
Low-Power and Application-Specific SRAM

Design for Energy-Efficient Motion Estimation- ARCHIS
MA SSACHS TTSiNSTITUTE

by
JUL 0 1 20

Mahmut Ersin Sinangil

B.S. in Electrical Engineering, Bogazici University, 2006-

S.M. in Electrical Engineering, Massachusetts Institute of Technology,
2008

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

© Massachusetts Institute of Technology 2012. All rights reserved.

A uthor
Department 4 etrical Fieering and Computer Science

May 21, 2012

Certified by
Anantha P. Chandrakasan

Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
Thesis Supervisor

Accepted by

A Lqli0A. Kolodziejski

Chairman, Department Committee on Graduate Students

2

Low-Power and Application-Specific SRAM Design for

Energy-Efficient Motion Estimation

by

Mahmut Ersin Sinangil

Submitted to the Department of Electrical Engineering and Computer Science

on May 21, 2012, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Abstract

Video content is expected to account for 70% of total mobile data traffic in 2015. High

efficiency video coding, in this context, is crucial for lowering the transmission and stor-

age costs for portable electronics. However, modern video coding standards impose a large

hardware complexity. Hence, energy-efficiency of these hardware blocks is becoming more

critical than ever before for mobile devices. SRAMs are critical components in almost all

SoCs affecting the overall energy-efficiency. This thesis focuses on algorithm and archi-

tecture development as well as low-power and application-specific SRAM design targeting

motion estimation.
First, a motion estimation design is considered for the next generation video standard,

HEVC. Hardware cost and coding efficiency trade-offs are quantified and an optimum design

choice between hardware complexity and coding efficiency is proposed. Hardware-efficient

search algorithm, shared search range across CU engines and pixel pre-fetching algorithms

provide 4.3x area, 56x on-chip bandwidth and 151 x off-chip bandwidth reduction.

Second, a highly-parallel motion estimation design targeting ultra-low voltage operation

and supporting AVC/H.264 and VC-1 standards are considered. Hardware reconfigurability

along with frame and macro-block parallel processing are implemented for this engine to

maximize hardware sharing between multiple standards and to meet throughput constraints.

Third, in the context of low-power SRAMs, a 6T and an 8T SRAM are designed in 28nm

and 45nm CMOS technologies targeting low voltage operation. The 6T design achieves

operation down to 0.6V and the 8T design achieves operation down to 0.5V providing

2.8x and ~ 4.8x reduction in energy/access respectively.

Finally, an application-specific SRAM design targeted for motion estimation is devel-

oped. Utilizing the correlation of pixel data to reduce bit-line switching activity, this SRAM

achieves up to 1.9x energy savings compared to a similar conventional 8T design. These

savings demonstrate that application-specific SRAM design can introduce a new dimension

and can be combined with voltage scaling to maximize energy-efficiency.

Thesis Supervisor: Anantha P. Chandrakasan

Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering

3

4

Acknowledgments

First, I would like to thank Professor Anantha Chandrakasan for his continuous sup-

port and guidance during the past six years. I am very grateful to Anantha for

giving me this opportunity and making me a part of his group. He always expected

more from me and challenged me to be more successful by creating exciting research

projects and by motivating discussions. I have learned things much beyond circuits

from him. His advices taught me to be an honest, critical, cooperative and respectful

researcher. Thank you, Anantha, for your mentorship and support.

I would like to acknowledge Professor Jae Lim and Professor Li-Shiuan Peh for

serving on my thesis committee and providing me insightful feedback on my research.

Your valuable advices during our meetings have helped me tremendously to improve

this thesis.

I would like to thank Texas Instruments for generously providing chip fabrication

and funding for this research. It was a privilege to cooperate and interact with

many engineers at TI during summer internships and many visits. I would like to

especially thank Alice Wang, Dennis Buss, Minhua Zhou, Mike Polley and Hugh

Mair for valuable discussions. I would also like to thank Vivienne Sze for not only

the technical discussions and help on HEVC motion estimation project but also for

her friendship.

I was fortunate to be a part of a large research group so that I got to know many

people who were very helpful and cooperative and also had a great sense of humor.

First, I would like to thank Margaret for her assistance and for her help with many

problems I had over the years. I was fortunate to collaborate with many students

for various projects. I would like to thank Naveen for helping me to ramp up on

SRAMs and get used to graduate school life and research. His brilliance in circuit

design has motivated me to push myself to work harder. During the video decoder

project, I enjoyed working with Daniel and Vivienne a lot. They are both outstanding

researchers and also great friends. I would like to thank Nathan for his collaboration

not only during the Jupiter project but also sharing his expertise on many occasions.

5

I find myself fortunate to have worked with Chih-Chi, Rahul, Bonnie, Sabrina, Eric,

Hank and Jason on different projects.

I started this journey at the same time with Patrick and Masood. Pat and his wife

Chelce has been great friends. Yildiz and I very much enjoyed our movie nights, ski

trips and Worms battles (especially the flying sheep) together and we will miss you.

I would like to thank Masood for daily discussions covering a wide range of subjects

and for sharing his interesting ideas with me. I think we have learned a lot from each

other over these years.

I would also like to thank former and current students in ananthagroup especially

Joyce, Yogesh, Marcus, Saurav, Arun, Phil, Mehul, Nachiket and Dina. I would also

like to thank Cagatay and Selami who have been my best friends since high-school.

I was fortunate to have them in the US during my studies.

Finally, I am very thankful to my family for continuously supporting and loving

me. Although you were thousands of miles away, amazingly, you managed to continue

to take care of me through phone and video calls. I would also like to thank Yildiz's

parents for their support and love.

Lastly, I would like to thank my beautiful wife who has been with me throughout

this journey. I am blessed to have met Yildiz, a successful and motivated electri-

cal engineer and a loving wife to share my life with. Her continuous support and

unconditional love have encouraged me to try harder.

6

Contents

1 Introduction

1.1 Recent Video Compression Standards and Motion Estimation . . .

1.1.1 Recent Video Compression Standards

1.1.2 Motion Estimation in Recent Video Compression Standards

1.1.3 Previous Work on Fast Search Algorithms

1.1.4 Hardware Implementation of Motion Estimation

1.2 Voltage Scaling and Low Voltage Operation

1.3 Low-Power SRAM Design .

1.4 Previous Work on Low-Power SRAM Design

1.4.1 Alternative Bit-cell Topologies

1.4.2 Row-wise and Column-wise Assist Circuits

1.4.3 Sensing Topologies .

1.5 Thesis Contributions .

25

27

27

30

31

33

36

38

42

42

44

45

46

2 Cost and Coding Efficient Motion Estimation Design for HEVC

Standard 49

2.1 Overview of HEVC 50

2.1.1 Coding Quad-Tree Structure 50

2.1.2 Reference Software Implementation 52

2.2 Overview of Motion Estimation in HEVC 53

2.2.1 Advanced Motion Vector Prediction (AMVP) 55

2.2.2 Integer Motion Estimation Search Algorithm in HM 56

2.2.3 Fractional Motion Estimation 57

7

2.3 HEVC Motion Estimation Design for Reference Software-Equivalent

Coding Efficiency .

2.3.1 HEVC Motion Estimation Architecture for Reference Software-

Equivalent Coding Efficiency

2.3.2 Hardware Cost Analysis Overview

2.3.3 Logic Area Estimation Method & Results for HM Implementation

2.3.4 Memory Size and Bandwidth Estimation Method & Results .

2.3.5 Trade-off Analysis for Hardware Cost and Compression Efficiency

2.4 Cost and Coding Efficient (CCE) HEVC Motion Estimation Design .

2.4.1 Top Level Architecture .

2.4.2 Search Algorithm Development for CCE Motion Estimation

2.4.3 Sharing Reference Pixel Buffers for CCE Motion Estimation

2.4.4 Reference Pixel Data Pre-fetching Strategy

2.4.5 Enlarging On-Chip Reference Buffers for Higher Data Reuse Rate

2.5 AMVP Algorithm Development

2.5.1 HM-3.0 Algorithm

2.5.2 Proposed Algorithm

2.5.3 Effect on Coding Efficiency

2.6 Hardware Implementation Results for CCE HEVC

2.6.1 Implementation of a CU engine

2.6.2 Reference Buffer and Read/Write Control

2.6.3 AMVP Implementation

2.6.4 Cost Tree and Comparator Array

2.6.5 Interpolation Engine

2.7 Summary and Conclusions

. 84

. 84

. 86

. 87

Motion Estimation 89

. 90

. 91

. 92

. 94

. 94

. 96

3 Highly Parallel Motion Estimation Design for Multi-Standard Video

Encoder 99

3.1 Overview of a Multi-Standard AVC/H.264 and VC-1 Encoder Design 100

3.1.1 Overview of AVC/H.264 and VC-1 100

8

58

59

61

62

64

67

70

70

71

73

77

80

3.1.2 Specifications of the Multi-Standard Encoder 101

3.2 Algorithm Development and Architecture Selection for Highly-Parallel

M otion Estim ation . 103

3.2.1 Frame and MB Parallel Video Encoding Architecture 103

3.2.2 Searching Algorithm Selection 105

3.2.3 Bypassing cost calculation based on similarity 106

3.3 Hardware Implementation Results . 108

3.3.1 Top Level Block Diagram of Motion Estimation 109

3.3.2 IME Implementation . 110

3.3.3 FME Implementation . 112

3.4 Summary and Conclusions . 114

4 Low-Power SRAM Design for Multimedia Applications 117

4.1 A Low-Power DSP for Multimedia Applications 118

4.2 6T Low Voltage SRAM with Peripheral Assist Circuits in 28nm . 119

4.2.1 SRAM Array Architecture . 120

4.2.2 Short Local Bit-lines Reduce Read Disturbance 121

4.2.3 Voltage Boosting Increases Write-Ability 122

4.2.4 Improving Read Access Time 125

4.2.5 Waveforms of Critical Signals in SRAM array 127

4.2.6 28nm Test Chip Architecture 128

4.2.7 28nm Test Chip Measurement Results 130

4.3 8T Column Interleaved SRAM with Sense-Amplifier Reference Selec-

tion in 45nm . 131

4.3.1 Column-Interleaving with 8T Designs 132

4.3.2 Column-Interleaved Array Architecture for 8T Bit-cell 134

4.3.3 Reference Selection Loop for Sense-Amplifier 137

4.3.4 45nm Test Chip Architecture 140

4.3.5 45nm Test Chip Measurement Results 140

4.4 Summary and Conclusions . 141

9

5 Motion Estimation Specific SRAM Design for Low-Power Operation 145

5.1 Motion Estimation Specific Features 146

5.1.1 Correlation of Pixel Data in Reference Buffers 146

5.1.2 Access Patterns for Reference Buffers 148

5.2 A 65nm Application-Specific SRAM Design Targeted for Motion Esti-

m ation . 149

5.2.1 Contribution of Bit-line Switching to SRAM Power Consumption149

5.2.2 Prediction-Based Reduced Bit-line Switching Activity (PB-RBSA)

Schem e . 152

5.2.3 Introducing Throughput Scalability to PB-RBSA Bit-cell . . . 155

5.2.4 Hierarchical Sensing and Statistical Sense-Amplifier Gating . . 156

5.2.5 Predictor Generation . 161

5.2.6 Test Chip Architecture . 164

5.2.7 Measurement Results . 165

5.3 Summary and Conclusions . 171

6 Conclusions and Future Work 173

6.1 Summary of Contributions . 174

6.1.1 Hardware-Oriented Algorithms and Architectures for Motion

Estim ation . 174

6.1.2 Low-Power SRAM Design . 175

6.1.3 Application-Specific SRAM Design 175

6.2 Future W ork . 176

A Test Sequences Used in HEVC Standardization 179

10

List of Figures

1-1 Total cache size in Intel processors for different process nodes. 26

1-2 Monthly global mobile data traffic forecast. Traffic is given in exabytes

(1 Exabyte= 106 TB). 28

1-3 Relative complexity of video core over the years for a mobile applica-

tions processor. From 2012 to 2020, video core complexity is expected

to increase by 10 x. 30

1-4 Block-based motion estimation. Best-matching block for the current

block is searched within a searching range and the displacement of the

"best-match" is given as the motion vector (MV). 31

1-5 Block diagram of a simple hardware block performing motion search. 34

1-6 Block diagram of a motion estimation engine in hardware. IME and

FM E parts are shown. 36

1-7 (a) Performance and leakage power and (b) energy/access vs. VDD

. Leakage power scales more than 50X from 1.2V to 0.25V and en-

ergy/access reaches a minimum around 400mV while operating at

500kHz. 39

1-8 (a) Schematic of a six-transistor (6T) SRAM bit-cell and (b) schematic

of an eight-transistor (8T) SRAM bit-cell. 8T bit-cell is proposed as a

low voltage alternative to the conventional 6T cell. 40

1-9 6T and 8T bit-cell area from previously published designs from years

2004-2010. Designs are from various CMOS technologies from 90nm

dow n to 32nm . 44

11

2-1 Coding quad-tree structure used in HEVC. Different LCU and SCU

selections can be done based on the resolution and amount of details

in the video fram es. 51

2-2 (a) PU types for inter-prediction in a 64x64 CU and (b) an example

showing PU types used in a video frame. 52

2-3 Processing order for 8 x 8 CUs in a 16 x 16 CU is from A to D. For

each 8 x 8 CU, PU types are also processed sequentially from 2N x 2N

to N x N. Finally inside a PU type, processing order is from 1 to 4. 54

2-4 Architecture for an HEVC motion estimation engine supporting all

block sizes from 64 x 64 to 4 x 4 (except AMP partitions). This ar-

chitecture allows sequential processing of smaller blocks and can use

exact motion information from neighboring blocks and provide a cod-

ing efficiency as good as the reference software implementation. . . . 59

2-5 Processing order of CUs and PU types inside CUs for the architecture

in Figure 2-4. For a 64 x 64 LCU, costs for smaller blocks are combined

and then compared to larger block sizes to find the best combination

of blocks providing the smallest cost for the entire 64 x 64 LCU. . . . 60

2-6 Hardware cost vs. coding efficiency comparison table for 11 different

motion estimation configurations. "Y" and "N" represents if a block

size is supported or not respectively. 68

2-7 (a) Core area savings vs. bit-rate increase and (b) off-chip bandwidth

savings vs. bit-rate increase scatter plots for all the configurations

given in Figure 2-6. 69

2-8 Top level architecture of the cost and coding efficiency motion estima-

tion implementation. Block sizes of 64 x 64, 32 x 32 and 16 x 16 are

supported. 71

2-9 Two stage search approach used for cost and coding efficient (CCE)

implementation. Stages are independent of each other and can be

performed in parallel in hardware. 72

12

2-10 Density maps for the relative location of pixels from best-matching

blocks with respect to the AMVP of the LCU for (a) PeopleOnStreet

and (b) Traffic sequences. More than 99% of the pixels lie within

±64 of the AMVP of the LCU (2560x1600 sequences with QP=22 in

random-access configuration). 76

2-11 Extra storage is needed for on-chip buffers to share cycles for read and

write accesses to the memories. 200 x 200 portion is used for current

LCU and 64 x 200 portion is used for next LCU 78

2-12 Search ranges of five consecutive LCUs with (a) uniform motion maxi-

mizing data reuse and (b) non-uniform motion causing lower data reuse

ra te . 8 1

2-13 Total off-chip write bandwidth, maximum data reuse rate and on-chip

buffer size for (a) BasketballDrive (1920 x 1080) and (b) Traffic (2560 x

1600) sequences. Simulations are performed in Random Access test

condition with QP = 22. 82

2-14 Five spatial and two temporal neighbors are used in AMVP calculation

process. 85

2-15 Block diagram of an hardware implementation of AMVP calculation

algorithm given in HM-3.0. 86

2-16 Block diagram of an hardware implementation of proposed AMVP cal-

culation algorithm . 88

2-17 Architecture of one engine in CCE HEVC motion estimation imple-

m entation. 90

2-18 Search range partitioning and physical location of pixels in memory

b an k s. 9 1

2-19 Illustration of MV scaling. MVs from different reference frames are

used directly or scaled according to the POC order of the frames. . . 92

2-20 Implementation of the scaling unit in AMVP. 93

2-21 Cost tree implementation using 1-bit absolute difference (AD) and MV

cost calculation. 95

13

3-1 Inter modes supported by AVC/H.264 and VC-1 standards 100

3-2 MB parallel implementation. Two MBs from each frame is processed

in parallel. 103

3-3 Block diagram of the SAD bypassing scheme. If the SAD between

MBA and MBB is smaller than the threshold, SAD calculations for

MBB is bypassed providing energy savings. 108

3-4 Plot showing energy savings vs. bit-rate increase trade-off for different

threshold values. Sequence is oldtowncross at 1920 x 1080 resolution. 109

3-5 Top level block diagram of the multi-standard motion estimation module. 110

3-6 Block diagram of IM E. 111

3-7 Block diagram of IME for one MB. 111

3-8 Block diagram of fractional motion estimation. 113

3-9 Block diagram of fractional motion estimation for an 8 x 8 block. . . 113

4-1 Block diagram of the multimedia applications SoC. The design employs

600K gates and 1.6Mbits of SRAM in its LI and L2 caches 118

4-2 SEM image of the 28nm high-density (0.12pm2) 6T bit-cell. 119

4-3 Array architecture for the 28nm low-power SRAM design. 120

4-4 Simulation setup for dynamic read margin characterization. 121

4-5 Dynamic read margin simulation results on 0.5V-1.OV voltage range. 122

4-6 (a) Layout snapshot of an SRAM macro with a zoomed-in view of the

local R/W circuitry and (b) area overhead for different cells/BL with

respect to a conventional implementation with 512 cells/BL. 123

4-7 WL voltage boosting circuits used in the design. 124

4-8 Write margin improvement with 1OOmV of WL overdrive. 124

4-9 Sketch of the WL voltage boosting circuit's layout placement with

respect to other blocks. 125

4-10 Differential read path from bit-cell to globalBLs and read access time

improvements done in this design. 126

14

4-11 Read access time distributions for a conventional design with 512 cells/BL

and 50mV sense-amplifier input offset and for this work. 127

4-12 Waveforms of critical signals during a write and read operations. . . . 128

4-13 Top level architecture of the 28nm SRAM test chip. 128

4-14 Die photograph of the 28nm SRAM chip. 129

4-15 Die photograph of the 28nm low-power DSP chip featuring 1.6Mbits

of the 28nm SRAMs described in this section. 130

4-16 Measured performance vs. VDD shmoo plot. 131

4-17 Scope snapshot of clock input and one of the data output bits when

operating at 0.6V . 132

4-18 Physical allocation of two words in column-interleaved and non-column-

interleaved architecture. 133

4-19 Sense-amplifier offset vs. array efficiency with different column-interleaving

ratios. 134

4-20 Schematic illustration of the proposed architecture suitable for column-

interleaving. BL/BLB-ports of four bit-cells are shared in horizon-

tal direction and Column-Line (CL)s are routed in vertical direction.

rowSel selects the active row. 135

4-21 In layout, additional NMOS transistors fit in the bit-cell pitch provid-

ing area efficient implementation. RDWL is used instead of rowSel

which allows shorting of poly-layer between bit-cells and row-select

N M O Ss. 136

4-22 (a) Schematic of three rows and four columns of bit-cells in proposed

architecture and (b) waveforms for important signals during read and

write accesses. RDWL is used for row-select during write operation

and pchArray signal is asserted at the end of each write cycle. 137

4-23 Sense-amplifier offset distribution and two-reference voltage scheme.

Reference levels can be chosen to reduce the offsets of the sense-amplifiers. 138

15

4-24 Effect of coupling to RDBL and REF nodes with different capacitive

divider ratios. Different level of coupling to input transistors alters

sense-amplifier inputs and negate the effect of offset compensation. . . 139

4-25 Die photo of the 128Kbit SRAM test chip fabricated in 45nm CMOS

process. 141

4-26 Measured performance vs. VDD with and without offset reduction.

