2 research outputs found

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Algorithmes de diagnostic d'une chaßne JTAG reconfigurable et tolérante aux pannes au sein de la technologie WaferIC

    Get PDF
    RÉSUMÉ : Dans ce mĂ©moire, des algorithmes de diagnostic d’une chaĂźne JTAG reconfigurable et tolĂ©rante aux pannes dans un circuit intĂ©grĂ© Ă  l’échelle de la tranche (Wafer Scale Integrated Circuit WSI) sont prĂ©sentĂ©s. Le circuit intĂ©grĂ© en question, nommĂ© WaferIC, est au cƓur du projet de recherche DreamWaferTM qui implique plusieurs universitĂ©s canadiennes. Ce projet vise Ă  Ă©laborer une plateforme de prototypage rapide pour les systĂšmes Ă©lectroniques. C’est d’une certaine façon l’équivalent d’un circuit imprimĂ© reprogrammable. Les circuits discrets, comme les FPGA et les mĂ©moires par exemple seront dĂ©posĂ©s sur la surface du WaferIC. Ce dernier est un substrat programmable de la taille d’une tranche de Silicium et configurable qui rĂ©alise les interconnexions nĂ©cessaires entre les circuits et ce conformĂ©ment Ă  une spĂ©cification des interconnexions fournie par l’ingĂ©nieur en conception. Le WaferIC est composĂ© de milliers de cellules connectĂ©es entre elles par des liens intercellulaires formant ainsi un vaste rĂ©seau d’interconnexions reconfigurable. Une chaĂźne de balayage conforme au protocole JTAG est utilisĂ©e pour configurer les cellules du WaferIC. Pour minimiser le temps de configuration, ce prĂ©sent mĂ©moire propose des algorithmes pour repĂ©rer le plus d’élĂ©ments (cellules et liens) fonctionnels possible au sein du WaferIC. La chaĂźne JTAG de configuration passera par ces Ă©lĂ©ments fonctionnels pour configurer toutes les cellules du WaferIC. Le premier objectif du diagnostic est d’établir un ensemble de chemins qui couvrent toutes les cellules et tous les liens intercellulaires du WaferIC. La taille des flux de bits JTAG qui crĂ©ent ces chemins doit ĂȘtre minimale. Dans ce contexte, une Ă©tude thĂ©orique est faite dans ce mĂ©moire pour prouver que la taille d’un flux de bits JTAG nĂ©cessaire pour Ă©tablir un chemin de N cellules croit en O(N2). Un algorithme de recherche basĂ© sur le principe de la dichotomie a aussi Ă©tĂ© implĂ©mentĂ© dans le cadre de ce projet de maĂźtrise. Cet algorithme est appliquĂ© sur les chemins trouvĂ©s non fonctionnels pour localiser le plus prĂ©cisĂ©ment possible les liens dĂ©fectueux dans ces chemins. L’état des cellules sera dĂ©duit Ă  partir des liens. En effet, une cellule est dĂ©fectueuse si tous ses liens entrants ou sortants sont dĂ©fectueux.----------ABSTRACT In this master project, algorithms to diagnose a reconfigurable and defect tolerant JTAG scan chain in a wafer scale integrated circuit are proposed. The integrated circuit, called WaferIC is at the core of the DreamWaferTM research project involving several Canadian universities. This project aims to develop a platform for rapid electronic system prototyping. That platform is analogous to a reconfigurable printed circuit board. Circuits are deposited on the surface of the WaferIC. This device is a configurable and programmable substrate that implements all the necessary interconnections between the circuits in accordance with the user specification.The WaferIC is made of thousands of cells interconnected with intercellular links forming an extensive and reconfigurable network of interconnections. A JTAG scan chain is used to configure the cells of the WaferIC. To minimize the configuration time, this master project proposes algorithms to identify functional elements (cells and links). This scan chain uses those functional elements to configure all the cells of the WaferIC. The first objective is to find a set of paths that cover all cells and links of the WaferIC. The length of the JTAG bit streams that create these paths must be reasonably short, and possibly optimal. In light of this, a theoretical study is done that proves that the size of a JTAG bit stream grows as O(N2) for a path made of N cells. A set search dichotomic algorithm was also developed to be applied on defective paths to accurately locate defective links within these paths. The state of cells can be deduced from links. Indeed, if all incoming and outgoing links of a cell are defective, then the cell is defective. Heuristic algorithms have also been developed to analyze non-functional paths in the case where the dichotomic algorithm is unable to locate precisely the defective link(s). The algorithms developed were tested on a miniaturized prototype of the WaferIC. In a reticle containing 1024 cells, an area of 4 cells has been found as potentially defective
    corecore