation between the channels. However, it will

provide the channel measurements that experienced the lowest

spatial correlations.

B. Large scale MIMO

The original measurements were taken using 4× 4 system.

However, by manipulating the measurements we are able to

create much larger virtual MIMO systems.

The following steps are taken in order to create the large

scale channel array:

1) Channel measurements from the reference device is used

to exclude the body shadowing effects.

2) The original channels are reversed, such that the mobile

station becomes the transmitting device. The reason

for that is that the transmitters of the original channel

measurements are fixed on top of a building, while the

receiver device moved.

3) The first channel from each snapshot, from the walking

measurements, was chosen to form each of the virtual

array transmitters, resulting in a virtual array with 1024
elements.

4) To reduce the correlation between adjacent channels,

every fourth element of this array was chosen, forming a

maximum array size of 256 antennas. These are equally

spaced along a path of about 6 m in length.

5) The locations with good fitting to Rayleigh fading dis-

tributions were first chosen, and then those that showed

the lowest variation in their Rayleigh fading statistics

between each virtual spatial channel were selected. This

is done to avoid the scenario where the user experienced

significant channel shadowing along part of the walk-

ing measurement, as this would introduce a significant

power imbalance in the virtual MIMO channel.

The Rayleigh fading mean statistic of the normalised con-

structed virtual MIMO channel has an average of 0.70, and a

variance of 0.16.

IV. ANALYTICAL MODELLING OF SM–ABER OVER

CORRELATED AND UNCORRELATED CHANNELS

The ABER for SM system can be approximated by using

the union bound [10], which can be expressed as follows,

ABER
SM

≤
∑

ℓt,st

∑

ℓ,s

N (xℓt,st
,xℓ,s)

m

EH {Pr (xℓ,s 6= xℓt,st
)}

2m

(7)

where N (xℓt,st
,xℓ,s) is the number of bits in error between

xℓt,st
and xℓ,s, EH{·} is the expectation across H and

Pr (xℓ,s 6= xℓt,st
) is the conditional pairwise error probability

(PEP) of deciding on xℓ,s given that xℓt,st
is transmitted,

Pr (xℓ,s 6= xℓt,st
) = Pr

(

‖y − Hxℓt,st
‖2

> ‖y − Hxℓ,s‖
2
)

= Q





√

‖HΨ‖2

2σ2
n





=
1

π

∫ π

2

0

exp

(

−
‖HΨ‖2

4σ2
n sin2 θ

)

dθ (8)

where Ψ = (xℓt,st
− xℓ,s), and the alternative integral expres-

sion of the Q-function is given in [11].

Taking the expectation of (8), we have,

EH {Pr (xℓ,s 6= xℓt,st
)} =

1

π

∫ π

2

0

Φ

(

−
1

4σ2
n sin2 θ

)

dθ (9)

where Φ (·) is the moment-generation function (MGF) of the

random variable
∥

∥H̄Ψ
∥

∥

2
.

From [12], and noting that in SM only one antenna is active

at a time, the MGF in (9) for quasi–static fading with spatial

correlation is equal to,

Φ (s) =

Nr
∏

j=1

(1 − sλjµ)
−1

(10)

where λj are the eigenvalues of RRx and µ = |st|2 + |s|2 −
2Re{sts

∗}RTx(ℓt, ℓ) .

Substituting (10) and (9) in (7) and using the Chernoff

bound, the ABER for SM over Rayleigh channels is,

ABER
SM

≤
1

2π

∑

ℓt,st

∑

ℓ,s

Nr
∏

j=1

N (xℓt,st
,xℓ,s)

m

1

2m

(

1 +
λjµ

4σ2
n

)−1

(11)

In Section VI, we show that the two bounds; for uncor-

related and correlated Rayleigh channels, i) are tight upper

bounds for SM, and ii) they validate the experimental results.

V. COMPLEXITY ANALYSIS

In this section the receiver complexity for SM–ML is

compared to the complexity of SMX–ML. The complexity

is computed as the number of real multiplicative operations

(×,÷) needed by each algorithm [13].