SRAM performance scales from 450MHz down to 5.8MHz over the

voltage range. 142

4-27 Measured energy vs. VDD ---------------......................... -- 143

5-1 One frame from (a) 2560 x 1600 Traffic sequence and (b) 1920 x 1080

BasketballDrive sequence. Areas with high correlation of pixels are

marked with white rectangles. 147

5-2 Distribution of pixel values from 16 x 16 block average for (a) 2560 x

1600 Traffic sequence and (b) 1920 x 1080 BasketballDrive sequence. 148

5-3 In an SRAM array, sense-amplifier activation time is set by the slowest

bit-cell's read current to create a AVmi on the bit-lines. During this

time, all other cells in the array discharge their bit-lines at a faster rate.150

5-4 Ratio of the 4- cell current to average cell current at different supply

voltages. 151

5-5 PB-RBSA bit-cell topology. 152

5-6 Array architecture for the PB-RBSA SRAM. WWL, RWL0 and RWL1

are routed in horizontal direction and BL/BLB, RBLO/RBL1 and

pred/predB pairs are routed in vertical direction. 153

5-7 The cases when (a) pred is correct and matches the data in the bit-cell

and (b) pred is incorrect. 154

5-8 A straightforward implementation of the sensing network employing

two sense-amplifiers with a global reference voltage, REF. 157

5-9 Offset distribution of M-SA used in this design. ±3o- tail-to-tail offset

distribution is designed to be 1OOmV. 158

16

5-10 The hierarchical sensing network design implemented in this work. E-

SAs are sized to be 3x smaller compared to M-SAs. 159

5-11 Offset distribution of E-SA used in this design. ±3o tail-to-tail off-

set distribution is designed to be 150mV and distribution is skewed

towards negative offsets. 160

5-12 Energy consumed in the sensing network when operating in LP mode

with different cases considered. 160

5-13 Normalized energy consumed in the sensing-network with proposed

hierarchical sensing scheme and with the straightforward M-SA only

schem e. 161

5-14 Predictor generation circuit used in this design. 162

5-15 A scenario where SRAM is filled with blocks of white and black pixels. 163

5-16 Normalized measured power consumption of the PB-RBSA SRAMs

when operating under the scenario described in Figure 5-15. 164

5-17 High level architecture of the test chip fabricated in 65nm low-power

CM O S process. 165

5-18 Die photograph of the 65nm test chip. 166

5-19 Measured energy/access with respect to correct prediction percent-

age at VDD = 0.6V. Energy/access numbers are normalized to en-

ergy/access with 100% correct prediction. HT denotes measured en-

ergy/access in high-throughput mode and 8T denotes measured en-

ergy/access of 8T SRAMs. 167

5-20 Distribution of PB-RBSA SRAM's energy savings with respect to the

8T SRAM for 1100 different video frames with resolutions ranging from

1280 x 720 to 2560 x 1600....... 168

5-21 Measured energy/access numbers for (a) PB-RBSA SRAM and (b) 8T

SRAM normalized to the average energy/access of the 8T SRAMs for

a 416 x 240 video sequence for 150 frames. Red lines show the average

for each SRAM implementation. (c) 40th and (d) 139th frames of the

sequence are also shown. 169

17

5-22 Effect of predictor accuracy on energy/access for the PB-RBSA SRAM. 170

5-23 Measured energy/access with and without sense-amplifier gating at

VDD = 0.6V. Energy/access numbers are normalized to energy/access

with 100% correct prediction. 171

5-24 Measured SRAM performance for the 65nm test chip. 172

18

List of Tables

1.1 Comparison of various fast search algorithms and number of search

points used in them for a search window of ±SR. 32

1.2 Comparison of exhaustive search and a fast search algorithm in terms

of cycle and data requirements. 34

1.3 Comparison of previously published encoder chips. 37

2.1 Comparison of some tools in AVC/H.264 High Profile and next gen-

eration video standard, HEVC. More complex HEVC tools require a

more complex hardware. 50

2.2 Number of candidates checked for HM's fast algorithm. Worst and

best case numbers are provided. 57

2.3 Specifications for a possible HEVC encoder using the motion estima-

tion design in this work. The number of available cycles/LCU is 3292. 62

2.4 Number of calculations per cycle is constant between engines support-

ing different block sizes. 63

2.5 On-chip reference buffer size needed for each engine to support a search

range of ±64 in each direction for a single reference frame. 64

2.6 Effect of search range window size on coding efficiency. Increases in

bit-rate are given with respect to HM-3.0. Single reference frames in

both directions are used. 65

2.7 On- and off-chip bandwidth requirement for each engine in Figure 2-4

with a search range of ±64. All numbers are in GB/s. 66

19

2.8 Simulation results for the coding efficiency change after the proposed

search algorithm modifications with respect to HM-3.0 (configuration

5). 73

2.9 Area comparison of shared and separate reference buffers. Estimates

are based on a 65nm CMOS technology. 74

2.10 Maximum and average off-chip bandwidth requirement for different

block sizes (search range is ±64) for supporting 4K x 2K at 30fps. . 75

2.11 Simulation results for the coding efficiency after the search algorithm

and shared search window modifications with respect to HM-3.0 (con-

figuration # 5). 77

2.12 Simulation results for the coding efficiency change after the search al-

gorithm, shared search window and pre-fetching modifications with

respect to HM-3.0 (configuration #5). 79

2.13 Simulation results for the coding efficiency change after the search algo-

rithm, shared search window, pre-fetching and limiting the movement

of search range center by N = 16 with respect to HM-3.0 (configuration

5). 8 3

2.14 Simulation results of the coding efficiency change with the proposed

changes in AMVP algorithm with respect to HM-3.0. 88

2.15 Comparison of configurations #3, #5, #7, #9 and #11 to the main

anchor (configuration #1 in Figure 2-6) in terms of power, memory

area, bandwidth and coding efficiency. 89

2.16 Comparison of HM-3.0 and proposed AMVP algorithms in hardware

implementation in number of gates. 94

2.17 Comparison of interpolation filters used in AVC/H.264, VC-1 and

HEVC standards. These filters are implemented with bit-wise shifts

and additions. 95

3.1 Comparison of H.264/AVC and VC-1 standards for supported features

related to motion estimation . 101

20

3.2 Specifications for the multi-standard encoder project. 102

3.3 GOP structure used in this work. 104

3.4 Processing order of frames. After the initial I-frame and first P-frame,

10 MBs from five frames are motion searched in parallel. 104

3.5 Search algorithm experiment results for twelve different 1920 x 1080

resolution sequences. For most sequences, proposed algorithm provides

results that is withing the bit-rate increase budget of 25%. 107

3.6 Area breakdown of IME part. 112

3.7 Area breakdown of FME part. 114

4.1 Summary of the 28nm test chip. 131

4.2 Summary of the 45nm test chip. 140

5.1 Summary of the 65nm PB-RBSA test chip. 166

A. 1 Standard set of sequences used in HEVC. 180

21

22

Acronyms

SRAM Static Random Access Memories

IC integrated circuits

HEVC High-Efficiency Video Coding

JCT-VC joint-collaborative team on video coding

SAD sum-of-absolute-differences

AD absolute-differences

MV motion vector

TSS three-step-search

CS Cross-search

FSS four-step-search

PMRME parallel multi-resolution motion estimation

IME Integer motion estimation

FME Fractional motion estimation

SoC system-on-chip

DIBL drain induced barrier lowering

6T six-transistor

23

8T eight-transistor

MSB most-significant-bits

LSB least-significant-bits

PB-RBSA Prediction-based reduced bit-line switching activity

CCE cost and coding efficient

AMVP advanced motion vector prediction

MVP motion vector predictor

LCU largest coding unit

SCU smallest coding unit

CU coding unit

PU prediction unit

AMP asymmetric motion partitions

MB macro-block

M-SA main sense-amplifiers

E-SA Early decision sense-amplifier

SNM Static Noise Margin

24

Chapter 1

Introduction

Continuous scaling of process technologies driven by Moore's law [1] has resulted

in integrating more transistors and more functionality on a single chip. This ad-

vancement has led to a wide range of new applications including mobile multimedia,

biomedical monitoring and wireless sensor nodes. In these applications, the source of

available energy is generally in the form of a battery and computationally demanding

applications can cause the battery to be depleted quickly. However, very frequent

charge cycles (i.e. amount of time between pre-charging of a battery) can cause these

applications to be impractical. Hence, energy efficiency of circuits that are running

from a limited energy supply is an important requirement. Moreover, energy harvest-

ing is an emerging area that can lead to a very wide range of new applications and

revolutionize the world. However, power harvested from the ambient is generally on

the orders of micro-watts [2], requiring the circuits to be extremely energy efficient.

Video is becoming an indispensable feature for consumers on portable devices.

With the integration of better optical lenses and more processing power, today's mo-

bile devices (e.g. iPhone 4S) are capable of recording video at resolutions as high

as 1920 x 1080 (full-HD) at a frame rate of 30fps [3]. In order to reduce storage

memory requirements and the bandwidth to transfer video content, video encoding is

performed during recording. Although recent video standards have provided signif-

icant improvement in compression efficiency, this comes at the expense of increased

computational complexity and consequently increased power consumption resulting

25

in shorter battery life. Hence, portable devices can benefit significantly from energy-

efficient implementations of video codecs.

Static Random Access Memories (SRAM) are the most common type of embedded

memories and one of the most critical building blocks in modern system-on-chip

(SoC) designs since a larger fraction of chip area is allocated for on-chip memories

in modern integrated circuits (IC). SRAMs possess two important features that

make them amenable to implementation in deep sub-micron processes [4]. First,

SRAMs have a very high transistor density. This is due to the fact that the regular

structure of memories allows photo-lithographic rules to be more aggressive. Secondly,

despite the high transistor density, memories have a relatively low activity factor

as only a small portion of a memory (e.g. a single row of data) is accessed every

cycle. Hence, the power density of SRAMs is smaller than logic. As a result of

these advantageous features, the work in [4] estimated that the amount of embedded

memories will continuously increase over the years. This has actually been true over

the course of the years as shown in Figure 1-1 [5] and in today's micro-processors, the

total size of on-chip caches can be as high as 54MB on a single die [6]. Consequently,

SRAMs account for a large fraction of the total power consumption of most SoCs.

12 4.....

44

45 65 90 130 180
Process Technology [nm]

Figure 1-1: Total cache size in Intel processors for different process nodes.

One of the most important and power consuming tools in video encoding is motion

26

estimation. Through motion estimation, temporal redundancy in video data can be

extracted and coding efficiency can be improved. Motion estimation requires a large

number of computations and a large size of data to be stored on-chip for subsequent

accesses. Hence, the motion estimation process results in a large activity on the

chip and utilizes large blocks of SRAMs. These SRAMs are frequently accessed and

accounts for a large portion of power consumption.

In this thesis, energy efficiency of a hardware block is considered at three differ-

ent levels of the design: starting at algorithms, then at the architectural level and

finally at transistor-level circuits. For motion estimation, this thesis shows that low-

power algorithms and architectures that are suitable for hardware implementation

can significantly reduce power consumption at the expense of a small loss in coding

efficiency. Moreover, low-power SRAM designs employing circuit techniques for low

voltage operation as well as application-specific SRAM design are considered in this

thesis as means to improve energy-efficiency at the circuit level.

This chapter begins by briefly explaining video coding standards and motion es-

timation in Section 1.1. Then Section 1.2 talks about voltage scaling which is an

effective method of reducing energy consumption of circuits. Finally, challenges asso-

ciated with low voltage and low-power SRAM design and previous work in this area

will be discussed in Section 1.3 and Section 1.4 respectively.

1.1 Recent Video Compression Standards and Mo-

tion Estimation

1.1.1 Recent Video Compression Standards

During the past decade, the amount of video content available on the Internet has

grown significantly because of websites like YouTube [7] that allow users to share

videos. With the introduction of 3G/4G mobile broadband technology, consumers

now access the Internet through portable devices and mobile networks. Figure 1-2

plots monthly global mobile data traffic forecasts for the next three years [8]. First, the

27

mobile data traffic is increasing at a rapid rate and the global data traffic is expected

to increase by 4x from 2012 to 2015. Secondly and more importantly, this increase

is mainly attributed to the significant increase of the video content. Specifically, in

2015, video is expected to account for 70% of the total mobile data traffic. With the

introduction of portable devices supporting video capture at higher resolutions and

frame-rates, the weight of video can be expected to continue to increase in the next

decade. Video coding, in this context, is crucial for lowering the transmission costs

and data storage for portable electronics.

12.0

10.
8.0

m Other
& 6.0 N File sharing
to

(Data
D 4.0 - - -- -

: Video

* 2.0C
0

0.0
2010 2011 2012 2013 2014 2015

Year

Figure 1-2: Monthly global mobile data traffic forecast. Traffic is given in exabytes
(1 Exabyte=10 6TB).

Recent video standards such as AVC/H.264 and VC-1 provided significant coding

efficiency gain over the previous standards (50% over MPEG-2 [9]) and is widely used

in mobile devices [3]. However, the increase in efficiency is due to more complex

algorithms which result in elevated complexity and power consumption in hardware

implementation. For example, AVC/H.264 has 4x more hardware complexity with

respect to MPEG-2 [9]. Figure 1-3 shows the change of relative complexity of a video

processing core in a mobile processor with respect to a video core supporting MPEG4

standard with QCIF resolution and 30fps frame rate. Over the years, video core is

adapted to meet increased demands [10]. This figure reflects the increased complexity

due to

28

. more advanced video coding standards and

* the necessity to employ a more dedicated hardware for video coding to meet

performance requirements.

By the year 2020, the complexity of a video core is expected to be 10x larger

than today's demands. This is especially problematic for battery-operated portable

devices. Consequently, the implementation of video cores in hardware is very critical

for the overall power consumption of battery-operated applications.

Energy-constrained systems require careful and joint selection of solutions at the

algorithm, architecture and circuit levels. In other words, specific algorithms should

be implemented with suitable architectures and circuits for maximum energy savings

[11]. For example, a low-power algorithm can be designed to reduce the number of

computations and memory accesses. Then this algorithm can be implemented in a

parallelizable architecture enabling voltage scaling. Furthermore, at the circuit level,

specific topologies for logic and memories can be chosen to further reduce switching

activity and energy/access numbers. Hence, algorithms, architectures and circuits

should be considered jointly and trade-offs associated with hardware implementation

should also be included in the algorithm development stage.

High-Efficiency Video Coding (HEVC) is a new video compression standard being

standardized by the joint-collaborative team on video coding (JCT-VC) [12]. HEVC

has a design goal of achieving a 50% coding efficiency gain over AVC/H.264 High

Profile. For this purpose, several coding efficiency enhancement tools have been

proposed for this new standard.

During the adoption process of the proposed tools, hardware implementation costs

in terms of area, power consumption and data bandwidth are also considered. Hence,

algorithms are evaluated not only based on their coding efficiency performance but

also by taking their hardware implementability into account. This allows circuit

designers to be involved in the definition process of the standard and help with the

co-optimization of algorithms, architectures and circuits discussed above.

29

10000 ---

.1000-- - - -

100

Year

Figure 1-3: Relative complexity of video core over the years for a mobile applications
processor. From 2012 to 2020, video core complexity is expected to increase by 10 x.

1.1.2 Motion Estimation in Recent Video Compression Stan-

dards

Motion estimation is the process of determining the movement of objects within a

sequence of image frames [13]. Through motion estimation , temporal redundancy

between frames is extracted and a group of pixels is represented by its displacement

with respect to a previously coded frame plus some possible residue. This results in

significant reduction of bits to represent a group of pixels and hence provide significant

coding efficiency improvement.

Finding the movement of objects involves a search performed on a pre-defined

searching range as shown in Figure 1-4. In recent video standards, block-based motion

estimation is used where a frame is divided into blocks of pixels and motion search is

performed for these blocks. Motion search can be done exhaustively by checking every

possible candidate or it can be done with a faster algorithm which goes through a

smaller subset of possible candidates. In hardware implementations , sum-of-absolute-

differences (SAD) of co-located pixels between the current block of pixels (cig) and

the candidate block's pixels (rig) is used as the cost metric. For a block of N x N

pixels, SAD is given by:

30

N-1 N-1

SAD = ZZ |ci, - riI
i=0 j=0

Based on this metric, a "best-match" is determined

best-matching block from the current block is coded as

Reterence Frame GUrred

Searching Ranqe rTT

(1.1)

and the displacement of the

the motion vector (MV).

tgrarne

Best Match i- I
time

Figure 1-4: Block-based motion estimation. Best-matching block for the current
block is searched within a searching range and the displacement of the "best-match"
is given as the MV.

In hardware implementations, fast search algorithms are widely used. These algo-

rithms are extremely critical for the complexity and the area of hardware, its power

consumption and lastly its memory bandwidth requirement. Moreover, the search al-

gorithm's performance also affects the coding efficiency depending on how accurately

the algorithm finds the best possible MV. In recent publications, more elaborate

search algorithms are also proposed. An overview of previous work on fast search

algorithms will be provided in Section 1.1.3.

1.1.3 Previous Work on Fast Search Algorithms

Since the introduction of block-based motion estimation in video standards, fast

search algorithms have been widely studied. Although exhaustive search is guaran-

teed to find a global minimum on a pre-defined set of points, its complexity increases

quadratically with the size of the search window.

31

Fast Search Method Number of Search Points

Exhaustive Search (2 x SR + 1)2

[14] 1+8x log 2SR

[15] 9+8x log 2SR

[16] 2+ 7 x log2SR

[17] 1+8 x log 2SR

[18] 3+2 x SR

[22] 5+4x log 2SR

[19] 17 + 5 x log2i

Table 1.1: Comparison of various fast search algorithms and number of search points
used in them for a search window of ±SR.

One of the earliest and most famous search algorithms is three-step-search (TSS)

[14]. In TSS, 8 positions along the edges of a square surrounding the search center

are checked and compared against the search center. In every step, side length of the

square is halved and search center is moved to the best position from the previous

step. For i7 search area, this algorithm finishes in three steps.

Although TSS is simple and effective, it lacks a bias for the initial starting point.

"New" TSS algorithm [15] addresses this issue and provides a center bias of the initial

search center. The work in [16] provides a logarithmic search pattern whereas works

in [17] and [18] use directional methods to reduce the number of computations. Cross-

search (CS) is another example which uses a cross-shaped search pattern in its steps.

A four-step-search (FSS) is proposed in [19] where step sizes stay the same unless the

search center is the best position. Otherwise, it is halved. Lastly, the works in [20]

and [21] are also widely-used fast search algorithms using diamond and hexagonal

search patterns.

Recent work focused on efficiency of hardware implementation of the search algo-

rithm. Supporting higher video resolutions up to Quad-HD (3840 x 2160) resulted in

the active power becoming one of the most pronounced problems in video encoders.

Hence, computational complexity and parallelizable implementation for a throughput

constraint are becoming important factors in the selection of fast search algorithms.

32

Moreover, variable block sizes supported by recent standards require calculation of

MVs for sub-block partitions. So algorithm considerations on efficient implementabil-

ity for variable block sizes are also important [23, 24].

Table 1.1 demonstrates the number of search points for different search algorithms

[22]. In terms of coding efficiency, these algorithms provide similar results. Although

the number of search points provided in this table is an important metric to quantify

complexity, it cannot provide a good estimation alone. For example, there is a strong

dependency between the outcome of each step and its next step in TSS. Although

the number of search points is small, this algorithm cannot be easily parallelized

because of the dependency between steps. Hence, when compared to a hardware-

efficient search algorithm checking the same number of search points with the same

throughput constraint, TSS requires

" a higher operating frequency for the same hardware area or

* a larger area for the same frequency of operation.

A recent example is the work in [25] which presents an algorithm and suitable

architecture for hardware implementation of predict hexagon search and claims nearly

4x reduction in the frequency of operations for the same throughput constraint.

Another hardware-efficient example is from the work in [26] which uses parallel multi-

resolution motion estimation (PMRME) algorithm suitable for AVC/H.264 encoder

implementation. The work in [27] implements the PMRME algorithm in a 1080p

AVC/H.264 video encoder chip.

1.1.4 Hardware Implementation of Motion Estimation

A simple hardware block to perform a motion search is considered in Figure 1-5.

Current block's size is N x N and the search range is tSR in each direction. M

candidates are evaluated every cycle and compared to bestCost. At the end of the

search, the candidate with the smallest cost (bestCost) is determined. On the search

range, the number of possible candidates in each direction is 2 x SR + 1 and the total

33

number of candidates is (2 x SR + 1)2 as shown in Table 1.2. For each candidate,
N x N pixels are input to the hardware block.

Figure 1-5: Block diagram of a simple hardware block performing motion search.

Exhaustive Search Fast Search (TSS)

Searching Range Size ±SR iSR
Num. of Candidates (2 x SR + 1)2 1+8 x log2SR

Num. of Parallel Comp. M M
Num. of Cycles (2 x SR + 1)2 /M 25/M

Total Cand. Pixels (No reuse) N 2 x (2 x SR + 1)2 N 2 x 25

Table 1.2: Comparison of exhaustive search and a fast search algorithm in terms of
cycle and data requirements.

For exhaustive search, each candidate is evaluated and it takes (2 x SR + 1)2/M

cycles to complete the search. Assuming no data is reused between candidates, total

data requirement is N 2 x (2 x SR + 1)2 pixels.

Table 1.2 also considers TSS. A total of 1+8 x log2SR candidates are considered

for TSS, reducing the data and cycle requirements significantly. Obviously, exhaustive

search is guaranteed to find the global minimum on a searching range and fast search

algorithms such as TSS can converge to a local minimum. This leads to a trade-

off between the number of computations and coding efficiency. Specifically, with

increasing number of computations, a search engine can find a better match and can

34

potentially improve coding efficiency. For many applications, coding efficiency is the

main concern and more important than power consumption. For other applications,

power consumption can be very critical. Hence, search algorithm design requires

careful consideration of design trade-offs and is a critical part of a motion estimation

design.

For simplicity, the example provided above does not consider some important con-

cepts such as data reuse between candidates. In actual hardware implementations,

algorithms are designed to allow data to be used across various candidates to re-

duce data requirements. In this context, algorithms with regular search patterns are

more advantageous and they are easier to implement in hardware. For example for

exhaustive search, a line of candidates can be evaluated at once. This can reduce

the data requirement by a factor of roughly M. Fast search algorithms with very

irregular search patterns can be more power consuming in hardware implementation

due to increased bandwidth requirements. Hence, the number of candidates as well

as bandwidth should be considered together for hardware suitable search algorithm

development.

Recent standards also support fractional pixel accurate MVs. Fractional motion

estimation (FME) is the process of interpolating the reference frame for sub-pixel

locations and performing a motion search on the interpolated data. AVC/H.264,

VC-1 and HEVC support refinement down to quarter-pixel accuracy. Quarter pixel

accurate motion vectors can provide bit-rate improvements up to 30% except for very

low bit-rate [28]. In FME, pixels from the original frame are first used to calculate

half-pixel locations through an FIR filter. Then, original pixels and interpolated half-

pixel data are used to calculate the quarter-pixel data. The length of the FIR filter

generally determines how complex the FME process is.

Motion estimation can be done in a backward direction where the reference frame(s)

is a past frame in the display order, or in a forward direction where the reference

frame(s) is a future frame(s) in the display order. Frames allowing only backward

search are called P-frames and frames allowing motion search in both directions are

called B-frames. Supporting B-frames is critical for coding efficiency but this frame

35

Integer Motion Estimation Fractional Motion Estimation
rA

B rrentModes Cos

-- costs -MV
Reference

Blocks.

Figure 1-6: Block diagram of a motion estimation engine in hardware. IME and FME
parts are shown.

type roughly doubles the hardware requirement for the same throughput constraint

due to separate searches in forward and backward directions.

Figure 1-6 shows a block diagram of a motion estimation engine in hardware. Frac-

tional motion estimation (FME) follows Integer motion estimation (IME) as shown in

this figure. A motion search is performed in IME and then a few best candidates are

selected and a fractional refinement is performed in the FME part. This refinement

is done around the MV found in IME part. Reference blocks are generally stored in

an on-chip reference pixel buffer which can be joint or separate for IME and FME.

Table 1.3 lists previous encoder chips in literature and compares their resolution,

frame-rate, total area, motion estimation area, operating frequency, power and pro-

cess technology. It should be noted that motion estimation accounts for at least half

of the total chip area. Moreover, as the resolution increased over the years, oper-

ating frequencies also increased. Hence, despite the effect of process scaling, power

consumption of encoder chips increased over the years. Thus, designing a low-power

motion estimation module is critical for the overall performance of an encoder.

