1,906 research outputs found

    Novel hybrid framework for image compression for supportive hardware design of boosting compression

    Get PDF
    Performing the image compression over the resource constrained hardware is quite a challenging task. Although, there has been various approaches being carried out towards image compression considering the hardware aspect of it, but still there are problems associated with the memory acceleration associated with the entire operation that downgrade the performance of the hardware device. Therefore, the proposed approach presents a cost effective image compression mechanism which offers lossless compression using a unique combination of the non-linear filtering, segmentation, contour detection, followed by the optimization. The compression mechanism adapts analytical approach for significant image compression. The execution of the compression mechanism yields faster response time, reduced mean square error, improved signal quality and significant compression ratio performance

    Design Techniques for Energy-Quality Scalable Digital Systems

    Get PDF
    Energy efficiency is one of the key design goals in modern computing. Increasingly complex tasks are being executed in mobile devices and Internet of Things end-nodes, which are expected to operate for long time intervals, in the orders of months or years, with the limited energy budgets provided by small form-factor batteries. Fortunately, many of such tasks are error resilient, meaning that they can toler- ate some relaxation in the accuracy, precision or reliability of internal operations, without a significant impact on the overall output quality. The error resilience of an application may derive from a number of factors. The processing of analog sensor inputs measuring quantities from the physical world may not always require maximum precision, as the amount of information that can be extracted is limited by the presence of external noise. Outputs destined for human consumption may also contain small or occasional errors, thanks to the limited capabilities of our vision and hearing systems. Finally, some computational patterns commonly found in domains such as statistics, machine learning and operational research, naturally tend to reduce or eliminate errors. Energy-Quality (EQ) scalable digital systems systematically trade off the quality of computations with energy efficiency, by relaxing the precision, the accuracy, or the reliability of internal software and hardware components in exchange for energy reductions. This design paradigm is believed to offer one of the most promising solutions to the impelling need for low-energy computing. Despite these high expectations, the current state-of-the-art in EQ scalable design suffers from important shortcomings. First, the great majority of techniques proposed in literature focus only on processing hardware and software components. Nonetheless, for many real devices, processing contributes only to a small portion of the total energy consumption, which is dominated by other components (e.g. I/O, memory or data transfers). Second, in order to fulfill its promises and become diffused in commercial devices, EQ scalable design needs to achieve industrial level maturity. This involves moving from purely academic research based on high-level models and theoretical assumptions to engineered flows compatible with existing industry standards. Third, the time-varying nature of error tolerance, both among different applications and within a single task, should become more central in the proposed design methods. This involves designing “dynamic” systems in which the precision or reliability of operations (and consequently their energy consumption) can be dynamically tuned at runtime, rather than “static” solutions, in which the output quality is fixed at design-time. This thesis introduces several new EQ scalable design techniques for digital systems that take the previous observations into account. Besides processing, the proposed methods apply the principles of EQ scalable design also to interconnects and peripherals, which are often relevant contributors to the total energy in sensor nodes and mobile systems respectively. Regardless of the target component, the presented techniques pay special attention to the accurate evaluation of benefits and overheads deriving from EQ scalability, using industrial-level models, and on the integration with existing standard tools and protocols. Moreover, all the works presented in this thesis allow the dynamic reconfiguration of output quality and energy consumption. More specifically, the contribution of this thesis is divided in three parts. In a first body of work, the design of EQ scalable modules for processing hardware data paths is considered. Three design flows are presented, targeting different technologies and exploiting different ways to achieve EQ scalability, i.e. timing-induced errors and precision reduction. These works are inspired by previous approaches from the literature, namely Reduced-Precision Redundancy and Dynamic Accuracy Scaling, which are re-thought to make them compatible with standard Electronic Design Automation (EDA) tools and flows, providing solutions to overcome their main limitations. The second part of the thesis investigates the application of EQ scalable design to serial interconnects, which are the de facto standard for data exchanges between processing hardware and sensors. In this context, two novel bus encodings are proposed, called Approximate Differential Encoding and Serial-T0, that exploit the statistical characteristics of data produced by sensors to reduce the energy consumption on the bus at the cost of controlled data approximations. The two techniques achieve different results for data of different origins, but share the common features of allowing runtime reconfiguration of the allowed error and being compatible with standard serial bus protocols. Finally, the last part of the manuscript is devoted to the application of EQ scalable design principles to displays, which are often among the most energy- hungry components in mobile systems. The two proposals in this context leverage the emissive nature of Organic Light-Emitting Diode (OLED) displays to save energy by altering the displayed image, thus inducing an output quality reduction that depends on the amount of such alteration. The first technique implements an image-adaptive form of brightness scaling, whose outputs are optimized in terms of balance between power consumption and similarity with the input. The second approach achieves concurrent power reduction and image enhancement, by means of an adaptive polynomial transformation. Both solutions focus on minimizing the overheads associated with a real-time implementation of the transformations in software or hardware, so that these do not offset the savings in the display. For each of these three topics, results show that the aforementioned goal of building EQ scalable systems compatible with existing best practices and mature for being integrated in commercial devices can be effectively achieved. Moreover, they also show that very simple and similar principles can be applied to design EQ scalable versions of different system components (processing, peripherals and I/O), and to equip these components with knobs for the runtime reconfiguration of the energy versus quality tradeoff

    Embracing Visual Experience and Data Knowledge: Efficient Embedded Memory Design for Big Videos and Deep Learning