• SM–ML: The computational complexity of the SM–ML

receiver in (5) is equal to

CSM–ML = 8Nr2
m (12)

as the ML detector searches through the whole transmit

and receive search spaces. Note, evaluating the Euclidean

distance
(

|yr − hℓ,rs|
2
)

requires 2 complex multiplica-

tions, where each complex multiplication requires 4 real

multiplications.

• SMX–ML: The computational complexity of SMX–ML

is equal to,

CSMX–ML = 4 (Nt + 1)Nr2
m (13)

Note,
(

|y − Hx|2
)

in (4) requires (Nt + 1) complex

multiplications.
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Fig. 1. ABER versus the SNR for SM over an uncorrelated channel. m = 4,
Nt = Nr = 4.
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Fig. 2. ABER versus the SNR for SM over a correlated channel. m = 4,
Nt = Nr = 4.

From (12) and (13), the reduction of SM–ML receiver

complexity relative to the complexity of the SMX–ML decoder

for the same spectral efficiency is given by,

Crel = 100 ×

(

1 −
2

Nt + 1

)

(14)

From (12), the complexity of SM does not depend on the

number of transmit antennas, and it is equal to the complexity

of single–input multiple–output (SIMO) systems. Hence, the

reduction in complexity offered by SM increases with the

increase in the number of transmit antennas. However, the

complexity of SMX increases linearly with the number of

transmit antennas. For example from (14), for Nt = 4, SM
offers a 60% reduction in complexity, and as the number

of transmit antennas increase the reduction increases. For

Nt = 128, SM offers 98% reduction in complexity.
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Fig. 3. ABER versus the SNR for SM and SMX over an uncorrelated
channel. m = 4, Nt = Nr = 4.
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Fig. 4. ABER versus the SNR for SM and SMX over a correlated channel.
m = 4, Nt = Nr = 4.

VI. RESULTS

In the following, Monte Carlo simulation results for the

ABER performance of SM using the measured urban chan-

nels and simulated Rayleigh channels are compared with the

derived analytical bound. Note, each channel of the mea-

sured urban channels contains 1024 snapshots. Furthermore,

the performance of SM using the measured urban channel

is compared with the performance of SMX over the same

channels for small and large scale MIMO.

A. Validation of SM analytical ABER performance using ex-

perimental results

Fig. 1 and Fig. 2 show the ABER performance of SM using

the measured urban channels (solid line) and using simulated

Rayleigh channels (red dashed line). The results are compared

with the derived analytical bound (blue dotted line), for m = 4
and Nt = Nr = 4. Fig. 1 shows the ABER for uncorrelated
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SMX    2  −QAM Nt=   8

Fig. 5. ABER versus the SNR for SM and SMX over real measured channels.
m = 8, Nr = 4.

channels and Fig. 2 shows the ABER for correlated channels.

As can be seen from the figures, the experimental results

closely match the simulation and analytical curves for ABER

< 10−2. In Fig. 1 we can see that SM offers the same

performance for both chosen channels, where both channels

are uncorrelated. However, in Fig. 2, there is a slight difference

in the performance, since the two chosen correlated channels

have different correlation matrices. Moreover, if we compare

the results for uncorrelated channels in Fig. 1 with those

correlated channels in Fig. 2, we see that SM performs better

when the channels are uncorrelated channels, as it is easier to

distinguish the different channel paths.

B. Comparison in the ABER performance of SM and SMX

1) Small Scale MIMO: Figs. 3 and 4 compare the ABER

between SM (solid line) and SMX (dashed line) using the

measured urban channels for m = 4 and Nt = Nr = 4. From
both figures, we can see that SM offers almost the same as

or slightly better performance than SMX. In Fig. 3, the per-

formance of both systems does not change for both channels

since the channels are uncorrelated. However, as shown in

Fig. 4, this is not the case for the correlated channels, where

the performance is different due to the different correlation

coefficients.