1.2 Voltage Scaling and Low Voltage Operation

Dynamic voltage scaling is an effective method of reducing energy consumption of

circuits under a time varying performance constraint [32, 33]. Specifically, lowering

36

Work Standard Resolution Rate Area ME Area Freq. Power Process

fps mm 2 % MHz mW ym

[29] H.264/AVC 1280x720 30 31.7 80 108 785 0.18

[30] MPEG4 640x480 30 7.7 55 28.5 18 0.18

[31] H.264/AVC 1280x720 30 18.5 54 108 183 0.13

[27] H.264/AVC 1920x1080 30 10.0 70 145 242 0.13

Table 1.3: Comparison of previously published encoder chips.

the supply voltage (VDD) of the devices results in lower energy per operation at the

expense of slower performance.

It has been shown that for most digital circuits, the minimum energy point lies

in the sub-threshold region (VDD < VT) where devices are operated in weak inversion

[34, 35]. Although transistor drive currents become weaker and circuits run at slower

speeds at lower voltages, many applications have time-varying throughput constraints

and are compatible with dynamic voltage scaling. Moreover, hardware parallelism can

provide the necessary throughput while circuits are running at a lower voltage and

at a lower speed [36].

The work in [37] is an earlier example of operation in the deep sub-VT region. This

work demonstrates an FFT processor operating down to 180mV. Other examples of

sub-threshold work includes the works in [38], [39], [40] and [41].

However, the performance of the circuits in the sub-threshold region is on the

orders of kHz which might not be suitable for various applications. Hence, recent

work has focused on operating circuits at a voltage that is slightly above the VT of the

devices, at - 500mV for most low-power processes, to balance the trade-off between

energy efficiency and performance. An example is the work in [42] which demonstrates

a low-power DSP in 28nm CMOS technology that can operate from 0.6V to 1.OV.

Similarly, the work in [43] demonstrates a voltage scalable microprocessor SoC that

can operate from 0.4V to 1.2V range. The work in [44] demonstrates the dynamic

voltage and frequency scaling techniques on a commercial product targeted for mobile

SoCs.

Voltage scaling has the additional benefit of reducing the leakage power consump-

37

tion of digital circuits. Due to the drain induced barrier lowering (DIBL) effect

[45] which is highly pronounced in deeply-scaled CMOS technologies, voltage scaling

provides exponential savings in leakage power. Figure 1-7 shows the effect of volt-

age scaling on performance, leakage power and energy/access for a 64Kbit SRAM

macro in 65nm CMOS [46]. First, leakage power is reduced by more than 50X over

the voltage range. This emphasizes the importance of voltage scaling in SRAM-rich

applications where leakage power can be significant. Next, performance degrades

gradually as VDD scales down from strong inversion to moderate inversion. However,

at 0.5V, transistors start to enter into the sub-threshold region where performance

rolls off exponentially. Finally, energy/access improves monotonically as VDD scales

down until it reaches a minimum at 400mV which is know as the minimum energy

point [47]. Beyond this point, performance degradation causes the leakage power

to be integrated over very long access periods and makes leakage energy dominant.

Leakage, performance and energy/access plots show that operating at around VDD

=0.5V can provide reasonable performance and significant energy savings.

For real-time video applications, there is a throughput constraint. For video de-

coding, for example, a certain number of frames needs to be processed and displayed

every second. Hence, frame-rate and resolution impose the number of pixels that

need to be processed per second. As discussed above, hardware parallelism can pro-

vide high throughput while operating at a lower voltage. The work in [48] proposes

a highly parallelized H.264 baseline decoder operating at 0.7V while decoding 720p

frames at 30fps and reports 1OX power savings compared to other H.264 baseline

video decoders [49, 50].

1.3 Low-Power SRAM Design

SRAMs are the most common type of embedded memories in integrated circuits. As

explained at the beginning of this chapter, SRAMs possess very high transistor density

and SRAM design decisions are often driven by area efficiency. Hence, conventional

SRAM implementations employ small but effective circuits targeting and optimized

38

Cn q n r ao os q .-i N

VDD [VI

(a)

+E activ e
-96E leak
+ Etotal

0.3 0.4 0.5 0.6 0.7 0.8

VD[V]

(b)

Figure 1-7: (a) Performance and leakage power and (b) energy/access vs.
Leakage power scales more than 50X from 1.2V to 0.25V and energy/access
a minimum around 400mV while operating at 500kHz.

VDD -
reaches

to full-VDD operation.

Transistor variation occurs in two different forms: global and local variation [51].

Global variation affects all devices of the same type (e.g. NMOS or PMOS) the same

way. Local variation, on the other hand, are the mismatches affecting each transistor

on a die differently which can occur due to lithographic effects or non-uniform concen-

39

10 3

2

ai10U

10
C

E 10'
0
V

S10-1

10~ -2
CS

25

20

15

10

10
3

102

10

0

10 e

10 @

-J

1 -

................. t 2 0 O M H z ::::-- -..............
..........

.. :..
.................

................
............

......
...........-. :. ...- - ::::::

................ -
.................sox

.........

.....
................. -

....
.............
...........

.......... - 1 -411- Performance
2 0 k H ::::::": ? Leakage Power.........
..............

In

C
U 5

0

I

BLB

(a)

BL -3 Y-- BLB- RBL

(b)

Figure 1-8: (a) Schematic of a six-transistor (6T) SRAM bit-cell and (b) schematic

of an eight-transistor (8T) SRAM bit-cell. 8T bit-cell is proposed as a low voltage

alternative to the conventional 6T cell.

tration of doping atoms in the channel area (random dopant fluctuation). Different

sources of variation can be lumped into a simpler single parameter that implements

a change in threshold voltage [52].

Conventional six-transistor (6T) SRAM bit-cell (Figure 1-8-a) is a ratioed circuit.

In other words, correct operation of this topology depends on relative strength of its

devices. SRAMs are often designed with minimum-size devices to maximize transistor

density and consequently their operation is severely affected by process variation.

At low voltage levels in the sub-VT region of operation, drive strength of a tran-

sistor is:

Isu~o6VGS-VtA-7VDS (1 - th
Isob = I" e nyth (1 _ e vts)

where VGS (VDD) is the gate-source voltage, V is the threshold voltage, 1, is from

the leakage current model, VDS (equal to VDD) is the drain-source voltage, n is the

40

BL

sub-threshold slope factor, q is the drain induced barrier lowering factor and Vth is the

thermal voltage. From this equation, it can be seen that a change in the transistor's

threshold voltage has an exponential effect on the transistor current. Hence, transistor

mismatches are exacerbated at low voltages causing functional failures for digital

circuits.

As the effect of transistor variation is exacerbated at low voltages, operating

SRAMs at lower VDD is a challenging design problem. Since a memory consists of a

large number of bit-cells, sense-amplifiers and row/column drivers, it is essential to

consider the worst-case process, voltage and temperature conditions on these circuits

to ensure robust operation. Static Noise Margin (SNM) is a metric used to quantify

the stability of a bit-cell under retention state and read/write conditions [53]. For

large memories with millions of bits, it is not uncommon to consider 5 - 6- tails of

the SNM distributions to ensure robust operation.

Previous research has demonstrated different bit-cell topologies and peripheral

assist circuits to enable low voltage operation in SRAMs. An eight-transistor (8T)

bit-cell design (Figure 1-8-b) is proposed in [54] and has attracted significant attention

from academia and industry.

Along with different bit-cell topologies, peripheral circuits play an important role

in SRAM functionality, performance and power. Variations in the bit-cell can be

opposed through assisting the bit-cell by various techniques such as voltage boosting

or redundancy. Sense-amplifiers which are used to detect voltage changes on bit-lines,

for instance, is a key component in SRAMs and should be carefully designed. This

is because i) sense-amplifiers can limit the low voltage operation and ii) they have a

significant effect on power consumption and speed of the memory.

Although voltage scaling is an effective method of reducing energy/access, application-

specific features of a target application should also be considered to further reduce

energy/access. For example, the work in [55] uses two different memories for most-

significant-bits (MSB) and least-significant-bits (LSB) of pixels in a motion estimation

engine. Specifically, MSBs of pixels are stored in an 8T SRAM that is suitable for low

voltage operation. In contrast, LSBs of pixels are stored in a 6T design which is prone

41

to errors at low voltages. However, these errors in LSBs are much less important and

barely affect the results of the motion search. Hence, instead of using 8T SRAMs for

all bits of a pixel, 6T SRAMs can be used for a few LSB bits and area savings can be

provided.

The idea discussed above is suitable for motion estimation as data accessed from

the memory is not required to be exact and a few bit errors are tolerable. However,

the same idea cannot be applicable for the instruction caches of a microprocessor

where bit-errors are much more critical. Since different applications have different

requirements, considering the target application at the design stage can provide a

flexibility for the designer to explore different opportunities. Specifically, considering

statistics of signals and data-dependency in SRAM design can provide significant

energy/access savings.

1.4 Previous Work on Low-Power SRAM Design

6T bit-cell has been the workhorse in modern SRAMs because of its simple design

and area-efficient layout implementation. The "thin cell" layout [56] of 6T bit-cell is

a lithography-friendly implementation with transistor gates running in one direction

in the cell.

However, at low voltages, 6T cell suffers from functional problems where a read

operation can alter the state of the bit-cell or a write operation cannot overwrite the

previous state of the bit-cell. Moreover, degradation of ION1OFF ratio of devices

at low voltages introduces a challenge for the sensing network to distinguish a logic

"0" from a logic "1". Therefore, conventional designs employing 6T bit-cells are not

suitable for low voltage operation and recent work has focused on alternative bit-cell

topologies, peripheral assist circuits and novel sensing techniques.

1.4.1 Alternative Bit-cell Topologies

One way of achieving low voltage operation is designing 6T bit-cell asymmetrically.

The work in [57] uses a unit-3-ratio 6T cell to achieve operation down to 0.7V in

42

45nm CMOS. The work in [58] also uses an asymmetrical 6T bit-cell and supports it

with assist circuits for operation down to 200mV in 0.13p-tm CMOS process.

The work in [59] proposes a 7T bit-cell. The extra NMOS transistor is used

to break the positive feedback between the latch composed of cross-coupled inverters

during a read operation. Consequently, this additional transistor makes the cell "read

margin free". In order to maximize area utilization with an asymmetrical bit-cell

topology, cell layout is designed to be L-shaped. Then space between the cells is used

for the sense-amplifier. This creative layout implementation limits the area overhead

to 11%.

An 8T SRAM cell (Figure 1-8-b) is proposed in [54] and has been used in many

SRAM designs [60, 61, 62, 63]. 8T cell uses two extra pull-down devices to replicate

the pull-down path of the 6T cell. This extra part is called "read-buffer" since it is

used for read operations.

A read operation is performed through RBL and RWL ports of this bit-cell whereas

a write operation is performed through BL/BLB pair and WWL. During a read

operation, internal storage nodes are decoupled from the read-buffer. Hence read

stability problem does not exist in the 8T topology. However, it should be noted that

read stability problem can be eliminated in 8T designs if column-interleaved is not

used in the array. This problem and a proposed solution will be discussed in Section

4.3.

One major drawback of the 8T design is its area overhead as area efficiency is one

of the most important considerations in SRAM design. Figure 1-9 shows previously

published 6T and 8T bit-cell area between 2004-2010 on 90nm down to 32nm CMOS

process. From Figure 1-9, it can be seen that 8T bit-cell has 35-40% larger cell area

compared to the 6T bit-cell.

Other previous work proposes 10T SRAM cells operational in sub-VT region ([64,

65, 66]). The works in [64, 65] use four extra transistors to address the sub-VT

functionality problems in the read-buffer. The area overhead of 10T bit-cells over 6T

bit-cell is even larger due to additional transistors.

43

E8T

.1

0190 65 45 40 32 28

Process Node [nm]

Figure 1-9: 6T and 8T bit-cell area from previously published designs from years
2004-2010. Designs are from various CMOS technologies from 90nm down to 32nm.

1.4.2 Row-wise and Column-wise Assist Circuits

Although different cell topologies enable low voltage operation, peripheral assist cir-

cuits are often needed to complement low voltage functionality of the bit-cell.

One of the most widely used methods to assist a write operation is boosting or

under-driving specific voltages in the design to improve or degrade driving strength of

transistors with respect to each other. Boosting the supply voltage results in a higher

driving strength. Moreover, in or close to sub-VT operating range, the dependency of

transistor's driving strength on gate voltage is exponential. Hence, altering the volt-

age of transistors actively during write operation can provide significant improvement

of margins.

Earlier examples of row-by-row power supply scheme are [67], [68] and [69]. The

designs in [64] and [70] also use row-by-row VDD , with [64] floating the virtual supply

node and [70] actively pulling it down during a write operation.

Alternatively, the work in [71] uses a column-wise approach and modulates the

supply voltage of active columns during a write operation to ensure successful over-

writing of stored data in the bit-cell. The work in [72] also uses a column-wise scheme

where the accessed columns' supply voltage is floated during write accesses.

44

The work in [63] uses a row-wise write assist circuit where word-lines are boosted

to improve write-ability of bit-cells. The work in [73] uses a different method and

proposes under-driving of the bit-lines below the ground level for better write-ability.

Boosting and under-driving signals require an additional power supply or a voltage

boosting circuit employing a capacitor. Both approaches result in area overhead but

this overhead can be kept to a minimum by careful design. Lastly, [74] uses an on-chip

monitoring circuit to set WL voltage that balances write-ability and read-disturbance

for a 6T design to balance read and write failures.

1.4.3 Sensing Topologies

In addition to new bit-cell topologies and peripheral assist circuits, novel sensing

circuitry designs further support low voltage operation.

One major difference between 6T and 8T designs is that the former uses differential

sensing whereas the latter uses single-ended sensing. The work in [75] provides a

comparison of differential and single-ended sensing schemes in SRAMs.

The work in [70] uses sense-amplifier redundancy. By employing a second sense-

amplifier for every column and a calibration scheme that runs at the start-up, sense-

amplifier with smaller offset can be selected and used in the SRAM operation. Al-

though introducing a second sense-amplifier introduces an area overhead, the size of

the sense-amplifiers can be chosen to be small as redundancy will improve probability

of failure.

Another work in [76] proposes a regenerative sensing scheme where a small capac-

itor is used on the signal path to decouple the DC component of the bit-line signal.

Amplification of the small signal voltage that is developing on the bit-lines is done

through an inverter that is biased to its high gain point.

StrongARM latch type sense-amplifiers ([77]) are widely used in SRAMs. The

work in [78] provides an analysis of speed and yield optimization of a similar sense-

amplifier structure and claims that the common-mode of the input signals results

in an improvement of the sense-amplifier offset. The work in [79] provides an offset

and delay analysis for a similar topology structure and analyze the effect of slew-

45

rate of the enable signal on the speed of the sense-amplifier. It should be noted

that previous work focused on design time optimizations on sense-amplifier offset in

SRAMs but a run-time scheme measuring and compensating sense-amplifier offsets

can be significantly beneficial.

1.5 Thesis Contributions

This thesis focuses on hardware-oriented algorithm and architecture development for

motion estimation and provides a hardware implementation cost vs. coding efficiency

trade-off analysis. It also explores low-power SRAM design techniques with two

different approaches. First, low voltage SRAM design is considered and area-efficient

circuit techniques are developed for 6T and 8T bit-cell based designs. Secondly,

an application-specific SRAM is designed for motion estimation by considering the

specific features of the input data and access patterns to the SRAMs. Statistics of

storage data are incorporated into circuit design techniques to provide data-dependent

transition probabilities on critical signals in the array to lower energy/access for

SRAMs.

The main contributions in this thesis include:

1. HEVC Motion Estimation Trade-Offs.

In Chapter 2, this thesis focuses on hardware cost vs. coding efficiency trade-

offs for the next generation video coding standard, HEVC. A methodology is

developed to quantify hardware area in terms of core area, on-chip memory

area, on-chip memory bandwidth and off-chip memory bandwidth. A scatter

plot technique is used to compare different motion estimation configurations

based on their hardware cost and coding efficiency. Based on this analysis,

architecture decisions are made to reduce hardware area with minimum coding

efficiency loss. Moreover, hardware-oriented search algorithms are developed to

further reduce implementation costs [80, 811. A final design which is efficient in

terms of cost and coding performance is implemented at the HDL level. Lastly,

a hardware-oriented advanced motion vector prediction (AMVP) algorithm is

46

developed to reduce hardware implementation costs [82]. When compared to

the original implementation, our proposed algorithm reduces area by 2x while

providing the same coding efficiency. The proposed algorithm is adopted to the

HEVC standard by the standards committee.

AMVP algorithm development was done in collaboration with engineers from

Texas Instruments (Minhua Zhou and Vivienne Sze).

2. Highly-Parallel Multi-Standard Motion Estimation Design.

Chapter 3 focuses on a highly-parallel motion estimation design targeting ultra-

low voltage operation while supporting 4K x 2K video resolution. Frame and

macro-block parallel processing are implemented for this work to meet the high

throughput constraint while running at a modest 25MHz frequency. Suitable

algorithms and architectures are developed and implemented for this highly-

parallel design. Moreover, hardware reconfigurability is used in the design to

maximize hardware sharing between two supported standards (AVC/H.264 and

VC-1).

A post-doctoral researcher and two graduate students were involved in the de-

sign of the encoder and I was responsible for the motion estimation part.

3. Low-Power and Low Voltage SRAM Design.

In Chapter 4, two voltage scalable SRAM designs are presented in deep-submicron

CMOS process technologies. The first design demonstrated that using a high-

density 6T bit-cell with area-efficient peripheral assist circuits can provide op-

eration down to 0.6V in 28nm CMOS technology. Short local bit-lines, voltage

boosting and low voltage oriented read path optimization ideas are developed

while minimizing the area overhead associated with them. A prototype test

chip fabricated in 28nm CMOS technology achieves functionality down to 0.6V

as targeted [83]. These SRAMs are characterized and used in a low-power mul-

timedia processor design as well [42]. The second design in Chapter 4 presents

a different approach and uses an 8T bit-cell to achieve low-voltage operation.

47

SRAMs in this work implement a new array architecture to enable column-

interleaving with 8T bit-cells. An on-chip reference selection loop is also demon-

strated to reduce sense-amplifier offset. Test chips fabricated in 45nm CMOS

technology achieve functionality down to 0.5V [84].

4. Application-Specific SRAM Design.

In Chapter 5, the idea of using application-specific features to reduce energy/access

is applied to SRAM design for motion estimation. A Prediction-based reduced

bit-line switching activity (PB-RBSA) scheme is proposed to exploit the cor-

relation of input pixel data to reduce switching activity on the bit-lines of the

memory. To complement this idea, a hierarchical sensing network with statisti-

cal sense-amplifier gating is developed to take advantage of the biased transition

probabilities on the bit-lines due to PB-RBSA. A prototype test chip implement-

ing these ideas is fabricated in a 65nm CMOS technology and achieves up to

1.9 x lower energy/access when compared to a conventional 8T design.

48

Chapter 2

Cost and Coding Efficient Motion

Estimation Design for HEVC

Standard

In this chapter, hardware cost of an HEVC motion estimation engine is going to be

explained and the details of a cost and coding efficient (CCE) motion estimation

implementation for HEVC is provided. As mentioned in Chapter 1, HEVC is the

next generation video compression standard that is currently being standardized.

Although there is not a reference hardware implementation that has been published

yet, the complexity of the tools that are being adopted by HEVC is significantly higher

than previous standards and this is a valid indicator to expect a higher hardware

complexity as well. Since the hardware cost of a video codec is extremely important for

portable multimedia devices, it is imperative to analyze the hardware implementation

cost of various tools. Moreover, based on this analysis, design decisions can be made

to provide a balanced trade-off between hardware cost and coding efficiency as these

two concepts are almost always conflicting.

49

2.1 Overview of HEVC

HEVC has a design target of 50% coding efficiency gain over AVC/H.264 High Profile.

To achieve this challenging goal, many new tools are being proposed to this standard.

Table 2.1 provides a comparison between some of the tools used in AVC/H.264 and

HEVC standards (based on HM-4.0).

Tool AVC/H.264 HEVC

Coding Quad-Tree Structure No Yes

Largest Coding Unit (LCU) Size 16 x 16 64 x 64

Asymmetric Motion Partitions No Yes

Inter Merge Mode No Yes

Transform Size 4 x 4 and 8 x 8 Up to 32 x 32

Non-square Transform No Yes

Intra Prediction Angular Directions 8 Directions 33 Directions

Table 2.1: Comparison of some tools in AVC/H.264 High Profile and next generation

video standard, HEVC. More complex HEVC tools require a more complex hardware.

2.1.1 Coding Quad-Tree Structure

One of the main differences of HEVC from its predecessor AVC/H.264 is the adoption

of coding quad-tree structure to provide a modular coding structure. In HEVC a

frame is divided into largest coding unit (LCU) and an LCU is further divided into

four coding unit (CU) in a quad-tree structure. Currently, LCU size can be as large

as 64x64 pixels and smallest coding unit (SCU) size can be as small as 8x8. This

allows the selection of a different coding structure based on various factors such as

input video resolutions and other properties of a video sequence.

Figure 2-1 shows three different coding tree structure selections for three different

scenarios. For a high-resolution video with large and smooth backgrounds and a

smaller level of details, LCU and SCU sizes can be selected to be 64 x 64 and 32 x 32

respectively. For the same resolution, but with a higher level of details in the video,

50

{64x64}
TARGET

LCU = 64x64 High Resolution
{32x32} SCU = 32x32 A Few Small Details

LCU = 64x64 High Resolution
{16x16} SCU = 8x8 Many Small Details

LCU = 16x16{8SCU =8x8 Low Resolution

Figure 2-1: Coding quad-tree structure used in HEVC. Different LCU and SCU
selections can be done based on the resolution and amount of details in the video

frames.

SCU can be selected to be smaller (8 x 8) to capture and represent small details with

a better coding efficiency. Lastly, for small resolutions, LCU size can be selected to

be smaller (16 x 16).

If a CU is not divided into smaller CUs, it is predicted with one of several predic-

tion unit (PU) types. PU types determine which prediction type will be used to code

a particular CU. For inter-prediction (motion estimation), PU types can be 2N x 2N,

2N x N, N x 2N or N x N where 2N x 2N corresponds to the size of the CU. If

asymmetric motion partitions (AMP) are used, non-square PUs for inter-prediction

also include 2N x nU, 2N x nD, nL x 2N and nR x 2N. AMP partitions are not

included in the hardware cost and coding efficiency analysis in this work but this

analysis can be extended to cover these partition types as well. N x N is only used

at the SCU level not to present a redundancy. This is because N x N PU of a CU

can be represented with a 2N x 2N PU at the next depth except for the SCU.