    Get PDF
    Energy efficient memory designs are becoming increasingly important, especially for applications related to mobile video technology and machine learning. The growing popularity of smart phones, tablets and other mobile devices has created an exponential demand for video applications in today?s society. When mobile devices display video, the embedded video memory within the device consumes a large amount of the total system power. This issue has created the need to introduce power-quality tradeoff techniques for enabling good quality video output, while simultaneously enabling power consumption reduction. Similarly, power efficiency issues have arisen within the area of machine learning, especially with applications requiring large and fast computation, such as neural networks. Using the accumulated data knowledge from various machine learning applications, there is now the potential to create more intelligent memory with the capability for optimized trade-off between energy efficiency, area overhead, and classification accuracy on the learning systems. In this dissertation, a review of recently completed works involving video and machine learning memories will be covered. Based on the collected results from a variety of different methods, including: subjective trials, discovered data-mining patterns, software simulations, and hardware power and performance tests, the presented memories provide novel ways to significantly enhance power efficiency for future memory devices. An overview of related works, especially the relevant state-of-the-art research, will be referenced for comparison in order to produce memory design methodologies that exhibit optimal quality, low implementation overhead, and maximum power efficiency.National Science FoundationND EPSCoRCenter for Computationally Assisted Science and Technology (CCAST

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Parallel algorithms and architectures for low power video decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 197-204).Parallelism coupled with voltage scaling is an effective approach to achieve high processing performance with low power consumption. This thesis presents parallel architectures and algorithms designed to deliver the power and performance required for current and next generation video coding. Coding efficiency, area cost and scalability are also addressed. First, a low power video decoder is presented for the current state-of-the-art video coding standard H.264/AVC. Parallel architectures are used along with voltage scaling to deliver high definition (HD) decoding at low power levels. Additional architectural optimizations such as reducing memory accesses and multiple frequency/voltage domains are also described. An H.264/AVC Baseline decoder test chip was fabricated in 65-nm CMOS. It can operate at 0.7 V for HD (720p, 30 fps) video decoding and with a measured power of 1.8 mW. The highly scalable decoder can tradeoff power and performance across >100x range. Second, this thesis demonstrates how serial algorithms, such as Context-based Adaptive Binary Arithmetic Coding (CABAC), can be redesigned for parallel architectures to enable high throughput with low coding efficiency cost. A parallel algorithm called the Massively Parallel CABAC (MP-CABAC) is presented that uses syntax element partitions and interleaved entropy slices to achieve better throughput-coding efficiency and throughput-area tradeoffs than H.264/AVC. The parallel algorithm also improves scalability by providing a third dimension to tradeoff coding efficiency for power and performance. Finally, joint algorithm-architecture optimizations are used to increase performance and reduce area with almost no coding penalty. The MP-CABAC is mapped to a highly parallel architecture with 80 parallel engines, which together delivers >10x higher throughput than existing H.264/AVC CABAC implementations. A MP-CABAC test chip was fabricated in 65-nm CMOS to demonstrate the power-performance-coding efficiency tradeoff.by Vivienne. Sze.Ph.D

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF

    Low-power and application-specific SRAM design for energy-efficient motion estimation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 181-189).Video content is expected to account for 70% of total mobile data traffic in 2015. High efficiency video coding, in this context, is crucial for lowering the transmission and storage costs for portable electronics. However, modern video coding standards impose a large hardware complexity. Hence, energy-efficiency of these hardware blocks is becoming more critical than ever before for mobile devices. SRAMs are critical components in almost all SoCs affecting the overall energy-efficiency. This thesis focuses on algorithm and architecture development as well as low-power and application-specific SRAM design targeting motion estimation. First, a motion estimation design is considered for the next generation video standard, HEVC. Hardware cost and coding efficiency trade-offs are quantified and an optimum design choice between hardware complexity and coding efficiency is proposed. Hardware-efficient search algorithm, shared search range across CU engines and pixel pre-fetching algorithms provide 4.3x area, 56x on-chip bandwidth and 151 x off-chip bandwidth reduction. Second, a highly-parallel motion estimation design targeting ultra-low voltage operation and supporting AVC/H.264 and VC-1 standards are considered. Hardware reconfigurability along with frame and macro-block parallel processing are implemented for this engine to maximize hardware sharing between multiple standards and to meet throughput constraints. Third, in the context of low-power SRAMs, a 6T and an 8T SRAM are designed in 28nm and 45nm CMOS technologies targeting low voltage operation. The 6T design achieves operation down to 0.6V and the 8T design achieves operation down to 0.5V providing ~ 2.8x and ~ 4.8x reduction in energy/access respectively. Finally, an application-specific SRAM design targeted for motion estimation is developed. Utilizing the correlation of pixel data to reduce bit-line switching activity, this SRAM achieves up to 1.9x energy savings compared to a similar conventional 8T design. These savings demonstrate that application-specific SRAM design can introduce a new dimension and can be combined with voltage scaling to maximize energy-efficiency.by Mahmut Ersin Sinangil.Ph.D

    TITAN Wireless Camera Control System

    Get PDF
    The Titan Camera Control System is an eletromechanical device that allows the user to wirelessly control a camera’s digital operations as well as physical orientation through the use of a mobile device application. The Titan system accepts input in the form of virtual user commands on the mobile app and performs system output in the form of sending photos/video from the camera back to the app as well as changing the orientation of the camera in accordance with the user’s commands
    • …
    corecore