2) Large Scale MIMO: Fig. 5 compares the ABER between

SM (solid line) and SMX (dashed line) using the virtual

large scale MIMO channel created using the measured urban

channels as explained in Sec.III-B, where m = 8, Nr = 4.
For m = 8 the maximum number of transmit antennas

that SMX can use is Nt = 8, where m = Nt log2(M).
However, for SM the maximum number of antennas that

can be used is Nt = 128, making it possible to exploit the

advantages of large scale MIMO. Note that for SM it holds

that: m = log2(Nt) + log2(M). Finally, in Fig. 5 we can

see that SM with Nt = 128 and Nt = 64 offers 6 dB and

4 dB better performance than SMX with Nt = 8 and Nt = 4
respectively. Note that the constellation size is the same for

both SM with Nt = 128 and SMX with Nt = 8, as is for

SM with Nt = 64 and SMX with Nt = 4. As the number

of transmit antennas decreases, the ABER of SM and SMX

increases, i.e., moving to Nt = 16 for SM we see that SM

offers only a 1 dB performance increase relative to SMX with

Nt = 2. Note, the number of bits sent per transmission for

both SM and SMX for all the scenarios is equal, m = 8.

VII. SUMMARY AND CONCLUSION

In this paper, performance analysis of SM using urban

Rayleigh channel measurements for both correlated and un-

correlated scenarios has been carried out. An analytical bound

has been derived and performance results using simulated

channels have been provided. An important observation is

that experimental results confirm the analytical bound as well

as computer simulations of the system. The performance of

SM has been compared with the performance of SMX using

the same urban channels. It has been demonstrated that for

small scale MIMO, SM offers similar or slightly better ABER

performance. However, for large scale MIMO, SM exhibits

a significant enhancement in the ABER performance at no

increase in complexity. This makes SM an ideal candidate for

future large scale MIMO systems.
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Abstract—Spatial modulation (SM) is a recently proposed
approach to multiple–input–multiple–output (MIMO) systems
which entirely avoids inter–channel interference (ICI) and re-
quires no synchronisation between the transmit antennas, while
achieving a spatial multiplexing gain. SM allows the system
designer to freely trade off the number of transmit antennas with
the signal constellation. Additionally, the number of transmit an-
tennas is independent from the number of receive antennas which
is an advantage over other multiplexing MIMO schemes. Most
contributions thus far, however, have only addressed SM aspects
for a point-to-point communication systems, i.e. the single-user
scenario. In this work we seek to characterise the behaviour of
SM in the interference limited scenario. The proposed maximum-
likelihood (ML) detector can successfully decode incoming data
from multiple sources in an interference limited scenario and
does not suffer from the near-far problem.

I. INTRODUCTION

Multiple-antenna systems are fast becoming a key technol-

ogy for modern wireless systems. They offer improved error
performance and higher data rates, at the expense of increased
complexity and power consumption [1]. Spatial modulation
(SM) is a recently proposed approach to multiple–input–
multiple–output (MIMO) systems which entirely avoids inter–
channel interference (ICI) and requires no synchronisation
between the transmit antennas, while achieving a spatial

multiplexing gain [2]. A spatial multiplexing gain is achieved
by mapping a block of information bits into a constellation
point in the signal and spatial domains [3]. In SM, the number
of information bits, ℓ, encoded in the spatial domain can be
related to the number of transmit antennas Nt as Nt = 2ℓ. This
means that the number of transmit antennas must be a power
of two unless fractional bit encoding is used [4]. Additionally,

compared to other MIMO schemes, the spatial multiplexing
gain i.e. the number of transmit antennas, is independent of
the number of receive antennas. This offers the flexibility to
trade off the number of transmit antennas with the modulation
order in the signal domain to meet the desired data rate without
regard for the number of receive antennas. It should also be
noted that SM is shown to outperform other MIMO schemes

in terms of bit-error-ratio (BER) [3].