Figure 2-2-a shows all possible inter-prediction PU types and their corresponding

sizes in a 64x64 LCU. Figure 2-2-b shows an example video frame with the CU and

51

PU partitions selected by an encoder [85]. It is important to note that the modular

structure of the quad-tree improves coding efficiency by allowing smooth parts of a

frame to be coded with a large CU and areas with a lot of details with smaller CUs.

Object boundaries that fall into a CU, on the other hand, can be represented with

different non-square PU types.

64 64 32 i 32

64 64 16 16

(a) (b)

Figure 2-2: (a) PU types for inter-prediction in a 64x64 CU and (b) an example
showing PU types used in a video frame.

2.1.2 Reference Software Implementation

JCT-VC provides a reference software implementation, HM, of a codec to quantify

coding efficiency gain [86]. Proposed changes are implemented on this software and a

pre-determined set of sequences [12] are coded with the proposed changes to quantify

results. Appendix A provides the list of this standard set of sequences, their resolution

as well as total number of frames. In this thesis, all simulations for HEVC motion

estimation used this set of sequences with HM-3.2 version of the reference software.

Test sequences cover a wide range of different videos. Indoor and outdoor videos,

large/complex motion and slow/regular motion are a few examples of particular prop-

erties that are tested with these test sequences.

It is important to note that the reference software implementation is intended

to see the maximum limits of the coding efficiency. Hence, at the encoder side,

52

HM goes through almost all possible CU sizes and PU types for motion estimation.

Moreover, the motion search algorithm implemented in HEVC is highly complex and

very costly to be realized in hardware. Although it is necessary to see the maximum

achievable coding efficiency, new algorithms and architectures are necessary when

targeting hardware implementation. The trade-offs associated with area, power and

data bandwidth vs. coding efficiency should be taken into account when developing

these algorithms.

2.2 Overview of Motion Estimation in HEVC

Motion estimation in HEVC is block-based where block sizes can be as large as 64 x 64

(LCU size) and as small as 4 x 4 (N x N PU in an 8 x 8 CU). A 64 x 64 LCU can

be represented by a single 2N x 2N PU or it can be divided into 8 x 8 CUs where

each CU is represented with four 4 x 4 blocks (N x N PU type). In the former case,

an LCU is represented with a single MV pair and in the latter case, with 256 MV

pairs. For an LCU with many details, using smaller block sizes with separate MVs

can provide better compression. In contrast, for large and smooth areas, using larger

block sizes and fewer MVs can be more efficient. Hence, supporting all block sizes

provide the highest flexibility and best compression efficiency but this also results in

highest hardware implementation cost.

Motion estimation is on the encoder side but a video compression standard only

defines the decoder side. Hence, encoder side decisions can be different from one

design to the other as long as the output of the encoder is compliant with the standard.

The decisions made on the encoder side, however, affects compression efficiency. In

this thesis, the encoder implementation given in HM software is used as a reference

point.

Since HM is implemented to achieve highest coding efficiency, in motion estima-

tion, motion cost associated with every possible CU sizes and PU types are calculated

to find the best combination that provides the smallest cost for the overall LCU and

the overall frame. It should be emphasized that these searches for different CU sizes

53

and PU types are performed around different and independent centers. Hence, it is

not possible to share the hardware and cycles between these searches in a hardware

implementation. Moreover, the processing order is completely sequential in HM since

there are some dependencies between the neighboring blocks. Figure 2-3 shows the

processing order of a 8 x 8 CU for four different PU types (2N x 2N, 2N x N, N x 2N

and N x N). Motion information of the top and left neighboring blocks are used in

the cost calculations and MV coding and hence, coding order goes from left to right

and from top to bottom.

CU Processing Order

0 0 0 0 0--
PU Processing Order

0 0 0 Ex: 2NxN

8 8

- 0 0 0
0 0

8 ' 8 ' 4 4 4 4

Figure 2-3: Processing order for 8 x 8 CUs in a 16 x 16 CU is from A to D. For each
8 X 8 CU, PU types are also processed sequentially from 2N x 2N to N x N. Finally
inside a PU type, processing order is from 1 to 4.

This sequential processing is harder to implement in hardware. Hence, many work

in the literature looked at breaking this dependency by using estimates of neighboring

block's motion information [23, 24, 27]. However, these estimates cause a degradation

in coding efficiency. So the main advantage of the sequential processing is that using

the exact motion information results in the maximum achievable coding efficiency.

In the rest of this section, an overview of the important blocks in HEVC motion

estimation will be provided.

54

2.2.1 Advanced Motion Vector Prediction (AMVP)

As discussed in Chapter 1, motion estimation extracts the temporal redundancy be-

tween frames and can represent a block of pixels by a pair of MVs (in horizontal

and vertical directions) and some residue. If the motion is uniform on a large area,

then MVs in that area can be highly correlated. Hence, the number of bits to repre-

sent a block can be further reduced if MV differences rather than absolute MVs are

transmitted.

In AVC/H.264, this idea is used to calculate a motion vector predictor (MVP)

and signaling the difference of a MV with the MVP. If the encoder and decoder use

the same algorithm to calculate the MVP, then there is no reason for synchronization

to be lost. MVP in AVC/H.264 used the neighboring blocks' motion information.

Specifically, immediate neighbors from top, top-right and left that have already been

coded are used to calculate the MVP since these blocks are the closest to the current

block that is being coded.

In HEVC, AMVP, a more complex MVP calculation method, is being imple-

mented. Spatial neighbors as well as temporal co-located blocks and their motion

information are used to calculate MVP. Specifically, for the temporal blocks' motion

information, temporal difference of frames in time is calculated and MVs are scaled

accordingly. Moreover, a list rather than a single candidate of MVPs are calculated

in HEVC and encoder decides and signals which member of the AMVP list is being

used. It is important to note that the latter approach adopted in HEVC is far more

complex compared to AVC/H.264 because of

e using a larger number of blocks to calculate AMVP list,

o scaling process which uses up to two multiplication operations and

o calculating a list of MVPs rather than a single MVP.

Consequently, the hardware implementation of the AMVP block can be significantly

more costly in terms of area and power consumption. In this thesis we present a

hardware-oriented algorithm developed for AMVP [82]. This algorithm is proposed to

55

the standard committee and is being adopted by HEVC. The details of the algorithm

development and its hardware cost will be discussed in Section 2.5.

2.2.2 Integer Motion Estimation Search Algorithm in HM

Fast search algorithm in HM consists of four main stages:

1st Stage In the first stage, candidates from AMVP list as well as (0,0) are checked

and the candidate with the smallest cost is selected as the search center.

2nd Stage In the second stage, a diamond search is performed on the search range.

For a ±64 search range in each direction, diamond search takes 7 steps to be

completed. An early stopping scheme is implemented for this search. If the

best candidate does not change in three consecutive steps, then diamond search

is concluded.

3rd Stage Execution of the third stage depends on the result of the second stage. If

the best candidate from second stage is not more than 5 pixels away from the

search center, then third stage is skipped. Otherwise, in third stage, a raster

scan is performed that goes over the entire search window by checking every

5th candidate in each direction.

4th Stage In fourth stage, another diamond search around the best candidate is

performed. However, an early stopping scheme is not used in this case. More-

over, if a new best candidate is found, fourth stage is restarted with the new

search center.

This search algorithm is very effective in finding the best MV in various different

cases. For example, for regular motion on a large area, AMVP list candidates in the

first stage can capture the correlation of MVs. For the case of more complex and

irregular motion, third stage can span the entire search area. Finally fourth stage

checks if a local minimum (rather than a global minimum) is found in the search

area. However, total number of candidates that are checked can change significantly

from one block to the next. In hardware implementation, this is not very desirable.

56

Designing for the worst-case can result in a large overhead whereas designing for the

average load might cause the cycle budgets to be inadequate. Hence, more complex

control circuitry is necessary to handle variable number of candidates.

Table 2.2 provides how many candidates are checked for the best and worst case

conditions. Best case occurs if the second stage finishes with the early stopping scheme

and fourth stage is performed only once. Worst case, in contrast, occurs when the

second and third stages are performed and fourth stage is executed twice. It should

be noted that the fourth stage can be executed more than twice but it is assumed to

be twice for simplicity.

Stage Best Case Worst Case

1st Stage 4 4

2nd Stage 24 56

3rd Stage 0 676

4th Stage 56 112

Total 84 848

Table 2.2: Number of candidates checked for HM's fast algorithm. Worst and best

case numbers are provided.

2.2.3 Fractional Motion Estimation

In HEVC, 8-tap filters are used to interpolate pixels for sub-pel locations (based on

HM-3.2). Filter coefficients for half and quarter-pel positions are given in the standard

as:

Half - Pel : [-1, 4, -11, 40, 40, -11, 4, -1]

Quarter - Pel : [-1, 4, -10, 57, 19, -7, 3, -1]

These filters can be implemented by using bit-wise shift operations followed by

additions.

57

Fast search algorithm in HM performs a fractional pixel refinement after IME.

FME algorithm is as follows:

1st Stage Set the integer MV as the search center and check eight neighboring half-

pel locations surrounding the center. Update the best location to be the integer

MV or one of the eight half-pel locations.

2nd Stage Set the MV from first stage as the search center and check eight neigh-

boring quarter-pel locations surrounding the center. Update the best location

to be the input from first stage or one of the eight quarter-pel locations.

This search algorithm is suitable for hardware implementation. Although there is

a dependency between the two stages, number of candidates is fixed to 16 candidates

which makes hardware implementation simpler.

2.3 HEVC Motion Estimation Design for Refer-

ence Software-Equivalent Coding Efficiency

As mentioned in Section 2.2, HM implementation is completely sequential on the

processing of the blocks and consequently achieves highest coding efficiency. It is im-

portant to consider an architecture which is capable of implementing this sequential

processing and quantify the hardware cost of realizing a motion estimation engine

providing a coding efficiency that is equivalent to reference software. This section

presents an architecture that is capable of processing blocks sequentially. Then, the

hardware cost of HM's search algorithm is quantified with a methodology to estimate

area, power and bandwidth. Finally, a trade-off analysis is done that compares dif-

ferent motion estimation configurations supporting only a subset of all block sizes in

terms of area, bandwidth and compression efficiency.

58

2.3.1 HEVC Motion Estimation Architecture for Reference

Software-Equivalent Coding Efficiency

In hardware, HM's sequential processing of blocks requires separate and independent

engines performing motion search for different block sizes. Block sizes are determined

by the corresponding CU sizes and PU types. Figure 2-4 shows an HEVC motion

estimation engine architecture supporting all block sizes from 64x64 down to 4x4

except AMP partitions. This architecture can be generalized to cover AMP partitions

as well.

--- -- ~-- -- --- --~ - - -M ode
64x64

C CU &xec

Dec. DU

PU 2x 4 Dec. C

PU 4 x16 Dec. Cu -e-

PU4x4 Dec. cu 9

Figure 2-4: Architecture for an HEVC motion estimation engine supporting all block
sizes from 64 x 64 to 4 x 4 (except AMP partitions). This architecture allows se-
quential processing of smaller blocks and can use exact motion information from
neighboring blocks and provide a coding efficiency as good as the reference software
implementation.

There are a total of 13 engines in the architecture in Figure 2-4: Three engines

for each CU size (e.g. 32 x 32, 32 x 16 and 16 x 32 for the 32 x 32 CU) except for the

8 x 8 CU where there is a fourth engine to support N x N (4 x 4) partition. Each

engine consists of blocks to perform

F AMVP list,

59

16j6x8

8x68x1616x1IA
4x4 4 4 44

8x4 8x4

4x8 4x8

8x8

t \-tirne

Figure 2-5: Processing order of CUs and PU types inside CUs for the architecture
in Figure 2-4. For a 64 x 64 LCU, costs for smaller blocks are combined and then
compared to larger block sizes to find the best combination of blocks providing the
smallest cost for the entire 64 x 64 LCU.

* integer motion estimation,

" fractional motion estimation and

" a reference pixel buffer.

The processing order for one 64 x 64 LCU is shown in Figure 2-5. Motion searches

are performed for four 4 x 4 blocks, two 8 x 4 and 4 x 8 blocks and one 8 x 8 block.

Then a PU decision is done to decide what PU type provides the smallest cost for the

first 8 x 8 CU. Similarly, three more 8 x 8 CUs are processed sequentially and their

costs are output to CU & Mode Decision block. During this time, PU decision for

the first 16 x 16 CU is also finished and a decision can be done for the first 16 x 16

CU. This continues until an entire 64 x 64 LCU is processed by all engines.

It should be noted that intra/inter decision is done at the CU level and hence

costs associated with intra prediction are being provided as external inputs to make

an intra/inter decision.

60

-
.2
.T

Q
D

It is also important to note that, for a fixed throughput constraint, cycle budget

to process a smaller block size is tighter. Hence, data bandwidth requirements can

be significantly larger for smaller block sizes compared to larger block sizes. Conse-

quently, smaller block sizes impose a larger hardware cost. Hardware cost analysis

will be discussed with more details in the next section.

2.3.2 Hardware Cost Analysis Overview

This section will be talking about the hardware cost analysis of HEVC motion esti-

mation module providing the reference software-equivalent coding efficiency, i.e. the

coding efficiency provided by HM reference software. The top level architecture given

in Section 2.3 will be used for this analysis and the algorithms used in HM imple-

mentation will be analyzed.

First, we need to decide on a set of hardware specifications to be able to quantify

hardware cost. Table 2.3 shows the maximum resolution and frame-per-second that

will be supported for an encoder and the frequency of operation for the hardware.

From maximum resolution, frame-rate and hardware frequency numbers, available

cycles/LCU can be calculated to be 3292 cycles. This number is the throughput

requirement for the encoder to be able to achieve maximum resolution and frame-

rate when running at 200MHz. It should be noted that because of the sequential

processing of blocks, available cycles/block will be smaller for smaller block sizes. For

example, for a 4 x 4 block, the number of available cycles is only

3292
a 13.

16 x 16

Since 13 cycles is very tight for the amount of candidates to be evaluated, we need

to increase the amount of parallelism when comparing candidates to be able to meet

the throughput requirement.

61

Specifications of an HEVC Encoder

Maximum Resolution 3840 x 2160

Maximum Frame Rate 30

LCU Size 64

Frequency of Operation 200MHz

Number of LCUs/sec 60750

Available cycles/LCU 3292

Bi-direction Frames Yes

of Reference Frames 1 for each direction

Search Range ±64 in x- & y-dir

Table 2.3: Specifications for a possible HEVC encoder using the motion estimation

design in this work. The number of available cycles/LCU is 3292.

2.3.3 Logic Area Estimation Method & Results for HM Im-

plementation

Logic area estimation methodology is as follows:

1. Implement basic building blocks in hardware and use synthesis tools to get unit

area and power numbers at the frequency of operation point.

2. Calculate the amount of parallelism required for the throughput constraint.

3. Estimate total area by using unit numbers and amount of parallelism.

Due to the sequential processing of blocks requirement for using exact motion in-

formation from neighboring blocks, in the implementation of the engine, it is assumed

that there is no pipelining between consecutive stages. Specifically, AMVP, IME and

FME blocks are not pipelined.

In the top level architecture given in Figure 2-4, there are a total of 13 parallel

engines. Looking at the total number of candidates, total number of pixel calculations,

number of available cycles and finally number of pixel calculations/cycle in Table 2.4,

it can be seen that calculations/cycle number stays constant. Although the number

of available cycles is getting larger from smaller blocks to larger blocks, number of

62

Block Size # of Calc. for # of Pixel Available Calculations
Search Calculations Cycles per cycle

64x64 N 64 x 64 x N T 64 x 64 x N/T

64x32 N 64 x 32 x N T/2 64 x 64 x N/T

32x64 N 32 x 64 x N T/2 64 x 64 x N/T

32x32 N 32 x 32 x N T/4 64 x 64 x N/T

32x16 N 32 x 16 x N T/8 64 x 64 x N/T

16x32 N 16 x 32 x N T/8 64 x 64 x N/T

16x16 N 16 x 16 x N T/16 64 x 64 x N/T

16x8 N 16 x 8 x N T/32 64 x 64 x N/T

8x16 N 8 x 16 x N T/32 64 x 64 x N/T

8x8 N 8 x 8 x N T/64 64 x 64 x N/T

8x4 N 8 x 4 x N T/128 64 x 64 x N/T

4x8 N 4 x 8 x N T/128 64 x 64 x N/T

4x4 N 4 x 4 x N T/256 64 x 64 x N/T

Table 2.4: Number of calculations per cycle is constant between engines supporting
different block sizes.

computations/block is also getting larger with the same factor. Hence, the hardware

required for different engines due to candidate evaluation is mostly constant.

Total area of one engine including IME, FME and AMVP blocks is estimated to

be 305K gates.

It is important to note that the entire motion estimation module in Figure 2-4

consists of 13 engines, resulting in roughly 4M gates. Moreover, to support forward

and backward motion estimation, this number needs to be scaled up by roughly a

factor of two.

63

Block On-Chip Mem. Block On-Chip Mem.
Size Size Size Size

64x64 39KB 16x8 21KB

64x32 33KB 8x16 21KB

32x64 33KB 8x8 20KB
32x32 28KB 8x4 20KB
32x16 25KB 4x8 20KB
16x32 25KB 4x4 19KB

16x16 23KB

Table 2.5: On-chip reference buffer size needed for each engine to support a search

range of +64 in each direction for a single reference frame.

2.3.4 Memory Size and Bandwidth Estimation Method &

Results

On-Chip Reference Buffer Size

As explained in Section 2.2, each motion estimation engine in Figure 2-4 is performing

independent searches and for each engine, a separate memory is necessary in each

direction (forward and backward) and for each reference frame. Table 2.5 shows the

size of on-chip memory needed to support +64 search range. Four extra pixels are

necessary on each side of the search window for pixel interpolation in FME and they

are included in calculations.

A total of 0.65MB of on-chip memories are necessary to support the luma com-

ponent of a single reference frame in forward and backward directions for the entire

motion estimation module in Figure 2-4. As IME and FME are time-interleaved, they

can share the same memory. This number heavily depends on the selected search

range size and a smaller search range can result in smaller on-chip memory size and

area. However, using a smaller search range size results in a loss in compression

efficiency.

To quantify the effect of search range size on the compression efficiency, simula-

tions in HM-3.0 are performed under the test conditions defined in [12] and results

are provided in Table 2.6. From +64 to ±16, bit-rate increase is 0.1%, 0.1% and 3.5%

64

in low delay, low delay with P and random access test conditions. It should be noted

that HM searches through all possible combinations during encoding and also imple-

ments a highly-complex search algorithm. In a practical hardware implementation,

the coding loss due to reduced search range size can be expected to be larger.

In high-definition sequences, a search range that is large enough to capture the

movement of pixels is necessary. The loss in compression efficiency is more pronounced

for high resolution sequences and a search range smaller than ±64 is not feasible for

an encoder supporting resolutions up to 3840 x 2160.

It should be noted that on-chip memory size for small block sizes is not significantly

lower than the size for larger block sizes (39KB for 64x64 and 19KB for 4x4) since

on-chip memory size does not scale down proportionally to the block size.

Additional on-chip storage (e.g. line buffers for motion information) can be neces-

sary for AMVP but its size heavily depends on the specific implementation. Moreover,

these buffers can be shared across parallel engines. For a 4K x 2K video encoder, the

amount of storage is estimated to be 0.03MB for forward and backward directions

with a single reference frame.

On- and Off-Chip Bandwidth

The second consideration in this section is about on- and off-chip bandwidth since

these numbers can be a limiting factor in practical implementations. On-chip band-

width is determined by the size of reference buffer for each engine and how frequently

it is accessed. For the search algorithm in HM, during IME, entire search range is

Search Low Delay Low Delay Random
Range P Access

±64 0% 0% 0%
±32 0% 0% 0.8%
±16 0.1% 0.1% 3.5%

Table 2.6: Effect of search range window size on coding efficiency. Increases in bit-
rate are given with respect to HM-3.0. Single reference frames in both directions are
used.

65

accessed if the result of the initial search is not good enough (3rd stage). This oc-

curs in the case of complex motion. To capture the worst-case upper limit, it can

be assumed that the entire search range in the reference buffer is accessed for every

block. On-chip bandwidth for FME is significantly smaller as only a refinement is

done at this stage. Lastly, bandwidth for motion information of neighboring blocks

that is necessary for AMVP candidate calculations is small compared to the on-chip

bandwidth of the integer and fractional motion estimation so it can be ignored.

Block On-Chip Off-Chip Block On-Chip Off-Chip
Size BW BW Size BW BW

64x64 2.2 1.49 16x8 39.6 13.72
64x32 3.8 1.86 8x16 39.6 10.33
32x64 3.8 1.48 8x8 75.6 17.47
32x32 6.4 3.64 8x4 145.9 30.21
32x16 11.5 6.05 4x8 145.9 22.94
16x32 11.5 5.20 4x4 283.8 36.92
16x16 20.9 7.62

Table 2.7: On- and off-chip bandwidth requirement for each engine in Figure 2-4 with
a search range of ±64. All numbers are in GB/s.

Off-chip bandwidth considered here is the off-chip memory's read bandwidth to

bring reference pixel data from off-chip to the on-chip buffers for motion estimation.

Similarly, off-chip bandwidth is determined by the size of the reference buffer and

how frequently reference buffers for each engine need to be updated. Because of

the correlation of motion between neighboring blocks, in the ideal case, data re-use

between consecutive blocks can be close to 100%. However, it should be noted that

the processing order of blocks in an LCU does not allow 100% data re-use and hence

causes the same part of the reference window to be read multiple times. Increasing

size of the on-chip buffer can improve the data re-use at the expense of larger on-chip

memory area. In this work, minimum buffer sizes given in the previous sub-section

are assumed in the bandwidth calculations. Lastly, pixel data to evaluate AMVP

candidates might require additional bandwidth if these candidates are spatially far

away from each other and do not fall into the search range in reference buffer.

66

Table 2.7 shows on- and off-chip bandwidth requirement for each engine. It should

be noted that small block sizes such as 4 x 4 require a very large on-chip and off-

chip bandwidth compared to larger block sizes and impose a higher cost for hardware

implementation.

2.3.5 Trade-off Analysis for Hardware Cost and Compression

Efficiency

The analysis provided above is important to quantify the hardware cost of imple-

menting a motion estimation hardware block that can provide a reference software-

equivalent compression efficiency. In this section, we will analyze other motion es-

timation configurations where some block sizes are not supported and consequently

we need less than 13 engines. However, the compression efficiency will be worse be-

cause of the exclusion of some block sizes. It is important to quantify the savings in

hardware and loss in compression efficiency to be able to make an optimum decision

between supported block sizes.

Figure 2-6 shows hardware area, power and bandwidth as well as coding efficiency

results for 11 different motion estimation configurations. Each column corresponds to

a different configuration supporting all or some of the available block sizes. Configura-

tion #1 supports all block sizes and is the anchor configuration for this work. HM-3.2

simulations are performed to quantify coding loss for each configuration. The bit-rate

increase in Figure 2-6 is given as the average of the numbers from all-intra, low-delay,

low-delay P and random-access common test conditions defined by JCT-VC [12]. The

common test conditions cover a wide range of sequences with resolutions as small as

416 x 240 and as large as 2560 x 1600 as given in Appendix A.

Figure 2-7-a and Figure 2-7-b plot core area savings vs. bit-rate increase and off-

chip bandwidth savings vs. bit-rate increase for 10 configurations in Figure 2-6 with

respect to the anchor, configuration #1. Each configuration is denoted by a dot on

this figure except for the anchor configuration as the anchor would be at the origin of

the plot. The slope of the lines connecting each configuration to the origin provides

67

Configuration #

64x64 Y Y Y i Y
64x32 Y Y Y Y
32x64 Y Y Y Y
32x32 Y Y Y Y Y'

.V -

I 1 N N
N N7~
NFV NV

Normalized Core Power 1.0010.76 0.3110.54 0.2310.31 0.1510.54 0.2310.31 0.151

Ref. Buffer Size (KB) 680 565 2481439 208 234 163 356 170 201 1151

On-Chip BW (GB/s) 1581 429 2091121 59 32.5 17.3 409 205 351 192

Off-Chip BW (GB/s) 159 69 130.2 27.4 12.7 8.5 15.1 164 28.7149.1 25.1

Bit-Rate Increase (%) 0 2 3 12 12 34 34 3 4 7 11

Figure 2-6: Hardware cost vs. coding efficiency comparison table for 11 different
motion estimation configurations. "Y" and "N" represents if a block size is supported

or not respectively.

a graphical method to compare how efficient each configuration is. A smaller slope

means that more savings can be achieved with smaller bit-rate increase (coding loss).

Lines connecting configurations #3, #5 and #7 and the origin are given on Figure

2-7 as examples.

Observations and Conclusions

It can be observed from Figure 2-6 and Figure 2-7 that configurations supporting

smaller block sizes such as 4 x 4 require largest area and bandwidth although the

coding gain achieved through supporting them is relatively smaller. In other words,

not supporting smaller partitions has a smaller effect on coding efficiency although

these engines contribute significantly to bandwidth and area. For example, by re-

68

II

,40
6 7

110

~ 30

CI2 ------ 3
0

1 3 5 7
Savings in Core Logic (M Gates)

((a

40 647

30

8 20

4'4

S1015

' - 3 9

0 50 100 150
Savings in Off-Chip BW (GB/s)

(b)

Figure 2-7: (a) Core area savings vs. bit-rate increase and (b) off-chip bandwidth
savings vs. bit-rate increase scatter plots for all the configurations given in Figure
2-6.

moving 4x4, 4x8 and 8x4 block sizes in configuration #2, 17% memory area, 3.7x

on-chip bandwidth and 2.3x off-chip bandwidth can be saved at the expense of only

2% coding loss.

Another observation from these figures is that not supporting 2N x N and N x 2N

does not result into significant coding efficiency loss. Fox example, from configuration

#2 to #3, coding efficiency degrades by 1% and the degradation from configuration

#4 to #5 and #6 to #7 are less than 1%.

On-chip reference buffer size mainly depends on the search range and block size.

However, from smaller to larger block sizes, the increase in memory size is not very

significant. In terms of memory bandwidth, small block sizes, especially smaller than

69

8x8, impose very high bandwidth requirements. If savings are necessary due to system

level restrictions for bandwidth, small block sizes can be chosen not to be supported.

Lastly, final decision on supported block sizes depends on the area and bandwidth

limitations as well as coding efficiency specifications of the target encoder. Since

larger area and higher bandwidth often result in higher power consumption, battery-

powered mobile applications might trade-off some of the coding efficiency for lower

power consumption. If coding efficiency has the highest priority, all block sizes can

be supported (configuration #1) although this might lead to a significantly large area

and power consumption. If area as well as power are critical, configuration #5 and

#7 are suitable solutions.

2.4 Cost and Coding Efficient (CCE) HEVC Mo-

tion Estimation Design

In Section 2.3, hardware cost of an HEVC motion estimation design providing a coding

efficiency that is as high as the reference software implementation is discussed.

In this section we will talk about architecture and algorithm development for

reducing the hardware cost even further with minimum impact on the coding effi-

ciency. It should be noted that although the following algorithm and architecture

developments are targeted for configuration #5, these algorithms and architectures

are suitable for all configurations supporting square-shaped block sizes. At the end

of this section, a comparison between five configurations (configurations #3, #5, #7,

#9 and #11) will be provided.

2.4.1 Top Level Architecture

Top level architecture for CCE motion estimation module is given in Figure 2-8. Block

sizes of 64 x 64, 32 x 32 and 16 x 16 are supported. Since there is only a single PU

type (2N x 2N) in each CU engine, an internal PU decision is not necessary.

It should be noted that this architecture is still capable of processing block sequen-

70

tially and consequently using exact motion information for the neighboring blocks.

64x64 CE1 nm e

Figure 2-8: Top level architecture of the cost and coding efficiency motion estimation
implementation. Block sizes of 64 x 64, 32 x 32 and 16 x 16 are supported.

2.4.2 Search Algorithm Development for CCE Motion Esti-

mation

As discussed in Section 2.2, fast search strategy used in HM-3.0 starts the search

around the best AMVP and consists of many inter-dependent stages. For example,

the result of the initial diamond search determines if a sub-sampled raster search is

performed or not. In hardware implementation, this dependency increases complexity

and often results in extra cycles or extra hardware to account for the worst-case

conditions.

Recent work focused on search algorithms that can be parallelized in hardware

implementation [26, 31]. For CCE implementation, we implemented a similar, two-

stage search strategy for IME where each stage can be independently performed in

parallel. Figure 2-9 shows IME search patterns used in each of the stages. First,

search center is decided by comparing AMVP list entries (up to three entries) and

[0,0]. During this comparison, SAD (sum of absolute differences) cost is used. After

search center is determined, two stage search is started.

71

-MV

Figure 2-9: Two stage search approach used for CCE implementation. Stages are
independent of each other and can be performed in parallel in hardware.

The first stage consists of a coarse search covering +64 by checking every 8th

candidate in each direction. This stage can capture a change in motion or irregular

motion patterns that cannot be tracked by AMVP. The second stage performs a more

localized three step search around the +7 window of the search center. This stage can

capture regular motion. It is important to note that the AMVP calculation for all

blocks uses exact MVs of the neighbors and AMVP is accurate and hence can track

motion well in most cases.

The proposed IME search strategy checks a total of 285 candidates for each block

as opposed to up to 848 candidates that are checked in fast search strategy in HM-3.0.

This results in roughly 2X hardware area reduction in IME for the same throughput

constraint. Actual savings might be larger in implementation because of the addi-

tional complexity due to inter-dependent stages of HM-3.0 algorithm.

Lastly, for FME, search strategy of HM is used where refinement is performed

around the best integer MV.

72

Final
MV

LD LDP RA Avg Max MI
HM-3.0 Anchor

(Configuration #5)
Proposed Search Algorithm 0.6 0.8 1.6 1.0 3.1 0.1

Table 2.8: Simulation results for the coding efficiency change after the proposed search
algorithm modifications with respect to HM-3.0 (configuration #5).

Effect on Coding Efficiency

Since the search algorithm for CCE motion estimation is more simple and checks a

smaller number of candidates when compared to the reference software search algo-

rithm, an increase in bit-rate is expected. Search algorithm for CCE motion estima-

tion is implemented in the reference software and the effect on coding efficiency is

quantified. Simulations are performed under the conditions defined in [12].

Table 2.8 shows coding efficiency change with respect to the HM-3.0 fast search

algorithm in configuration #5 after the search algorithm for CCE modifications.

Columns LD, LDP and RA stands for low-delay, low-delay with P and random-access

test conditions as defined by JCT-VC [12]. Avg column is the average of LD, LDP

and RA. Lastly, Max and Min columns are the maximum and minimum rate change

for all tested sequences respectively.

The average rate increase due to the proposed changes is 1.0%. Random-access

test conditions result in the largest coding efficiency degradation as the distance

between the reference frame and the coded frame is longer in this test condition. The

sequence with the highest coding efficiency loss is SteamLocomotive with 3.1%.

2.4.3 Sharing Reference Pixel Buffers for CCE Motion Esti-

mation

As explained in Section Section 2.2, for maximum coding efficiency, each engine in

Figure 2-8 is running independently and has separate reference buffers holding pixels

for independent search windows. This approach is expensive in terms of area and

external memory bandwidth. Sharing the on-chip reference buffer across parallel

73

Separate Buf. Shared Buf.

(3 x 1R1W) (1 x 3R1W)
Memory Size 89KB 39KB

Est. Cell Area 0.85pum 2 1.55pum 2

Est. Array Area 0.75mm 2 0.61mm 2

Est. Perip. Area 0.5mm 2 0.44mm 2

Est. Total Area 1.25mm 2 1.05mm 2

Table 2.9: Area comparison of shared and separate reference buffers. Estimates are

based on a 65nm CMOS technology.

engines can be significantly more efficient for practical implementations. However,

restricting the search range of parallel engines to a shared window will result in

coding efficiency loss. But, this loss can be minimized by determining the shared

search window carefully.

Area Impact of Reference Buffers

In the case of separate reference buffers with ±64 search range for each engine, the

implementation in Figure 2-8 requires three 1R1W (1 read, 1 write) port memories

with 39KB, 27.5KB and 22.5KB sizes for 64 x 64, 32 x 32 and 16 x 16 engines

respectively as given in Table 2.5. Total area consumed by these three memories can

be estimated to be roughly 1.25mm 2 in a 65nm CMOS technology [87] as shown in

Table 2.9. It should be noted that this area is for storing the pixels on the chip for a

single direction and single reference frame.

In the case of a shared reference buffer with ±64 search range, the size is deter-

mined by the largest block size. In this case, a single 39KB memory is needed with

31W ports. Although the bit-cell area and some peripheral components need to be

expanded to support multiple read ports, the overall area can be smaller as shown

in Table 2.9. Hence, shared search range across parallel engines results in 16% area

savings for the implementation considered in Figure 2-8.

74

. Max. Off-Chip Avg. Off-Chip
Block Size BW BW

64x64 2.2GB/s 1.49GB/s
32x32 6.4GB/s 3.64GB/s
16x16 20.9GB/s 7.62GB/s

Total 29.5GB/s 12.39GB/s

Table 2.10: Maximum and average off-chip bandwidth requirement for different block
sizes (search range is ±64) for supporting 4K x 2K at 30fps.

Data Bandwidth Impact of Reference Buffers

With independent motion searches, each engine might have different search centers

and consequently access different parts of the reference frame as the search window.

Table 2.10 shows maximum and average off-chip bandwidth for 64 x 64, 32 x 32 and

16 x 16 engines. The upper limit on the bandwidth is calculated by assuming that the

entire on-chip reference buffer needs to be updated between consecutive blocks and

hence no data re-use is possible. The total maximum off-chip bandwidth is 29.5 GB/s

for supporting 4K x 2K resolution at 30fps assuming a search range of ±64. Average

bandwidth number with close to 100% data re-use between consecutive LCUs is 12.39

GB/s. However, it should be noted that exactly 100% data re-use is not possible due

to sequential processing of the blocks.

In the case of a shared reference window across engines, the maximum band-

width is equal to the maximum bandwidth of the 64 x 64 block since the size of

the shared search window is determined by the largest block size. Hence, sharing

the search window provides 13.4X and 8.3X savings in terms of the maximum and

average bandwidth requirements.

Strategy for Sharing Search Window

In order to minimize the coding efficiency impact of sharing search window across

engines, a good representative should be selected for the motion of the all CUs within

an LCU. AMVP of the LCU is observed to provide a good center point for the shared

search window. Figure 2-10 shows the density map for the relative location of the

75

pixels from best matching blocks with respect to the AMVP of the LCU for two

different sequences. Best matching blocks are calculated with the original HM-3.0

search algorithm and the search range is ±64 pixels in each direction. For both

sequences, more than 99% of the best matching pixels lie in the ±64 vicinity of the

AMVP of the LCU. This indicates that AMVP of the LCU can be used as the search

window center without introducing significant coding efficiency loss.

-128 -128-wtin 6

-64 -64U U

Y 0-

+64. +64

S+128 +128

j5 -128 -64 0 +64 +128 -128 -64 0 +64 +128

Dist. from AMVP of LCU in x-dir Dist. from AMVP of LCU in x-dir

(a) (b)

Figure 2-10: Density maps for the relative location of pixels from best-matching
blocks with respect to the AMVP of the LCU for (a) PeopleOnStreet and (b) Traffic
sequences. More than 99% of the pixels lie within ±64 of the AMVP of the LCU
(2560x1600 sequences with QP=22 in random-access configuration).

For smaller blocks that have different AMVPs and consequently different search

centers, the search window is modified to fit in the shared window. It is important

to note that although the search window is modified, original AMVP of the block

is used in cost calculations. Moreover, total number of candidates stay the same for

all block sizes regardless of the search window being modified or not. This provides

simplicity in hardware implementation.

Effect on Coding Efficiency

To see the effect of sharing search window across engines on the coding efficiency,

changes are done in the reference software. Simulations are performed under the

conditions defined in [12].

Table 2.11 shows coding efficiency change with respect to the HM-3.0 fast search

76

fILD LDP RA Avg [Max Min
HM-3.0 Anchor

(Configuration #5)
Proposed Search Algo. 0.6 0.8 1.6 1.0 3.1 0.1
Proposed Search Algo.

& 0.6 1.0 2.9 1.5 7.4 0.2
Shared Search Window I

Table 2.11: Simulation results for the coding efficiency after the search algorithm and
shared search window modifications with respect to HM-3.0 (configuration #5).

algorithm after the search algorithm and shared search window modifications. Columns

LD, LDP and RA stands for low-delay, low-delay with P and random-access test con-

ditions as defined by JCT-VC [12]. Avg column is the average of LD, LDP and RA.

Lastly, Max and Min columns are the maximum and minimum rate change for all

tested sequences respectively.

The average rate increase due to sharing search window is an additional 0.5%

on average. Similar to Table 2.8, random-access test conditions result in the largest

coding efficiency degradation. Sequence with the highest coding efficiency loss is

SteamLocomotive with 7.4%.

2.4.4 Reference Pixel Data Pre-fetching Strategy

For a practical hardware implementation, off-chip memories are used for large storage

requirement of reference frames. It is necessary to request the data from off-chip

memories in advance since the latency of these memories can be on the order of

thousands of cycles. To address this, a pre-fetching strategy is implemented for CCE

motion estimation in this work.

In order to share the cycles between writing to and reading from the reference

buffer, a larger on-chip storage is necessary. This extra storage is used to start writing

the data for the next LCU while motion estimation for current LCU is continuing.

For this purpose, an extra storage that is 64 pixels wide (size of an LCU) is necessary

as shown in Figure 2-11. Obviously, extra storage alone is not adequate if the search

77

center from current LCU to next LCU is changing. This issue can be addressed by

allowing a larger storage for reference buffers and algorithm modifications. This will

be discussed in Section 2.4.5.

200 px-*+64 px*

1) Read from 200x200
portion for current LCU

2) Write to 64x200
portion for next LCU

Figure 2-11: Extra storage is needed for on-chip buffers to share cycles for read and
write accesses to the memories. 200 x 200 portion is used for current LCU and 64 x 200
portion is used for next LCU.

AMVP of the LCU is used to open the shared search range. However, AMVP

calculation for current LCU depends on its left neighbor's motion data and cannot

start until left neighbor's motion search is finalized. In this work, top (T), top-right

(TR) and top-left (TL) neighbors of the current LCU are used to predict current

LCU's AMVP and pre-fetch corresponding data from the off-chip memory.

The procedure to predict current LCU's AMVP is as follows:

" If none of the neighbors is available, data is pre-fetched from [0,0] location.

" If only one of the neighbors is available, AMVP of the available neighboring

LCU is used to pre-fetch data.

" If two of the neighbors are available, AMVP of one of the available neighboring

LCUs is used to pre-fetch data in the following precedence order:

T>TR>TL

" If all neighbors are available, median of the AMVPs of three neighbors is cal-

culated and used to pre-fetch data.

78

LD LDP RA Avg Max MI
HM-3.0 Anchor 0 0 0 0 0 0

(Configuration #5)
Proposed Search Algo. 0.6 0.8 1.6 1.0 3.1 0.1
Proposed Search Algo.

& 0.6 1.0 2.9 1.5 7.4 0.2
Shared Search Window
Proposed Search Algo.

&
Shared Search Window 0.9 1.0 2.9 1.6 7.3 0.2

&
Pre-fetch Strategy

Table 2.12: Simulation results for the coding efficiency change after the search algo-
rithm, shared search window and pre-fetching modifications with respect to HM-3.0

(configuration #5).

With this strategy, data request can be sent to the off-chip memory as soon as

the motion search of TR neighbor is completed.

Effect on Coding Efficiency

To see the effect of the pre-fetching strategy on the coding efficiency, changes are

incorporated into the reference software. Simulations are performed under the condi-

tions defined in [12].

Table 2.12 shows coding efficiency change with respect to the HM-3.0 fast search

algorithm after the search algorithm, shared search window and pre-fetching strategy

modifications. Columns LD, LDP and RA stands for low-delay, low-delay with P and

random-access test conditions as defined by JCT-VC [12]. Avg column is the average

of LD, LDP and RA. Lastly, Max and Min columns are the maximum and minimum

rate change for all tested sequences respectively.

The average rate increase due to the pre-fetching strategy is an additional 0.1%

on the average. Similar to Table 2.8 and Table 2.11, random-access test conditions

result in the largest coding efficiency degradation. Sequence with the highest coding

efficiency loss is SteamLocomotive with 7.3%.

79

2.4.5 Enlarging On-Chip Reference Buffers for Higher Data

Reuse Rate

In the previous section, sharing the search window provided significant reduction in

off-chip bandwidth since this approach enforces data to be used by the entire LCU.

Further reduction in bandwidth can be achieved if data is reused between consecutive

LCUs. In the ideal case where consecutive LCUs have the same AMVP, a 100% data

reuse rate can be achieved where search window moves to the right by 64 pixels

for every LCU. An illustration of 100% data reuse case is shown in Figure 2-12-a,

where five LCUs and their corresponding search window are shown. However, this

is highly unlikely and AMVP of consecutive LCUs can be very different from each

other especially in frames with complex motion. Figure 2-12-b shows a case where

data reuse between five LCUs is very poor.

In the discussion above, we always considered the case where on-chip reference

buffer size is equal to the search window size and additional storage for the next

LCU. However, if the on-chip memory size is increased to hold a larger window,

data reuse rate can be improved as there is a higher chance of the data on the chip

matching next LCU's search window. Although larger on-chip memories result in

larger bandwidth per LCU, the improvement in data reuse rate can over-power this

increase and results in a reduction in overall average bandwidth. It should be noted

that although on-chip memories hold a larger window, search window is not increased

and kept as +64 in each direction and consequently the total number of candidates

in motion search is not affected from this modification.

The effect of increasing reference buffer size by N pixels on all four sides is analyzed

in terms of bandwidth. Figure 2-13 plots total off-chip write bandwidth at the top

plot and maximum data reuse rate and on-chip buffer size on the bottom plot for

two different sequences with changing N. With increasing N, on-chip buffer size and

the bandwidth due to updating a larger buffer for every LCU increase. However, also

with increasing N, maximum data reuse rate increases. Because of these conflicting

trends, write bandwidth makes a minimum around N = 16. This provides close to

80

Search Windows 64px
(-"-in

* S 6 S S 6
S S S S S S
* S S S S S
* S S S S S
S S a S S S
S S
S S
S S
S S
S S
* S Aa S S
* S *~ i S ~ S
* 5 S S* .i- ; * S

S *]. S S

*------------------------------------
*- U g S

* S * * S
* S S S
* S S * S

S S * S
* 5 5 5 0 S
* S * 5 5
* 5 5 S * S
* 5 S S * S
* S * * * S
* 5 S
* 0 5
* 5 S
* S S
* S S
S 5--------------S
S --- S

Windows
LCUs

(a) (b)

Figure 2-12: Search ranges of five consecutive LCUs with (a) uniform motion maxi-
mizing data reuse and (b) non-uniform motion causing lower data reuse rate.

1.8X savings in off-chip bandwidth at the expense of 35% area increase in reference

pixel buffers.

To further improve data reuse rate and reduce off-chip bandwidth, pre-fetching

algorithm is modified to limit the difference between two AMVPs (centers of search

windows) to ±N. Qualitatively, this translates to the search window being able to

track changes in motion by at most N pixel step sizes.

In this case, amount of data that will be updated in reference buffers from current

LCU to the next LCU is

64 x (200 + 2 x N)

in the best case and

64 x (200 + 2 x N) + N x (200 + 2 x N)

in the worst case.

For this work, N is chosen to be 16 to minimize its effect on the coding efficiency

and to minimize total bandwidth.

Effect on Coding Efficiency

To see the effect on the coding efficiency of limiting the movement of search center

to 16 in every direction between consecutive LCUs, changes are incorporated into the

81

LCUs -- '

0 8 16 24 32 0..0 8 16 24 32
N -Extra pixels on each side N -Extra pixels on each side

CAC

400

20 8 16 24 32 0 0 8 16 24 32
N - Extra pixels on each side N - Extra pixels on each side

(a) (b)

Figure 2-13: Total off-chip write bandwidth, maximum data reuse rate and on-chip
buffer size for (a) BasketballDrive (1920 x 1080) and (b) Traffic (2560 x 1600) se-

quences. Simulations are performed in Random Access test condition with QP = 22.

reference software. Simulations are performed under the conditions defined in [12].