A number of papers are available in the literature which are
aimed at understanding and improving the performance of SM
in various scenarios. Trellis coding on the transmit antenna is
proposed in [5], a reduced complexity decoder is given in [6]

and the performance of SM over a wide range of channels
is presented in [7]. The optimal detector is known with and

without channel state information at the receiver in [8–10].
The optimal power allocation problem for a 2 transmit with 1
receive antenna system is solved in closed form in [11] and the
performance of SM in correlated fading channels is considered
in [12]. Recent work has also shown that SM can be combined
with space-time block codes to attain spectral efficiency gains
[13]. SM has also been applied to relaying systems in [14]
where it exhibits significant signal-to-noise-ratio (SNR) gains

when compared to non-cooperative decode and forward.
Most contributions thus far, however, have only addressed

SM aspects for a point-to-point communication systems, i.e.

the single-user scenario. These scenarios include the appli-
cation of SM in traditional orthogonal access systems such
as frequency division multiple access (FDMA), time division
multiple access (TDMA) or orthogonal frequency division

multiple access (OFDMA) where co-channel interference is
managed by ensuring orthogonal transmissions by all nodes
in the system. A notable exception is given in [15], where
the authors focus their analysis on a limited two user scenario
employing only space-shift-keying (SSK). It should be noted,
that SSK is similar to SM in that the antenna index is used
for data transmission, but instead of a full signal-symbol only

a reference signal is sent to enable channel estimation at the
receiver.

In this work we seek to characterise the behaviour of SM
in the interference limited scenario. In particular, we propose
a maximum-likelihood (ML) detector which can successfully
decode incoming data in the case of simultaneous transmission
and does not suffer from the near-far problem, i.e. the detector

can successfully decode data from a user with a lower signal-
to-noise-ratio (SNR). The proposed jointly optimum multi-user
detector minimises the BER for all users and does not suffer
from the near-far problem.

The remainder of this work is organized as follows. In
Section II, the system and channel models are introduced.
In Section III, the performance of SM in the multiple access

scenario is characterised and the analytical modelling for the
multi-user detector is proposed. Section IV provides numerical
and simulation results to substantiate the accuracy of the
analytical framework developed. In Section V, we summarise
and conclude the work.
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II. SYSTEM MODEL

The basic idea of SM is to map blocks of information bits
into two information carrying units [3]: i) a symbol, chosen
from a complex signal–constellation diagram, and ii) a unique

transmit–antenna, chosen from the set of transmit–antennas in
the antenna–array, i.e. the spatial–constellation. The general
SM constellation point is thus a combination of a signal-
constellation point and a spatial-constellation point. The SM
constellation diagram is presented in Fig. 1.

Fig. 1. A transmission of four bits is assumed. The first two bits from right to
left define the spatial–constellation point identifying the active antenna, while
the remaining two bits determine the signal–constellation point that will be
transmitted. This scenario means that a single SM constellation point carries
four information bits.

In the following work we assume a three node scenario as
shown in Fig. 2 where we seek to characterise the behaviour
of SM during simultaneous transmission i.e. in the presence
of co-channel interference. We assume that the two transmit

nodes, denoted as User1, node (U1), and User2, node (U2),
in Fig. 2, transmit simultaneously to the receiver on the same
time-frequency slot. Each node broadcasts a signal constella-
tion symbol, x, from one of its available antennas.

The received signal is given by:

yj =
√

Emσ2
(U1) hi(U1)jx

(U1) +
√

Emσ2
(U2) hk(U2)jx

(U2) + η

(1)

where:

• Em is the average energy per symbol for both nodes,
• i and k are the indices of the transmit antennas from

nodes 1 and 2 respectively,
• j is the index of the receive antenna from a total of Nr

available,

��������

�	��
 �	���

Fig. 2. Spatial modulation with simultaneous transmission. The receive
cannot distinguish which is the desired and which is the interferencing user.
Therefore, it must treat each users as its intended user.

• σ2
(U1) and σ2

(U2) are the channel attenuation coefficients

on the U1 to receiver and U2 to receiver links in Fig. 2
respectively,

• hi(U1)j and hk(U2)j are the fast fading channel coefficients
of the link between the active antennas (i, k) and the
receiving antenna j, and

• η, is a complex normal random variable with zero mean
and variance No, CN (0, No), and represents the additive

white Gaussian noise (AWGN) at the receiver.

We note that all bold notations indicate vector notations. We
now look at the analytical formulation of the system.