Table 2.13 shows coding efficiency change with respect to the HM-3.0 fast search

algorithm after the search algorithm, shared search window, pre-fetching strategy

modifications and limiting the movement of search range center by N = 16. Columns

LD, LDP and RA stands for low-delay, low-delay with P and random-access test

conditions as defined by JCT-VC [12]. Avg column is the average of LD, LDP and

RA. Lastly, Max and Min columns are the maximum and minimum rate change for

all tested sequences respectively.

The average rate is not increased due to final change of limiting the movement

of search range center and this idea does not introduce additional coding efficiency

82

[ILD (LDP RA Avg Max MI
HM-3.0 Anchor 0 0 0 0 0 0(Configuration #5)

Proposed Search Algo. 0.6 0.8 1.6 1.0 3.1 0.1
Proposed Search Algo.

& 0.6 1.0 2.9 1.5 7.4 0.2
Shared Search Window
Proposed Search Algo.

&
Shared Search Window 0.9 1.0 2.9 1.6 7.3 0.2

&
Pre-fetch Strategy

Proposed Search Algo.
&

Shared Search Window
&
t S0.9 1.0 2.9 1.6 7.4 0.2

Pre-fetch Strategy
&

Limited SR movement with
N = 16

Table 2.13: Simulation results for the coding efficiency change after the search algo-
rithm, shared search window, pre-fetching and limiting the movement of search range
center by N = 16 with respect to HM-3.0 (configuration #5).

83

loss. However, the maximum coding efficiency loss increases from 7.3% to 7.4% for

sequence SteamLocomotive.

2.5 AMVP Algorithm Development

AMVP algorithm used in HEVC is much more complicated compared to MVP defined

for AVC/H.264. The complexity mainly comes from

* AMVP list generation procedure which does not allow hardware sharing and

* scaling used in AMVP candidate calculations which requires multiplication op-

erations.

In this section, first, HM-3.0 algorithm and its drawbacks for hardware implemen-

tation will be discussed. Next, hardware-aware algorithm development for AMVP

will be presented along with its effect on coding efficiency.

2.5.1 HM-3.0 Algorithm

Advanced Motion Vector Prediction (AMVP) list generation uses up to five spatial

and up to two temporal neighboring blocks' motion information in AMVP calcula-

tions. Figure 2-14 shows all neighboring blocks. Co to C4 are spatial neighbors at

three corners of the current block. C and H are temporally co-located block and

bottom-right neighboring block respectively from a previously coded frame.

AMVP calculation flow in HM-3.0 is explained below:

Step 1 Check left candidates (CO and C1) for their availability. If both of them are

available, Co has the precedence.

Step 2 Calculate an AMVP candidate ("scaled" or "not-scaled") from the available

candidate of Step 1 and store it as MVPLEFT-

Step 3 Check each of the top neighbors (C2, C3, C4) sequentially for their availability.

84

Figure 2-14: Five spatial and two temporal neighbors are used in AMVP calculation
process.

Step 4 Calculate two predictors (one "scaled" and one "not-scaled") from each of

the available neighbors, MVPT[i], i = 0, 1, .., 5.

Step 5 Check if MVPT[i] is equal to MVPLEFT and store the first MVPT[i] as

MVPTOP that is not equal to MVPLEFT-

Step 6 Check temporal neighbors (C and H) for their availability. If both of them

are available, C has the precedence.

Step 7 Calculate an AMVP candidate ("scaled" or "not-scaled") from the available

candidate of Step 6 and store it as MVPTEMP-

Step 8 "Uniquify" AMVP list by discarding candidates that are equal to other can-

didates.

From the AMVP calculation flow in HM-3.0 given above, it should be noted that

there are many dependencies that make hardware implementation more complex.

Moreover, these dependencies prevent hardware to be shared between candidates. As

"scaling" is a complicated part accounting for a large fraction of total area, we can

infer how many Scale Hardware is necessary in an implementation. It should be noted

that the cycle constraint is very tight in a hardware implementation and hence AMVP

calculation needs to be performed in one or two clock cycles which would refrain us

from using sequential calculation of candidates.

85

From Step 2 and Step 7, we can infer that one Scale Hardware per candidate

(MVPLEFT and MVPTEMP) is adequate since one of the neighbors can be selected

based on availability and the precedence order and input to the Scale Hardware.

However, for Step 5, it is not possible to select which candidate will be "scaled"

as the "scaled" candidate is required to be different than MVPLEFT. Consequently,

three separate Scale Hardware is necessary for MVPTOP.

A total of five Scale Hardware is necessary for this implementation as shown in

Figure 2-15.

Scale Scale Scale Scale Scale

Uniquify

Figure 2-15: Block diagram of an hardware implementation of AMVP calculation
algorithm given in HM-3.0.

2.5.2 Proposed Algorithm

The dependency explained above results in three separate Scale Hardware for only

one AMVP candidate calculation. This analysis provides an insight about how the

AMVP algorithm can be changed to reduce the number of Scale Hardware blocks and

reduce overall area of AMVP.

AMVP calculation flow in the proposed algorithm is explained below:

Step 1 Check left candidates (CO and C1) for their availability. If both of them are

available, Co has the precedence.

86

Step 2 Calculate an AMVP candidate ("scaled" or "not-scaled") from the available

candidate of Step 1 and store it as MVPLEFT. If a "scaled" candidate is used

in this step, set scalef lag to "1".

Step 3 Check each of the top neighbors (C2, C3, C4) sequentially for their availability.

Step 4 Calculate up to two predictors (one "scaled" if scale-f lag is "0" and one

"not-scaled") from each of the available neighbors, MVPT[i], i = 0, 1, .., 5. If a

"scaled" candidate is used in this step, set scalef lag to "1".

Step 5 Check if MVPT[i] is equal to MVPLEFT and store the first MVPT[i] as

MVPTOp that is not equal to MVPLEFT.

Step 6 Check temporal neighbors (C and H) for their availability. If both of them

are available, C has the precedence.

Step 7 Calculate an AMVP candidate ("scaled" or "not-scaled") from the available

candidate of Step 6 and store it as MVPTEMP-

Step 8 "Uniquify" AMVP list by discarding candidates that are equal to other can-

didates.

By the introduction of the scale-flag, this proposed algorithm ensures a single

"scaling" for MVPLEFT and MVPToP. MVPTEMP does not check for scale-f lag and

hence requires an additional Scale Hardware. Figure 2-16 shows the block diagram of

the proposed AMVP algorithm. Total number of Scale Hardware is two in this case,

resulting in significant reduction of hardware area.

Hardware implementation details and the comparison of HM-3.0 and proposed

algorithm results will be discussed in Section 2.6.3.

2.5.3 Effect on Coding Efficiency

To see the effect of the proposed AMVP algorithm on the coding efficiency, changes

are incorporated into the reference software. Simulations are performed under the

conditions defined in [12].

87

Figure 2-16: Block diagram of an hardware implementation of proposed AMVP cal-
culation algorithm.

LD RA Avg Max Min
HM-3.0 Anchor 0 0 0 0 0

Proposed AMVP Algo. 0 0 0 0.1 -0.2

Table 2.14: Simulation results of the coding efficiency change with
changes in AMVP algorithm with respect to HM-3.0.

the proposed

Table 2.14 shows coding efficiency change with respect to the HM-3.0 AMVP algo-

rithm. Columns LD and RA stands for low-delay and random-access test conditions

as defined by JCT-VC [12]. Avg column is the average of LD and RA. Lastly, Max

and Min columns are the maximum and minimum rate change for all tested sequences

respectively.

The effect on coding efficiency is negligible for the proposed algorithm as most

sequences show no increase in bit-rate and the largest bit-rate increase is only 0.1%

for the BasketballPass sequence.

88

AMVP List

2.6 Hardware Implementation Results for CCE HEVC

Motion Estimation

Table 2.15 provides a comparison between different configurations in terms of various

hardware costs: area with respect to configuration #1 given in Figure 2-6, on-chip

memory area, on- and off-chip memory bandwidth and bit-rate increase. Bit-rate

increase is due to (i) proposed hardware-efficient algorithms

block sizes with respect to configuration #1 in Figure 2-6.

and (ii) unsupported

Configuration #1 #3 #5 #7 #9 #11

64x64 64x64 64x64

ALL 32x32 32x32 32x32 32x32
Supported Block Sizes

16 x 16 16 x 16 16 x 16 16 x 16

8x8 8x8 8x8

Area w.r.t. Conf. #1 1 0.31 0.23 0.15 0.23 0.31

On-chip Mem. Area (mm 2) 7.8 1.7 1.5 1.3 1.5 1.3

On-chip Bandwidth (GB/s) 1581 100.5 28.6 8.5 98.3 92.1

Off-chip Bandwidth (GB/s) 159 1.05 1.05 1.05 2.92 9.72

Bit-rate Increase w.r.t Conf. #1 0% 4.6% 13.6% 35.7% 4.7% 11.8%

Table 2.15: Comparison of configurations #3, #5, #7, #9 and #11 to the main
anchor (configuration #1 in Figure 2-6) in terms of power, memory area, bandwidth
and coding efficiency.

Configuration #7 provides the smallest area and bandwidth but the bit-rate in-

crease is 34% which can be very high for many applications. Off-chip bandwidth

requirement of configuration #11 is 9x larger due to the LCU size being smaller

which requires more data to be transferred to on-chip buffers for every frame. Con-

figuration #3 and #9 have 12x larger on-chip bandwidth due to supporting 8 x 8

block.

Based on the analysis explained above, CCE motion estimation with three engines

(64 x 64, 32 x 32 and 16 x 16) is the optimum selection for the target area, bandwidth

and coding efficiency results. This selection resulted in 4.3x core area and 5.2x

89

on-chip buffer area reduction. In terms of bandwidth, savings are 56x for on-chip

bandwidth and 151 x for off-chip bandwidth. Overall coding efficiency loss is 13.6%

for our selection.

However, it should be noted that different designs can have different design bud-

gets. For example, coding efficiency can be very critical in one design or power

consumption can be the decisive factor in another design. Hence, final decision on

supported block sizes can be different but the analysis provided here can be used to

make this decision based on quantitative results.

2.6.1 Implementation of a CU engine

Figure 2-17 shows the architecture of one engine. Integer and fractional motion esti-

mation parts are implemented together as these parts are not pipelined for maximum

coding efficiency.