III. ANALYTICAL MODELLING

In this section, we develop a ML detector for use in the
presence of co-channel interference. The detector computes
the Euclidean distance between the received vector signal ȳ

and the set of all possible received signals, selecting the closest
one. The mathematical formulation of the ML detector used
in the system is given in (2). We note that this formulation is
valid for any channel vectors and any transmitted symbols. In
particular, if the channels are correlated i.e. non-orthogonal,
then it will be more difficult for the receiver to distinguish the
individual antennas used in the transmission, which will result
in an increase of the BER.

Starting from the system model presented in Section II,

the decoded pair (xest, nt)
(ξ)

, formed from the estimated
symbol xest emitted from antenna nt on node ξ, where
ξ ∈ {(U1), (U2)}, is given by:

{

(xest, nt)
(U1),

(xest, nt)
(U2)

}

= argmin











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ȳ −
∑

u∈{(U1), (U2)}
x(u)h

n
(u)

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

F











(2)

x(u) ∈ X (u) n
(u)
t ∈ {1 . . .N

(u)
t }

X (u) is the set of all possible signal constellation points for

node u with M (u) number of elements, N
(u)
t is the number

of available transmit antennas on node u and || · ||F is the
Frobenius norm.

From here we can use techniques base on the union bound to
describe the behaviour of the interference aware SM detector
in the high SNR regions. The union bound for the interference
aware SM detector, which estimates the average bit-error-
ratio (ABER) for node ξ, can be expressed as given in (3)

where Nξ(b, b̂) = Nξ(nt, n̂t) + Nξ(x, x̂). Nξ(nt, n̂t) denotes
the Hamming distance between the binary representations of
the antenna indices nt and n̂t on node ξ. Similarly, Nξ(x, x̂)
denotes the Hamming distance between the binary represen-
tations of the symbols x and x̂ on node ξ.

We define PEP
(

x(U1),(U2), n
(U1),(U2)
t , x̂(U1),(U2), n̂

(U1),(U2)
t

)

to be the pairwise error probability between the symbol

x(U1),(U2) emitted from antennas n
(U1),(U2)
t being detected

as symbol x̂(U1),(U2) emitted by antenna n̂
(U1),(U2)
t . It

should be noted that the pairs,
(

x(U1),(U2), n
(U1),(U2)
t

)

and
(

x̂(U1),(U2), n̂
(U1),(U2)
t

)

, come from the set of
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ABERξ ≤

M(U1)N
(U1)

t
∑

x(U1),(U2),

n
(U1),(U2)
t

M(U2)N
(U2)

t
∑

x̂(U1),(U2),

n̂
(U1),(U2)
t

Nξ(b, b̂)

log2

(

M (ξ)N
(ξ)
t

)

EH

[

PEP
(

x(U1),(U2), n
(U1),(U2)
t , x̂(U1),(U2), n̂

(U1),(U2)
t

)]

M (U1)N
(U1)
t M (U2)N

(U2)
t

. (3)

PEP (·) = Q

(

√

Em

2No

∣

∣

∣

∣

∣

∣
σ(U1)

(

h
n

(U1)

t

x(U1) − h
n̂

(U1)

t

x̂(U1)
)

+ σ(U2)

(

h
n

(U2)

t

x(U2) − h
n̂

(U2)

t

x(U2)
)∣

∣

∣

∣

∣

∣

2
)

(4)

all possible symbol-antenna pairs for both nodes, i.e.
(

x(U1),(U2), n
(U1),(U2)
t

)

= h
n

(U1)

t

x(U1) + h
n

(U2)

t

x(U2) and
(

x̂(U1),(U2), n̂
(U1),(U2)
t

)

= h
n̂

(U1)

t

x̂(U1) + h
n̂

(U2)

t

x̂(U2). EH[·]

represents the expectation of the system with respect to the
channel and Q(ω) = 1√

2π

∫ ∞
ω

exp
(

− t
2

)

dt.

The ABER for node ξ is shown in (3), where the pairwise
error probability is given in (4). Due to space constraints, we
omit the derivation of (4). We note that thus far no assumptions
have been made as to the distribution of the channel.

If we consider a Rayleigh fading channel, then we can

derive the closed form solution for EH [PEP (·)] in (3) by
employing the solution to [16, eq. 62]. We note that by
assuming a Rayleigh fading channel, the argument within
(4) can be represented as the summation of 2Nr squared
Gaussian random variables, with zero mean and variance equal
to 1, which means that they can be described by a central
Chi-squared distribution with 2Nr degrees of freedom and a

probability density function of:

pK(κ) =
1

2Nr(Nr − 1)!
κNr−1 exp (−κ/2).

The result for EH [PEP (·)] is given as:

EH [PEP (·)] = f(c)Nr

Nr−1
∑

r=0

(

Nr − 1 + r

r

)

(1 − f(c))r
(5)

such that

f(c) =
1

2

(

1 −

√

c

1 + c

)

where
c =

Em

4No

∑

u∈{U1,U2}
σ2

(u)λ(u) (6)

which is a quarter of the received SNR at the receiver, and

λ(u) =











(

|x(u)|
2 + |x̂(u)|

2
)

n
(u)
t �= n̂

(u)
t ,

(

|x(u) − x̂(u)|
2
)

n
(u)
t = n̂

(u)
t ,

0 n
(u)
t = n̂

(u)
t and x(u) = x̂(u).

IV. SIMULATION RESULTS AND DISCUSSION

In this section we aim to show that the interference aware
detector proposed in (2) can successfully decode the incoming
streams for the two users. Numerical results are shown which
demonstrate that (3) provides a tight upper bound for the BER

of the interference aware detector at high SNR. The aim of
this work is to develop and test a viable multi-user detector
for SM.

A. Simulation Setup

A frequency-flat Rayleigh fading channel with no correla-
tion between the transmitting antennas and AWGN is assumed.

Perfect channel state information (CSI) is assumed at the
receiving node, with no CSI at the transmitter. Only one of
the available transmit antennas for each node is active at
any transmitting instance. In theory each user independently
decides the number of transmit antennas and the symbol
modulation it uses. For use in the simulation we assume each
node has the same number of transmit antennas as well as

the same spectral efficiency target. In each figure, for each
user, there are three presented results: i) the simulation results
for the interference aware detector, denoted by Sim(Userξ),
ii) the theoretical results from (3) using (5), denoted by
Analytical(Userξ), and iii) the single-user-lower-bound
(SULB), denoted by SULB(Userξ). We define SULB as the
system performance in a single-user-single-receiver scenario
where the system performance is determined purely by its

SNR, defined as Em

2No
. The theory behind SULB is well

developed in [7].

B. Results

Fig. 3 and Fig. 4 clearly demonstrate that the analytical
model presented in (3) represents a tight upper bound for the

system in the high SNR region. Additionally, we can see that
the system with the lowest SNR has similar performance to
that predicted by its SULB. It should be noted that this is not
the case for the node with the better SNR. This difference in
performance of the two systems can be explained by looking
at the error contribution of each element from each node in
the analytical prediction.

We define two sets, one for every pairwise possibility within
a particular user, given by Ω(U1) in (7) for User1. We can simi-
larly define the set Ω(U2) for User2. If we now consider (3) and

(4) we see that the overall error for each user is inevitably in-
fluenced by the errors from the other user. However, since each
element from Ω(U1) is associated with the full set of possible
errors from Ω(U2), then all erroneous terms from Ω(U1) will
‘carry’ the full error from the terms in Ω(U2) and vice versa.
This means that besides the pairwise error associated with
the mis-detection of the antenna-symbol combination of User1
alone, the error term for User1 is increased by the pairwise
error of User2 and vice versa, i.e. the overall error for node 1

has
[(

card
{

Ω(U1)
}

− M (U1)N
(U1)
t

)

card
{

Ω(U2)
}

]

num-

ber of error terms where card{·} denotes the cardinality of
a given set.