Motion Engine Control
Data Final

Outpul
Ref. Buf. Best Position/

I w Read Control AMVP Cost

Pixel LLc
Inputs .+

~~~* iInterp.

Cost -
4- - Tree Comp. Array

Figure 2-17: Architecture of one engine in CCE HEVC motion estimation implemen-
tation.

Reference buffer and block buffer hold reference and current block's data respec-

tively. Reference buffer write control exerts write operations on the reference buffer

for the next LCU whereas read control accesses the search range data. AMVP part

calculates the motion vector predictor list. Cost tree and comparator array is capa-

ble of calculating the cost of 4 candidates/cycle for the 16 x 16 block for which the

cycle budget is shortest. Best position and cost is stored in sequential elements and

90



compared against costs for newer candidates. Finally, engine control ensures the flow

of data inside the engine as well as the communication of higher level control units.

2.6.2 Reference Buffer and Read/Write Control

To be able to support the 4 candidates/cycle output requirement, search range is

partitioned into 88 blocks of SRAMs each holding 4 neighboring pixels on every word

and holding roughly 200 words. Figure 2-18 shows the allocation of pixels on memory

banks.

{Left-TopX, Left-TopY}

44 pixels ,

ADDR[0+AB] ADDR[29+AB]
* Blocks #0-87 Blocks #0-87
00) _ _ _ _ _ _

ADDR[1+AB] ADDR[30+AB]
Blocks #0-87 Blocks #0-87

ADDR[2+AB]
Blocks #0-87

{lnX, InY} OUTPUT
WINDOW

I ._ _ _ _ _ _

Search Range: 232x 296 pixels

Figure 2-18: Search range partitioning and physical location of pixels in memory
banks.

Going from one LCU to the next, since most of the data is reused, only pointers to

the memory locations are changed. This is handled in the read control by holding the

left-top coordinate (Left-TopX, Left-TopY) of the search range as well as an address

bias (AB) which is incremented by 64 pixels for every LCU. Engine control requests

a stripe (8 x 40) of reference pixels by providing the left-top coordinate (InX,InY) to

read control. After data is read from SRAM blocks, 8 x 40 pixel block is output in

91



the next cycle. There is a large multiplexer array at the output of the read control

to select appropriate outputs from SRAM blocks and put them in order.

New data overwrites the older data sequentially for every LCU. At the beginning

of an LCU line in the frame, all memory locations need to be updated. For all other

LCUs, a 64 x 232 block and possibly 16 pixel wide edges are updated since, at the

algorithm level, the movement of the search center is limited to be less than 16 pixels

between consecutive LCUs. Since the search range accessed by the read control and

the pixels that are overwritten by write control are not overlapping, read and writes

can be done in the same cycle.

Synthesis results for the reference buffer read and write show that a total of 52.6K

gates is used. Read control takes up a larger area due to the large multiplexers to

select the outputs from 88 SRAM blocks.

2.6.3 AMVP Implementation

Proposed AMVP algorithm is adopted by the HEVC standard so this proposed al-

gorithm is implemented in the hardware engine. AMVP list generation consists of

a left, a top and a temporal candidate generation. The scaling operation consisting

of multiplications that account for a large fraction of the total area. Moreover, the

delay through these multiplication units is relatively larger.

Neighboring
Block

Current
~ Block

time

k I m POC

Figure 2-19: Illustration of MV scaling. MVs from different reference frames are used
directly or scaled according to the POC order of the frames.

Figure 2-19 shows the scaling procedure for AMVPs [82]. POC stands for picture

92



order count and denotes the location of a frame in the display order. By using the

difference of the POCs, MVs can be scaled up or down and their directions can be

changed. This is very useful as this information can be used to generate various

predictions to the MV and the best prediction can be selected eventually. In Figure

2-19, MVs from neighboring block denoted as '1' and '4' are not scaled but '2' and

'3' are scaled.

0 'StTM

0 am--

Pipeline Stage

Figure 2-20: Implementation of the scaling unit in AMVP.

Figure 2-20 shows the implementation of the scaling unit in AMVP calculations.

If the difference of POCs is equal to each other, then no scaling is needed and original

MVs can be passed to the output. Otherwise, MVs are scaled. It should be noted

that the scaling term (Xf) is signed and can alter the sign of the MVs. After each

multiplication, a rounding and clipping is done. It should also be noted that Xf

calculation requires a division operation which is implemented with a look-up-table

but Xf calculation can be done for different POCs beforehand and can be used as

a constant during AMVP calculations. Finally, two multiplication operations are

pipelined in hardware as shown in Figure 2-20 as the critical path occurs across these

two multiplier units.

The resulting area of the AMVP implementation is 26.1K gates. RTL code for the

HM-3.0 algorithm that is replaced with our proposed algorithm is also written and

area numbers are acquired. Table 2.16 shows area numbers for both implementations.

93

Scaled

MVx, MVyIMVx, MVy



Left Cand. Top Cand. Temp. Cand. Uniquify Total

HM-3.0 12.1K 26.8K 7K 5.3K 51.2K

Proposed 15.2K 7.4K 3.4K 26.1K

Table 2.16: Comparison of HM-3.0 and proposed AMVP algorithms in hardware
implementation in number of gates.

As explained in Section 2.5, HM-3.0 algorithm requires three scale units in top

candidate generation. This can be seen by the large area required for top candidate in

Table 2.16. In the proposed algorithm, total area for left and top candidate generation

is only 15.2K gates. Total area of the proposed algorithm is roughly half of the HM-3.0

implementation.

2.6.4 Cost Tree and Comparator Array

As shown in Figure 2-17, cost tree calculates SAD based costs and adds the MV cost

to create total motion cost. Then, comparator array compares costs of candidates

with the smallest cost and decides if the smallest cost needs to be updated or not.

At the end of the search, smallest cost and its corresponding candidates are signaled

as MVs.

Figure 2-21 shows the SAD tree and MV cost calculation. 1-bit partial absolute-

differences (AD) are calculated and 1-bit 'msb' information is propagated to the

output to make the critical path shorter. ADs and msb bits from multiple pixels are

summed in parallel. MV cost calculation is implemented with a priority encoder as

shown in Figure 2-21. The input to the priority encoder is the absolute difference of

the MV and MVP. Lastly, cost tree and comparator array implementation results in

131K gates.

2.6.5 Interpolation Engine

Interpolation engine in HEVC requires a larger area due to the usage of longer FIR

filters and larger filter coefficients. For example, for quarter-pel pixel generation,

94



PIXELA[0] msb

I labs b

or
Costs I

a PrioritylabsiEncoder

TOTAL COST

1-bit Abs. Dif

Figure 2-21: Cost tree implementation using 1-bit absolute difference (AD) and MV

cost calculation.

AVC/H.264 used 2-tap filters. These filters are replaced with 8-tap filters in HEVC.

Table 2.17 shows a comparison of filters used in AVC/H.264, VC-1 and HEVC to

make a comparison in terms of area. HEVC's 8-tap quarter-pel filter is > 20x larger

than AVC/H.264's 2-tap quarter-pel filter.

Filter Coefficients Area in K gates

AVC/H.264 Half-Pel [1 -5 20 20 -5 1] 0.43

AVC/H.264 Quarter-Pel [1 1] 0.05

VC-1 Half-Pel [-1 9 9 -1] 0.41

VC-1 Quarter-Pel [-4 53 18 -3] 0.30

HEVC Half-Pel [-1 4 -11 40 40 -11 4 -1] 0.57

HEVC Quarter-Pel [-1 4 -10 57 19 -7 3 -1] 1.28

Table 2.17: Comparison of interpolation filters used in AVC/H.264, VC-1 and HEVC
standards. These filters are implemented with bit-wise shifts and additions.

It should be noted that single filter area is not the only measure of complexity

as the the order of filtering and when clipping is done after filtering also determine

overall complexity.

For our design, FME and IME are sequential so cost calculation tree and com-

95



parator array can be shared between the two parts of the design. FME design is

done based on the work in [29]. Input data is provided as a row of pixels and shifted

through the processing unit. The partial outputs are stored in a register array and

cost calculation is performed when a candidate is generated. Implementation of the

interpolator results in a total area of 137K gates.

2.7 Summary and Conclusions

HEVC is the next generation video compression standard that is currently being

standardized. HEVC has a design target of achieving 50% coding efficiency gain over

AVC/H.264 through various coding efficiency enhancement tools that often come at

the expense of increased hardware complexity. Motion estimation, being the largest

block in encoder designs, is one of the most critical blocks in HEVC and should be

analyzed for its hardware implementation cost to provide a trade-off study in order

to make critical design decisions.

This chapter provides a hardware cost vs. coding efficiency trade-offs analysis for

e a motion estimation implementation targeting highest coding efficiency that is

equivalent to the reference software and

* a hardware-oriented cost and coding efficiency implementation.

Specifically, a motion estimation implementation providing a reference software-

equivalent coding efficiency is considered for its area, on- and off-chip bandwidth and

on-chip memory area. It has been shown that this implementation requires nearly 8M

gates and 1.6TB/s and 159GB/s on- and off-chip bandwidth respectively. Clearly,

this design is very costly in terms of hardware. To reduce hardware cost, first, a

reduction in the number of coding engines (and consequently number of supported

block sizes) is considered and quantitative analysis has been performed to find the

configuration providing the best trade-off. It should be noted that the methodology

used in this analysis can be generalized to compare various block sizes for different

types of costs.

96



To further reduce hardware cost, hardware-oriented algorithms are developed that

are suitable and targeted for the selected architecture. Overall, 56x on-chip band-

width, 151 x off-chip bandwidth, 4.3 x core area and 5.3 x on-chip memory area sav-

ings are achieved through these algorithm optimizations when compared to a hard-

ware implementation of the HM design providing reference software-equivalent coding

efficiency. For AMVP, a new algorithm is also proposed based on hardware imple-

mentation costs and proposed algorithm is shown to reduce area by 2x without

introducing any coding efficiency loss.

It should be noted that this chapter is one of the first studies on HEVC motion

estimation in the literature considering hardware implementation and the trade-off

analysis. Hardware-oriented algorithm development and hardware implementation

results can be used to make more optimized design decisions for an HEVC encoder.

97



98



Chapter 3

Highly Parallel Motion Estimation

Design for Multi-Standard Video

Encoder

This chapter will discuss a highly parallel motion estimation design that was part

of a multi-standard video encoder supporting AVC/H.264 and VC-1 standards. The

target of this design is achieving low-voltage and low-frequency operation while sup-

porting a high throughput requirement and providing reconfigurability by supporting

two different standards. To achieve these goals, a highly-parallelized and reconfig-

urable design is studied here and design decisions are made to achieve a high level of

parallelism.

Due to the presence of various video coding standards, it can be necessary to

support multiple standards for mobile multimedia device. On one hand, implementing

different standards in software can be inefficient in terms of power consumption.

On the other hand, having separate hardware blocks for different standards can be

very costly in terms of area. To address these issues, this work targets a video

encoder design supporting two standards (AVC/H.264 and VC-1) while using circuit

reconfigurability to maximize hardware sharing across standards.

99



3.1 Overview of a Multi-Standard AVC/H.264 and

VC-1 Encoder Design

3.1.1 Overview of AVC/H.264 and VC-1

AVC/H.264 and VC-1 are recent standards and successors of widely used MPEG-2

standard. These standards are developed to provide higher coding efficiency. Both

standards perform block-based video coding and unit block size is 16 x 16 and named

as a macro-block (MB). A MB can be predicted with inter- or intra-prediction.

For inter-prediction, a MB can be predicted with various modes. Figure 3-1 shows

different modes supported in AVC/H.264 and VC-1 standards. AVC/H.264 supports

sub-block sizes as small as 4 x 4 so a MB can be represented by as many as 16 different

MVs. For VC-1, there are only two modes and a MB can be represented by either a

single MV or by four MVs.

AVC/H.264 VC-1
16 16 8 8 16 8

8 8 4 4

00 00

Figure 3-1: Inter modes supported by AVC/H.264 and VC-1 standards.

As mentioned above, AVC/H.264 and VC-1 standards provide better coding effi-

ciency over MPEG-2 at the expense of higher complexity in hardware implementation.

Table 3.1 shows some key features supported in AVC/H.264 and VC-1 standards that

are related to motion estimation.

From Table 3.1, it can be seen that both standards have common features allowing

sharing of hardware between standards for a reconfigurable motion estimation module.

Specifically, calculation of cost metric and on-chip pixel buffers which constitutes the

100



Feature H.264/AVC VC-1

P Frames Yes Yes

B Frames Yes Yes

Number of Reference Up to 16 in each direction Up to 2 in each direction
Frames

MB Sub-partitions 16x16, 16x8, 8x16, 8X81 16x6,8x8
M B__ S ub -p artitio ns___ 8x4 , 4x 8 , 4x 4

Fractional Motion
ctimna otion Quarter-pixel Quarter-pixelEstimation

Luma Half-pixel [1 -5 20 20 -5 1]/32 [-1 9 9 -1]/16
Interpolation Filter

Luma Quarter-pixel [1 1]/2 [4 53 18 -3]/64
Interpolation Filter

Chroma Interpolation [1 1]/2 [1 1]/2
Filter

Table 3.1: Comparison of H.264/AVC and VC-1 standards for supported features
related to motion estimation

dominant portion of area can be shared. Some parts of mode selection and pixel

interpolation can be implemented separately.

3.1.2 Specifications of the Multi-Standard Encoder

In a video encoder hardware implementation, resolution, frame-rate and other specific

features of the standards set a throughput constraint on the encoder hardware. Table

3.2 summarizes the specifications for the multi-standard encoder design.

Both H.264 and VC-1 only support MB size of 16 x 16 pixels. Thus, the number

of cycles available to process one MB can be found as

3840 x 2160
Number of MBs per frame = N - 32400

16 x 16

Number of MBs per second = N x frame-rate = 32400 x 30 = 972000

Number of cycles per MB =
Operation frequency

Number of MBs per second

25 x 106
0 =25.7

972000

(3.1)

(3.2)

(3.3)

101



Feature Target

H. 264/AVC High Profile and VC-1 Main
Supported standards Profile

Resolution Quad-HD (3840 x 2160 pixels)

Frame-Rate 30 frames/sec at quad-HD

GOP Structure IBBPBBP

Number of Reference 1 in each dir.
Frames

Operating Voltage 0.5V

Operating Frequency 25MHz

Bit-rate Increase
w.r.t. Golden 25%

Encoder

Table 3.2: Specifications for the multi-standard encoder project.

At 25MHz, processing a quad-HD video at 30fps requires every MB to be com-

pleted in about 25 cycles. By using pipelining, different processing parts such as

intra-prediction, motion-estimation, transformation and quantization can be sepa-

rated in time. Moreover, parallelism can be used to loosen this cycle constraint. For

motion estimation, reference data needs to be loaded from an off-chip memory and

then motion search should be done on this reference data. The 25 cycles constraint

requires excessive replication of hardware modules. To address this problem, frame

and MB level parallelism is used in this work. Six MBs are processed in parallel so

roughly 150 cycles are available to process each MB in parallel.

In contrast to previous designs, this work proposes a highly-parallel implemen-

tation at the frame and MB level to provide necessary throughput at 25MHz for

quad-HD video encoding at 30fps. Total bit-rate increase budget with respect to the

golden encoder implementation (given in the reference software) is set as 25%.

102



3.2 Algorithm Development and Architecture Se-

lection for Highly-Parallel Motion Estimation

3.2.1 Frame and MB Parallel Video Encoding Architecture

In order to be able to meet the throughput constraint discussed in the previous

section, parallelism is implemented in frame and MB level. By doing frame-parallel

and MB-parallel motion search in motion estimation

" off-chip bandwidth can be greatly reduced if all MBs are using the same search

range from the same reference frame and

" available cycles to perform motion search can be greatly increased as parallel

processing loosens the cycle constraint for each MBs.

Current
'- MBs

Previously
Coded MBs

Figure 3-2: MB parallel implementation. Two MBs from each frame is processed in
parallel.

Figure 3-2 shows the position of two MBs that are processed in parallel. Since

both MBs are spatially located close to each other, they can share the same search-

range and same reference pixel data can be used to calculate costs for each MB at the

same time. This provides 2x parallelism. The number of parallel MBs from the same

frame can be further increased for higher levels of parallelism. However, this would

require storing more lines of data on- or off-chip as final bit-stream is created in the

103



Frame #in Sequence 0 1 2 3 4 5 6 7 8 9 10 11 12

Frame ID Io B 1  B 2  P3  B 4  B 5  P6  B7  B8 P9  B1 0  Bu1  P 12

Table 3.3: GOP structure used in this work.

raster scan order and cannot be parallelized. Hence, selection of two MBs provides a

good balance between the level of parallelism and the amount of additional storage

requirement.

GOP structure used in this design is given in Table 3.3 and motion search order

is given in Table 3.4.

Motion search cannot start until the first I frame (all-intra frame) is encoded and

reconstructed. Then during ti, frame Io is used as reference and motion search is

performed on six MBs from P3 , B 1 and B 2 . After this, frame P3 can be encoded

and reconstructed whereas frames B 1 and B 2 wait for time slot t 2 . During t 2 , P3 is

the reference frame and B 1 , B 2 undergo forward search and P6 , B 4 and B 5 undergo

backward search. It should be noted that B frames are not used as reference frames.

After time slot t 2 , a total of ten MBs (two MBs, each from five frames) share the

same reference frame. This provides an additional 5x parallelism, resulting in 10x

parallelism for motion estimation. As the search range is shared for ten MBs, off-chip

bandwidth is reduced significantly.

Time Slot 1 Reference Frame Forward Search _Backward Search

to N/A N/A N/A

t1 I0 N/A P3 , B1 , B 2

t2 P3  Bo, B1  P6 , B 4 , B5

t3  P6  B 4 ,B5  P9,__ B7,B8

t4 P B7, B8  P12, Bio, 1

Table 3.4: Processing order of frames. After the initial I-frame and first P-frame, 10

MBs from five frames are motion searched in parallel.

104



3.2.2 Searching Algorithm Selection

Searching algorithm is a key part of the motion estimation as it determines the power

consumption and on/off-chip bandwidth for the module. In this work, the cycle

budget for motion estimation is very strict. To make a comparison, the work in

[27] operates at 145MHz for 1920 x 1080 resolution whereas this work targets 25MHz

operation for 3840 x 2160. Hence, more than 20 x reduction in cycle count is necessary.

Frame and MB-parallel processing enables amortizing the cycle count over many MBs

but an efficient searching algorithm is necessary to prevent quality loss.

Integer Motion Estimation (IME) Search Algorithm

In this work, a searching algorithm suitable for frame and MB parallel motion estima-

tion is developed. First, since two MBs are processed simultaneously, they can share

the same searching range as they are located on top of each other (Figure 3-2). So the

cost of each candidate MV can be calculated for both current MBs at the same time.

Second, for all sequences, a significant portion of MVs are centered around origin

since in general many MBs in a frame do not move at all. So searching around [0,0]

point can capture the MVs around origin. For moving objects, however, MVs can

have a large magnitude. To capture these MVs, a prediction-based searching range

can be utilized based on the work in [27]. Specifically, a searching range center can

be calculated by using the MVs of neighboring blocks.

To be able to remain in the cycle count, the window around origin is searched by

sub-sampling by four i.e. every fourth candidate is evaluated. This enables searching

a larger window while keeping the cycle count fixed.

For an object with regular motion, MVs will have opposite directions and opposite

signs for past and future frames. Thus, averaging MVs can result in loss of direction.

So two separate search windows are opened for backward-predicted and forward-

predicted frames. For calculation of search window center, MV average of neighboring

five MBs as shown in Figure 3-2 are used. Specifically, for forward prediction, average

of 10 MVs from two frames is used whereas for backward prediction, average of 15

105



MVs from three frames is used.

For the search window around the predictor, a full-search is done to have full-pixel

resolution and capture the movement of objects accurately.

A summary of the searching strategy is given below:

* Open a search window around the origin and do a search with a sub-sampling

ratio of four.

* Open two search windows around forward and backward MV averages and use

one of the windows for each frame depending on frame being past or future

compared to the reference frame.

Table 3.5 shows experimental results for the searching algorithm on 1920 x 1080

resolution frames. Experiments are performed on 30 frames for each sequence. In

most sequences, bit-rate increase is small as compared to the golden results from

a full-search with a ±128 searching range. However, in sequences such as ParkJoy

where motion is irregular this algorithm introduces about 53% bit-rate increase. On

average, bit-rate increase for twelve sequences is 17.96%.

Fractional Motion Estimation (FME) Approach

In this work, fractional refinement is done for the best mode selected in IME part

and its corresponding MVs. This approach is similar to the CCE motion estimation

implementation explained in Chapter 2.

As shown in Table 3.1, VC-1 uses 4-tap filters for half- and quarter-pel positions

whereas AVC/H.264 uses 6-tap and 2-tap filters. Since there is a larger number of

possible quarter-pel positions, using 4-tap filters impose a higher complexity for VC-1.

3.2.3 Bypassing cost calculation based on similarity

MB parallel motion search provides the opportunity to avoid cost calculation if two

current MBs are similar to each other. As an example, one can consider a case

where two MBs are exactly the same. Instead of calculating the SAD for both MBs,

106



Sequence BDRate Increase w.r.t. Golden Imp.

BlueSky (1920 x 1080) 11.01%

CrowdRun (1920 x 1080) 2.80%

DucksTakeOff (1920 x 1080) 4.32%

IntoTree (1920 x 1080) 7.59%

OldTownCross (1920 x 1080) 4.65%

ParkJoy (1920 x 1080) 53.74%

PedestrianArea (1920 x 1080) 40.59%

RiverBed (1920 x 1080) 8.70%

RushHour (1920 x 1080) 18.18%

Station2 (1920 x 1080) 22.94%

SunFlower (1920 x 1080) 22.69%

Tractor (1920 x 1080) 18.29%

Average 17.96%

Table 3.5: Search algorithm experiment results for twelve different 1920 x 1080 res-

olution sequences. For most sequences, proposed algorithm provides results that is

withing the bit-rate increase budget of 25%.

alternatively, SAD can be only calculated for the first MB and then results from the

first MB can be used for the second MB as well. Since pixels do match exactly, the

outcome will be exactly the same. MBs do not match with their neighbors very often

even in high-definition frames but if the two MBs are very similar to each other, the

SAD results can still be very close. There is a dependency between how similar MBs

are and how close SAD approximation is to the actual value. One way of defining

similarity is the ratio of SAD between two MBs and the maximum possible SAD (all

"1"s in one MB and all "0"s in the second):

SAD of two MBs
Similarity between MBs(%) = 100 - 16 o 16 M 5 X 100

16 x 16 x 255
(3.4)

So if two MBs do match exactly, their SAD is zero and their similarity is 100%.

This idea can be used to create a scheme where SAD calculation for one MB can

be bypassed based on similarity of the two current MBs (Figure 3-3). If the SAD

107



Figure 3-3: Block diagram of the SAD bypassing scheme. If the SAD between MBA
and MBB is smaller than the threshold, SAD calculations for MBB is bypassed
providing energy savings.

difference between MBA and MBB is less than the threshold, bypass is" 1" and

SAD between MBA and reference data is calculated alone. Moreover, to eliminate

switching activity on the SAD tree for MBB, 0 is input through the input multiplexer

in this case. It should be noted that during a motion search, the difference between

MBA and MBB is calculated only at the beginning. However, if bypass is 1, switching

activity in one SAD tree is avoided during the entire motion search.

Figure 3-4 shows the bit-rate increase vs. energy savings trade-off for bypassing

SAD calculation for two MB parallel implementation. On the x-axis, threshold is the

point below which SAD calculation of MBB is bypassed. On the y-axis, the ratio of

bypassed SADs to total number of SAD calculations and the bit-rate increase due to

this approximation are shown. For a threshold value at 2%, 15% of SAD calculations

can be saved with a bit-rate increase of around 1%. A higher threshold value can be

chosen for lower power at the expense of increased bit-rate.

3.3 Hardware Implementation Results

This section will discuss the hardware implementation of the motion estimation block

for multi-standard video encoder design.

108



40
15

(U__ __ ___9

0
M 10

4a 20-

0I 0F

0 2 4 6 8 10

Threshold [%]

Figure 3-4: Plot showing energy savings vs. bit-rate increase trade-off for different
threshold values. Sequence is oldtowncross at 1920 x 1080 resolution.

3.3.1 Top Level Block Diagram of Motion Estimation

Figure 3-5 shows the top level block diagram of the multi-standard motion estimation

module. All data inputs and outputs are provided through standard FIFO interfaces.

Since ten MBs are processed together, ten MBs worth of data is popped from the MB

pixels FIFO and then stored in MB Buffer. Similarly, reference pixels are taken from

Reference Pixels FIFO and stored in the Reference Buffer. MB Buffer and Refer-

ence Buffer are implemented with register-based memories to provide the necessary

bandwidth. Enable MB input determines if motion estimation will be performed for

any of the ten MBs as this decision can be done at the encoder level to lower power

consumption if intra-prediction result is sufficiently good.

Top Control block is the main control for inputs from and outputs to the FIFOs

as well as the data flow between internal blocks. Last Line Buffer holds the MV

information of an entire line to use this information in MVP. It should be noted that

from the two MBs that are processed in parallel from the same frame, the top one uses

the information from this buffer whereas the second MB only has the left and left-

top neighbors available for MVP. Integer Motion Estimation block performs integer

motion search and determines the best inter-prediction mode and best integer MVs.

Fractional Motion Estimation does not alter the mode decision from IME but only

109



makes a refinement for MVs. Finally, Reconstruction block provides the reconstructed

block for each MB depending on the final MVs that are selected since this information

can be used in the later stages of the encoder if inter-prediction is used for a MB.

Figure 3-5: Top level block diagram of the multi-standard motion estimation module.

3.3.2 IME Implementation

Figure 3-6 shows hardware block diagram of the IME part. There are ten blocks each

performing integer motion search for one MB. Pixels coming from MB Buffer and

Reference Buffer are multiplexed and proper inputs are provided to each block. If

some of the IMEONE-MB blocks need to be turned-off, IME Control makes sure that

data for those engines are not switching to prevent unnecessary switching activity.

Outputs of each engine are given to the output to be used in FME.

Figure 3-7 shows the micro architecture of each IMEONEMB engine. Two

candidates are evaluated every cycle. SAD calculations are done for 4 x 4 blocks since

the smallest sub-block size is 4 x 4 for all modes from 16 x 16 to 4 x 4 in AVC/H.264.

Then 4 x 4 costs are combined together to get the costs associated with other modes

in Combine Costs. For example, for 16 x 16 mode, outputs of all 4 x 4 SAD blocks

are summed together.

110



Control
Signals

MB Buffer

Reference
Buffer

IME Controld
x10.2

C0

(0

-g

Integer Motion Estimation

D

IME ONE MB

0ME ONEMB

Costs,
MVs

&
.., Modes

Figure 3-6: Block diagram of IME.

x2 --

Figure 3- costs

Figure 3-7: Block diagram of IME for one MB.

For AVC/H.264, motion cost is calculated as

Total Cost = SAD + A x (MVP - MV) (3.5)

where MVP is the MVP defined in the standard. So total cost is a function of the

MV's distance from the MVP. However, in VC-1, this additional term is not included

in the cost calculations. To handle this, MVP cost is calculated and multiplexed with

"0" cost.

After Combine Costs block, MVP cost is added and this cost is compared with

the best cost in Position Comparison block. At the end of motion estimation process,

111

Current
MB

Reference
MB

0-



best mode, best cost and best MVs are output.

Synthesis results of the IME block is provided in Table 3.6 for the target frequency

of the encoder. Area break-down of different parts of the design shows that SAD

trees account for 40% of the total area. Total gate count is 1.08M gates. Hardware

reconfigurability allowed > 85% of hardware to be shared between the two standards.

The area and timing overhead of the additional hardware inserted into the design to

support two standards are very small. IME engine implementation is common across

the standards and simple multiplexers that are inserted at various places in the design

are not in the critical path and introduce very small area overhead.

3.3.3 FME Implementation

Figure 3-8 shows hardware block diagram of the FME. There are two engines to inter-

polate 8 x 8 blocks and calculate their motion costs. Then Combine Costs/Decision

block combines the costs of 8 x 8 blocks and makes a decision on the best fractional

MV. FME Control sends control signals to internal blocks to maintain the flow of