We further note that each pairwise error from the user with
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the worse SNR makes a bigger contribution to the overall
BER than the pairwise error from the node with the better
SNR. This can be shown if we look at the Euclidean distance
between the different pairwise errors. We classify a pairwise
error if the Euclidean distance between the symbol-antenna
pairs being tested is greater than zero. In particular, the greater
the Euclidean distance becomes, the smaller the error from that

term. From (4) it is clear that the pairwise error depends on
the SNR as well as the Euclidean distance. It thus follows that
given pairwise error terms with the same Euclidean distance,
the worse the SNR is for each term, the greater the absolute
pairwise error. Considering the above, it is clear that the node
with the better channel gain never performs close to its SULB,
while the node with the worse channel gain does perform near

its SULB.
Fig. 3 and Fig. 4 demonstrate this behaviour. The gap in

performance with respect to the SULB for the main contributor
to the overall user error, i.e. the node with the lower SNR,
effectively increases the BER of the node with the higher SNR.
To further elaborate, we note that the difference between the
simulation BER curves of the two nodes when Nr = 2 and
Nr = 3 increases as more receive antennas are added. This

can be explained if we consider that by increasing the number
of receive antennas, the diversity of the system increases and
the pairwise error terms for each node approach zero more
rapidly. This mean that the absolute pairwise error contributed
to the overall BER is less for each node. As a consequence,
the node with the better channel gain i.e. the node with higher
SNR, will perform closer to its SULB.

On the one hand, moving from Fig. 3 and Fig. 4 to Fig. 5, we

notice that for a fixed spectral efficiency and a fixed number
of transmit antennas, the addition of more receive antennas
results in an increasing gap between the average analytical
BER curves of the two nodes. In particular, a gap of around 4
dB between the performance of User1 and User2 with Nr = 2
is increased to around 7 dB when Nr = 4 and further increased
to around 9 dB for Nr = 8. On the other hand, given that the

two nodes experience a channel gain difference of 10 dB, we
know that the interference aware detector cannot reach the
performance of independent detection and the SULB for the
node with the better SNR. Nonetheless, the gap between their
respective BER curves tends toward the difference between the
channel attenuations of the two users as Nr grows to infinity
but can never reach it i.e. the gap tends towards 10 dB.

The addition of more transmit antennas at each of the nodes

results in SNR gains for each node as can be seen when we
compare Fig. 4 and Fig. 6. Interestingly, however, increasing
the number of transmit antennas does not change the relative
behaviour of the system, i.e. the SNR difference between the
BER curves of the two nodes remains constant. This behaviour
is expected when we consider that (5) is independent of Nt

and heavily influenced by Nr. In particular, the BER of both

nodes is dependent on the variance of the channel coefficients
in (4) which follow a central chi-squared distribution with 2Nr

degrees of freedom. This variance is defined in (6).
At this point it should be noted that while the proposed

detector is jointly optimum for both nodes and does not
suffer from the near-far problem, it needs full CSI from
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all possible transmitting antennas to each receiving antenna.
Additionally, finding the optimal solution is an exponentially

complex problem, i.e. if we assume each node has the same
number of transmit antennas and uses the same signal constel-

lation, then the multi user ML detector has O
(

(MNt)
Nu

)

computational complexity which is proven to be NP-complete
[17]. Fortunately, recent work on sphere detection algorithms
may be used to alleviate this computational cost [18].

V. CONCLUSION

In this work the performance of SM with simultaneous
transmission was analysed. A ML detector for SM in the
interference limited scenario was proposed. Its performance
over uncorrelated Rayleigh fading channels was studied and a
closed form solution for the upper bound of the system was

provided. Numerical results verified that the proposed analysis
was fairly accurate for the high SNR regions. On the one
hand, increasing the number of transmit antennas at each of
the nodes from 2 to 4 resulted in SNR gains of around 2
dB. This measure did not, however, have any effect on the
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Ω(U1) = {(h1x1,h1x1), (h1x1,h2x2), . . . , (h1x1,hNt
xM ), (h2x1,h1x1), . . . , (hNt

xM ,hNt
xM )} (7)
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relative coding gain between the BER curves of the two nodes

i.e. the two nodes improved their performance by the same
amount. On the other hand, increasing the number of receive
antennas increased the diversity of the system and decreased
the error contribution of each node, thus increasing the SNR
gap between the BER curves of the two nodes.

The generalization of this work to a system with an arbitrary
number of nodes, along with further investigation on the
performance of SM in an interference limited scenario will
be considered in the future.
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