data. Since FME is not supported for block sizes smaller than 8 x 8, FME Control

turns off FME_8x8 blocks if the best mode from IME contains blocks smaller than

8 x 8.

Figure 3-9 shows the micro architecture of a FME_8x8 block. AVC/H.264 in-

terpolator and VC-1 interpolators are implemented separately and their outputs are

multiplexed with is-vcl signal. For the unselected interpolator, inputs are driven to

Part Area(%)

SAD Rees 40%

MV Predictor Cost 31%

Position Comparison 7.5%

Combine Costs 2.5%

Other Parts and Sequential Elements 19%

Total 100%

Table 3.6: Area breakdown of IME part.

112



Control Signals
Info from IME

MB Buffer

Reference[
Buffer

2dl

FME Control

.2

Combine
S-:7 Costs/

Decision

Fractional Motion Estimation

Figure 3-8: Block diagram of fractional motion estimation.

O such that there is no switching activity inside these parts. In contrast to IME, SAD

calculation is done for 8 x 8 blocks in FME. Similar to IME, MVP cost is added to

SAD cost for AVC/H.264 to account for this additional cost. Finally, 8 x 8 block costs

are output to the higher level where these costs are combined and a final decision on

fractional MV position is done.

Figure 3-9: Block diagram of fractional motion estimation for an 8 x 8 block.

Synthesis results of the FME block is provided in Table 3.7 for the target frequency

of the encoder. Area break-down of different parts of the design is also provided in

this table. VC-1 interpolators account for 47% of the total area whereas AVC/H.264

113

Cost, MVs



accounts for 29%. This shows that VC-1 interpolators take 50% larger area when

compared to AVC/H.264 interpolators. This is mainly due to the usage of 4-tap

filters for quarter-pel positions in contrast to 2-tap filters of AVC/H.264 for quarter-

pel.

Lastly, SAD trees account for another 29% of the total area. Total gate count

is 1.76M gates. It should be noted that reconfigurable design resulted in 40% of

the FME area to be shared across two standards. Additional multiplexers to select

between two interpolators account for 6% of the total FME area.

3.4 Summary and Conclusions

Motion estimation is the largest and most power consuming block in video encoders

due to large bandwidth requirement and large switching activity. Moreover, driving

the inter-prediction portion, motion estimation directly affects coding efficiency of

encoders.

This chapter presents the design of a highly-parallel motion estimation engine

targeting a very high throughput while operating at a modest 25MHz to enable low

voltage operation. Parallelism is used extensively at the algorithm and architecture

level to achieve frame and MB parallel processing. Moreover, a "similarity-based"

scheme is proposed to bypass cost calculations and reduce switching activity. Search

algorithm development is done to provide the best trade-off between coding efficiency

and data bandwidth while being efficiently implementable in the frame and MB paral-

Part Area(%)

H.264/AVC Interpolator 13%

VC-1 Interpolator 47%

SAD Trees 29%

Other Parts and Sequential Elements 11%

Total 100%

Table 3.7: Area breakdown of FME part.

114



lel schemes. This design has the potential to support up to ultra-high definition level

(e.g. 16K x 8K pixels A 30fps) by boosting the voltage to full-VDD and increasing

the frequency to 400MHz.

Encoder design is done as a group consisting of a post-doctoral researcher and

three graduate students including myself. I was responsible for the design of the

motion estimation engine.

115



116



Chapter 4

Low-Power SRAM Design for

Multimedia Applications

Low-power SRAM design has been an important research area for many years as the

amount of SRAM on a single die has been continuously increasing over the years.

SRAM design is generally driven by three metrics: area, performance and power.

In most cases, area is the main driver in design decisions. Array efficiency which is

defined as

Array Efficiency Area of Memory Cell Array
Total Memory Area

is expected to be over 70% to be able to achieve high transistor density. Power

and performance are also important factors depending on the target application. For

example, for a modern micro-processor design, SRAMs are expected to run at the

same clock frequency with the processor core (3-4GHz).

In a dynamic voltage scalable system, running all individual blocks from the same

supply voltage provides simplicity in the design and avoids additional hardware such

as level converters. However, conventional SRAM's minimum operating voltage, Vmi n,

is generally higher than logic and consequently, SRAMs limit low voltage operation

in a system.

In this chapter, two SRAM designs will be discussed targeting voltage scalability.

The design decisions starting from bit-cell topology to peripheral assist circuits are

117



driven by area considerations as well as target VmL. This chapter begins with an

example target application for the low-power SRAMs discussed in this chapter. Then,

two separate SRAM designs are discussed: a 28nm 6T SRAM design achieving 0.6V

operation and a 45nm 8T design achieving 0.5V operation.

4.1 A Low-Power DSP for Multimedia Applica-

tions

Processors for next generation mobile devices will target operation on a wide supply

voltage range. At high voltage levels, high performance requirements can be satisfied

and high energy-efficiency goals can be achieved through scaling the supply voltage

down. For this purpose, the work in [42] presented a DSP system-on-chip (SoC) that

is designed to operate from 1.OV down to 0.6V in 28nm CMOS technology.

SRAMs for this SoC are designed by myself and will be presented in Section 4.2.

SoC design was done in collaboration with two other students (Nathan Ickes and

Rahul Rithe) and engineers from Texas Instruments and will be briefly discussed

here.

External components for

m P SOC an audio application shown

MMC Memory card
Control Registers Inst. Petch

In-circuit 16-32-bit Itm F S2 Audio

Emltin ===nst, Decode S DC Headphones

Fata Path B ~UART RS-232 (Debug)

JU~ SRAM
PID2 IM21.L2 32 Internal Me.sW

Execution Units DMA

Figure 4-1: Block diagram of the multimedia applications SoC. The design employs

600K gates and 1.6Mbits of SRAM in its Li and L2 caches.

Figure 4-1 shows the block diagram of the SoC. The DSP core is a 32 bit, 4-issue

VLIW processor based on Texas Instruments C64x+ core. SoC employs Li and L2

caches of sizes 32KB and 128KB respectively, an internal DMA and peripherals to

118



the outside world. The performance goals for this design were 400MHz at 1.OV where

various multimedia applications can be run and 20MHz at 0.6V where barebones MP3

decoding can be performed. The design employs 600K gates and 1.6Mbits of SRAM.

SRAMs being an important part of this design should also be operational on the

same voltage range to achieve energy scalability at the full system level. Hence,

special low voltage designs are necessary that are targeted for the 0.6V-1.0V range.

4.2 6T Low Voltage SRAM with Peripheral Assist

Circuits in 28nm

In this work, a standard high-density 0.12pm2 6T bit-cell array is designed to work at

low voltages (down to 0.6 V) using area-efficient peripheral assist circuits. An SEM

image of the bit-cell is shown in Figure 4-2 [83].

Figure 4-2: SEM image of the 28nm high-density (0.12pm 2 ) 6T bit-cell.

The principle mechanisms used to enable low voltage operation of this SRAM are

1. short local BLs, which minimize read disturbances on the bit-cell,

2. word-line (WL) voltage boosting to ensure write-ability at low voltage levels

and

3. large-signal sensing of the local BLs, to maximize area efficiency.

It should be noted that using larger transistors can aid with low voltage operation

as larger transistors are less susceptible to process variation. Specifically, Pelgrom in

119



[88] showed that the standard deviation of the threshold voltage is inversely propor-

tional to the channel area. However, increasing transistor sizes would result in an

increase in the bit-cell area and consequently degrade area efficiency. The 0.12pm2

bit-cell used in this work is an industry-standard high-density bit-cell and low voltage

operation is achieved through the assist circuits which will be discussed next.

4.2.1 SRAM Array Architecture

Figure 4-3 illustrates the array architecture.

Ir- ~ ~ ~ ~ - - -I -WAM

a
I
I
I
U
I
I
I
U
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

II

I I

cal R/

Figure 4-3: Array architecture for the 28nm low-power SRAM design.

Stripes of local read/write (R/W) circuitry are inserted inside the memory cell

array. Each local R/W stripe is shared across two sub-arrays of 32 rows and 256

columns. These R/W circuits are coupled to the local bit-lines (BLs) of the sub-

arrays. A detailed view of four columns of memory cell array and the implementation

of the local R/W circuit is also shown in Figure 4-3. During a read operation, signal

development on the local BLs is sensed through a pair of inverters and pull-down

120



devices connected to the globalBLs. Similarly, for the globalBLs, large signal sensing

is used through cross-coupled static NAND gates. During a write operation, the

local BLs are driven by one of the two NMOS devices in the R/W circuitry and the

cross-coupled PMOS devices connected to the local BLs. The polarity of data/dataB

inputs determines which data is written to the selected bit-cells. Lastly, data/dataB

pair is driven to "0" during a read operation.

4.2.2 Short Local Bit-lines Reduce Read Disturbance

Traditionally, read margin is characterized through SNM analysis which does not

consider any dynamic effects [53]. However, read disturbance of a bit-cell involves

dynamic transitions of the BLs and recent work focuses on the dynamic nature of

read margin [89, 90, 91]. To capture the effect of BL transitions on the bit-cell

stability, read margin must be modeled and analyzed through transient simulations.

JF -MO - -,WL I CWL

Figure 4-4: Simulation setup for dynamic read margin characterization.

Figure 4-4 shows the dynamic read margin simulation setup. Two DC voltage

sources are placed between the cross-coupled inverters. Layout extraction is used to

capture the BL and WL capacitance values. Then the values of DC sources are swept

in consecutive transient simulations up to the point where a read operation alters

the state of the bit-cell. To reduce simulation time, a coarse-to-fine three-step search

approach with 100, 10 and 1mV step sizes is used.

Results of the dynamic read margin and static simulations are shown in Figure

4-5. A smaller number of cells on a bit-line results in a faster bit-line transition and

exposes the bit-cell to read disturbance for a shorter period of time. This significantly

121



t)

E 04 Static sim.
. 05 06 07 0.8 0.9 1

VDD [V]

Figure 4-5: Dynamic read margin simulation results on 0.5V-1.0V voltage range.

improves the read margin and enables correct operation at a lower supply voltages.

In this work, a limit of 32 cells/BL is necessary to ensure operation down to 0.6 V.

Although using a smaller number of cells on BLs improves read margin, the re-

sulting repetition of the local R/W circuit reduces area efficiency. To minimize area

overhead, the local R/W circuit is designed by using minimum number of transistors

and by sizing each transistor carefully. In layout, R/W circuit's height is limited to

only 2.4ptm, as shown in Figure 4-6-a. Figure 4-6-b shows the area overhead of the

local BL architecture compared to a conventional implementation with 512 cells/BL.

Area overhead increases rapidly with smaller number of cells per BL. In this work, se-

lection of 32 cells/BL provides significant improvement of read margin at the expense

of 15% area overhead.

4.2.3 Voltage Boosting Increases Write-Ability

At low voltage levels, transistor variation causes write-ability problems and in this

work, WL voltage boosting is used to overcome this issue.

The voltage boosting circuit used to generate the WL voltage is shown in Figure

4-7 [70]. The VDDBsT node is used to power up the last level of buffers in WL driver

circuits. The operation of the WL voltage boosting circuit is as follows: During a

write operation, in the first half of the clock cycle, the boost signal is kept low and

the WL is first asserted to VDDARRAY- Then, after the negative edge of the clock,

122



CelAr ray

Local R/W
Stripes

(a)

15

5

0

0

0

41632 64 128
Number of cells/BL

(b)

Figure 4-6: (a) Layout snapshot of an SRAM macro with a zoomed-in view of the
local R/W circuitry and (b) area overhead for different cells/BL with respect to a
conventional implementation with 512 cells/BL.

voltage boosting takes place. Triggered by the boost signal, charge stored across

the capacitor is used to elevate the voltage level on node VDDBST above the array

voltage, VDDARRAY.

The amount of necessary voltage boosting is decided by the write margin simu-

lations. Figure 4-8 plots write margin improvement with 1OOmV of voltage boost on

WL node. An overdrive of 1OOmV is adequate for correct operation down to 0.6 V.

The size of the capacitor is selected carefully with respect to the capacitive loading

of the WL driver to ensure correct amount of voltage boosting.

Since only one row of a sub-array is active at any given time, the boosting circuit

and capacitor can be shared across all 32 rows of a sub-array. To further reduce the

area impact, large capacitors are placed underneath the metal wiring of the address

123



VDDBsr

Figure 4-7: WL voltage boosting circuits used in the design.

decoder as shown in Figure 4-9 with a layout sketch. Similar shared boosting circuits

are used in the column-select (CS) and data-line signal generation to achieve robust

low voltage operation. For data boosting circuit, the load capacitance is smaller and

boosting capacitors can be correspondingly smaller. The area overhead due to voltage

boosting circuits in this design is less than 4%.

Timing of the boost signal is critical, as turning on the boost circuit too early will

result in loss of charge stored on the capacitor and turning on the boost circuit too

late can degrade the performance of the SRAM. For this design, we used the negative

edge of the clock to trigger voltage boosting using inverter delay lines in the timing

circuit. The pulse width of boost signal is chosen through transient Monte-Carlo

2 WLVDDARRAYlOOm V

1.5

0.5
VWL=VDDARRAY

z 0.6 0.7 0.8 0.9 1
VDD [VI

Figure 4-8: Write margin improvement with 1OOmV of WL overdrive.

124



VDDBsT routing -'
every Srows )I----IL-- _ 1

4.

am
II

j

-A

Row Circuit x 32
Decoder "boost" signal
Routing , from timing circuit,

Figure 4-9: Sketch of the WL voltage boosting circuit's layout placement with respect
to other blocks.

simulations on the bit cell to allow enough time for write operation to be performed.

For the voltage boosting circuit, the boost signal is sent from the timing circuit to

trigger WL boosting operation. Similar boost signals are used for CS and data boost

circuits. Charging/discharging time of the boosted signals can be overlapped with

BL pre-charging time and does not require additional margin for functionality.

Finally, in layout, the power lines associated with VDDBST need to be routed

such that the metal parasitic capacitances on them are minimized, as these parasitics

will add to the load capacitance and affect the amount of voltage boosting. However,

the lines also need to be dense enough to prevent IR drop when the current drawn

from this node spikes. We chose to route a power strap every 8 rows as a balance as

shown in Figure 4-9.

4.2.4 Improving Read Access Time

The differential read path from the bit-cell to globalBLs is shown in Figure 4-10.

To improve read access time, first, NMOS switches are selected for column-

multiplexing since a large-signal development is necessary on the local BLs. Secondly,

sensing inverters are designed to favor a low-to-high transition to speed up the sig-

nal propagation from local BLs to globalBLs. This is done by designing the PMOS

125



devices larger than the NMOS devices of the sensing inverters. Finally, differential

globalBLs are used to read data from the sub-arrays to maintain signal integrity even

at low voltage levels. The last level of sensing on the globalBLs is done through a

pair of cross-coupled NAND gates which are not shown in the figure.

Although the cell variation affects both hierarchical sensing and conventional

small-signal schemes, in the small-signal scheme, signal propagation on the long BL

(512 cells/BL) would dominate the delay, and read path delay is severely sensitive to

cell variation especially at low voltages. However, in the hierarchical sensing approach,

local BL driven by the bit-cell is much shorter (32 cells/BL) and the propagation con-

tinues through the local sense and NMOS pull-down device in the peripheral circuitry.

These devices can be designed to be slightly larger with minimal area overhead for

a target performance improvement and this reduces their susceptibility to variation.

Thus, hierarchical sensing approach provides better worst-case delay at low voltage

levels.

Simulated read access time distributions are shown in Figure 4-11. As a reference

design, a conventional implementation is also considered which employs small-signal

3) Differential
large-signal dy
GlobalBLs i ,

1) NMOS
'1' switches for '

ilarge-signal I
sensing

2) Sensing S
Inverters VTCbW 6d
favoring - -....--..

low-to-high
transitions

Figure 4-10: Differential read path from bit-cell to globalBLs and read access time
improvements done in this design.

126



150

0 iooCONVENTIONAL

Read Path Delay [ns]

300

0 I0

E200 ii. THIS WORK1

15 30 45 60
Read Path Delay [ns]

Figure 4-11: Read access time distributions for a conventional design with 512
cells/BL and 50mV sense-amplifier input offset and for this work.

sensing with 512 cells/BL and a sense-amplifier input offset of 50mV. At 0.6 V,

distributions show that the improvements explained in this subsection result in 1.8 x

reduction in worst-case read access time.

4.2.5 Waveforms of Critical Signals in SRAM array

Figure 4-12 shows the waveforms of critical signals during write and read operations.

Inverter delay lines are used to create different edges from the clock.

A write operation starts with the rising edge of the clock. WL is asserted after a

short delay. During the first half of the clock cycle, WL is kept asserted to VDD and

half-selected bit-cells undergo a read operation. Voltage boosting takes place after

the negative edge of the clock. clmnSel and data signals are boosted first to provide

enough time for local BLs to settle to their appropriate values before WL boosting

takes place.

Read operation starts with the rising edge of the clock as well and similarly, WL

is pulled high after a short delay. The cimnSel assertion is delayed with respect

to WL not to expose the bit-cell to the additional capacitive loading of local R/W

127



CLK

WL

clmnSel

locaiBLB

globalBLB

data

pchgB

write I read 'I'

---------- ------------ I -------------

------- --------------
-- --------- -------- 7 ---------------------- L .

--------- - ------------------- T
----------------------- -----------77 m- 7 t- -=- L,

---------- ----------------------------------
I

0
I I

25 50
time [ns]

II
75 100

Figure 4-12: Waveforms of critical signals during a write and read operations.

circuit. The clmnSel signal is boosted during a read operation as well to improve the

performance of slower read paths.

4.2.6 28nm Test Chip Architecture

Figure 4-13 shows the test chip architecture. Four SRAM blocks with different sizes

are placed on the test chip.

Test Chip
s128Kbit SRAM Macro

Gen.

Figure 4-13: Top level architecture of the 28nm SRAM test chip.

128

I



Address and data can be generated from on-chip circuits or can be input from

outside the chip. On-chip address and data generation make the testing and char-

acterization easier. Address generator consists of an up-counter and some additional

logic to go through different addresses. Data pattern generator consists of shift reg-

isters combined with multiplexers to create different patters. An example pattern is

checker-board pattern consisting of alternating zeros and ones. By writing different

combinations of these patterns, worst-case as well as best-case conditions on SRAM

leakage and active power and BL leakage can be easily generated.

Because of the pad limitations, output bits are multiplexed to the output. A

32-bit wide 8 words deep output array is used to hold the data read from SRAMs.

Multiplexers embedded into this output array enable outputting different parts of the

SRAM rows to the output.

Figure 4-14: Die photograph of the 28nm SRAM chip.

Lastly, a configuration register is implemented as a shift register to set various

configuration bits in the design.

129



4.2.7 28nm Test Chip Measurement Results

Ideas presented in this section are implemented in a 28nm low-power CMOS process.

A separate chip is fabricated for the low-power DSP which employing SRAMs from

this work as well. A die photograph of the test chip is shown in Figure 4-14 and

Table 4.1 summarizes the features of this test chip. Size of the die is 2.3mm x 2.3mm

and total pin count is 132. Four SRAM macros are placed on a die with total size of

240Kbits on a die.

SRAMs designed in this work are used in a separate low-power DSP chip imple-

mentation as explained in Section 4.1 [42]. Die photograph of the 28nm test chip is

shown in Figure 4-15 and 1.6Mbits of SRAM blocks are highlighted on the figure.

Figure 4-15: Die photograph of the 28nm low-power DSP chip featuring 1.6Mbits of

the 28nm SRAMs described in this section.

For testing purposes of the 28nm SRAM test chip, fabricated die are packaged

into a 144-pin QFP ceramic package and a 4-layer test PCB board is designed.

Figure 4-16 shows measured performance vs. VDD shmoo plot. SRAMs operate

from 1.OV down to 0.6V. On this voltage range, SRAM performance scales from

400MHz down to 20MHz. This meets the initial target of the design. Although some

bit errors occur above 0.6V, they are below the repairable limit which is two rows and

two columns of redundancy. It should be noted that redundancy is not implemented

130



Technology 28nm Low-Power CMOS%

Die Size 2.3mm x 2.3mm

Number of Pads 132

Total SRAM on die 240Kbits

SRAM Macro Organization 1K words x 128bits/words

Column-Interleaving Ratio 4-to-1

Bit-cell Size 6T HD (0.12ptm 2 )

Voltage Range 0.6V - 1.OV

Table 4.1: Summary of the 28nm test chip.

1.0V

0.9V

> 0.8V

0.7V

0.6V

9
I

I I
"I I

I A ..... I I ... . . I I i
50 100 150 200 250 300 350 400

Frequency (MHz)

Figure 4-16: Measured performance vs. VDD shmoo plot.

in this work but the design is compatible with redundancy implementation as well.

Figure 4-17 shows the scope snapshot of one of the SRAMs when operating at

0.6V. Clock input and one of the output bits is shown on the figure.

4.3 8T Column Interleaved SRAM with Sense-Amplifier

Reference Selection in 45nm

This section presents the second SRAM design for this chapter. Employing an 8T bit-

cell and fabricated in 45nm technology, this design proposes a new array architecture

to allow column-interleaving for the 8T bit-cell and also utilizes an on-chip reference

131

I



CLK JJJv

DATA OXsv

Ohi 500rnY 0h2 500mY M 40.Ons 2.5GS/s IT 160ps4t
A Ch2 f 500nW

Figure 4-17: Scope snapshot of clock input and one of the data output bits when
operating at 0.6V.

selection loop to perform sense-amplifier offset reduction.

4.3.1 Column-Interleaving with 8T Designs

As mentioned in Section 1.4, 8T bit-cells hold great promise for overcoming device

variability in deeply scaled SRAMs and enabling aggressive voltage scaling for ultra-

low-power. However, if used with column-interleaving, 8T bit-cell suffers from "half-

select" problem. During a write operation, un-accessed bits on the accessed row

experience a condition that is equivalent to a read disturbance on a 6T cell. Hence,

8T designs ( e.g. [62],[70]) often prefer "one-word-per-row" architectures to avoid the

half-select conditions. The work in [63] addresses this problem by applying a "read-

then-write-back" scheme whereas the work in [66] proposes a 10T bit-cell that can be

column-interleaved by vertical and horizontal word-lines (WL). Column-interleaved

architectures (Figure 4-18) are almost always preferred due to

1. increased soft-error immunity and

2. better sense-amplifier area utilization.

132



No Column-Int.

A[15:0] FB[15:0]

- A B[15] B[14 B[]

Column-Int. A1 B[15J A B[144 ----------. [0

Figure 4-18: Physical allocation of two words in column-interleaved and non-column-
interleaved architecture.

First, in a column-interleaved architecture, bits of a word are spatially separated

in the row and simple single-bit error correction coding (ECC) can be used to address

soft-errors. Non-interleaved architectures, however, require more complex multi-bit

ECC schemes which can be costly in terms of area and delay. Second, only one of many

columns are active in a column-interleaved architecture which enables sense-amplifier

sharing across multiple columns. In contrast, non-interleaved SRAMs require a sense-

amplifier for each column to read all bits of a word at the same time.

Maximum attainable SRAM performance is limited by the weakest bit-cell and

its ability to create a voltage differential on the bit-lines (BL) that is larger than the

input offset of the worst sense-amplifier. In deep-sub-micron technologies, transistor

mismatches are becoming more prominent. Hence, to keep its input offset at an

acceptable level, sense-amplifier area cannot scale down as rapidly as the bit-cell

area. This introduces a significant area problem with regards to the sense-amplifier

and the problem is exacerbated in 8T designs without column-interleaving where

sense-amplifier area cannot be shared across multiple columns.

Figure 4-19 demonstrates the trade-off between array efficiency (AE) and sense-

amplifier offset with and without column-interleaving for an array size of 64 rows by

64 columns (64 rows of 64-bit words).

It can be seen from Figure 4-19 that a higher array-efficiency demands a smaller

sense-amplifier area and consequently results into a larger input offset voltage. In-

creasing column-interleaving (clmn-int) ratio, however, provides better array effi-

ciency for the same offset voltage by amortizing sense-amplifier area over multiple

columns.

133



100

4 0 V-----------

0

60 40.60.80.100
N

E

J.§

200
20 40 60 80 100

Array Efficiency (%)

Figure 4-19: Sense-amplifier offset vs. array efficiency with different column-
interleaving ratios.

In this section, we will present an array architecture and circuits with minimal

area overhead to allow column-interleaving while eliminating the half-select problem

for 8T bit-cell. This enables sense-amplifier sharing and soft-error immunity. To

further reduce sense-amplifier offset, a reference selection loop is also designed and

implemented in the column circuitry and will be discussed in this section. By choosing

one of the two reference voltages for each sense-amplifier in a pseudo-differential

scheme, selection loop effectively reduces input offset.

4.3.2 Column-Interleaved Array Architecture for 8T Bit-cell

Conventional bit-cell layout has an aspect ratio close to three i.e. its width is three

times longer than its height. Consequently, efficient placement of additional tran-

sistors into bit-cell pitch in the horizontal direction can be more area efficient when

compared to the vertical placement.

Figure 4-20 shows a simple schematic illustration of a unit portion of the pro-

posed array architecture. Four new transistors are inserted between four bit-cells.

BL-ports of adjacent cells are shared horizontally (intBL/intBLB) and column-lines

134



CL<0> CL< CL<2> CL<3>

Figure 4-20: Schematic illustration of the proposed architecture suitable for column-
interleaving. BL/BLB-ports of four bit-cells are shared in horizontal direction and
Column-Line (CL)s are routed in vertical direction. rowSel selects the active row.

(CL) are routed vertically and connected to the access devices of the 8T bit-cells.

Only the CLs of the active columns are asserted during a write access. The rowSel

signal selects active row and drives internal-bit-lines (intBL/intBLB) to global-bit-

lines (GBL/GBLB) through NMOS pass-gates. Although these pass-gates cause a

degradation on logic levels, bit-cells are sized to ensure write-ability under this con-

dition.

For un-selected rows (i.e. rowSel= "0"), intBL/intBLBs are isolated from GBL/GBLBs.

Therefore, an un-selected bit-cell needs to drive a small intBL/intBLB capacitance.

As explained in Section 4.2, small BL capacitance significantly improves bit-cell sta-

bility and hence resulting half-select-disturbance on this cell is small. At the end

of every write-cycle, The pchArray signal is asserted for a short period of time to

pre-charge intBL/intBLB to a known state. This is necessary because the previous

state of intBL/intBLB can cause an elevated level of disturbance on the half-selected

bit-cells. Finally, a read-access is done through the read-buffer of the 8T cell in the

conventional way.

Layout realization of the schematic illustration in Figure 4-20 is shown in Figure

4-21.

The following steps are taken for efficient layout implementation.

135



BC BC BC BC eeee

Figure 4-21: In layout, additional NMOS transistors fit in the bit-cell pitch providing
area efficient implementation. RDWL is used instead of rowSel which allows shorting

of poly-layer between bit-cells and row-select NMOSs.

1. Devices connected to pchArray are chosen to be NMOSs to be able to stack

them with row-select devices.

2. RDWL for each row is used for rowSel to prevent extra metal routing. During

a write-access, RDWL is also asserted to select the active row.

3. intBL and intBLB are shared between adjacent rows from above or from below.

Hence, effectively eight bit-cells share the same local-bit-line. To prevent two

bit-cells driving same internal-bit-line, two separate CL signals are routed for

each column and they are connected to bit-cells on alternating rows (CL < 0 >

and CL < 1 >) in Figure 4-22-a.

Area overhead of this layout implementation compared to a conventional 8T array

with non-interleaved architecture is 12%. This is due to i) four additional NMOS

devices and ii) non-overlapping CL contacts between adjacent columns of bit-cells.

In layout, minimum sizes allowed by core design rules are used.

Complete schematic of three rows and four columns of the proposed architecture

and waveforms of critical signals are shown in Figure 4-22.

Since RDBLs (not shown in Figure 4-22 for simplicity) are used for selecting the

active column during write accesses, RDBLs are kept low and only pre-charged to

VDD at the beginning of a read cycle to prevent unnecessary RDBL discharge during

write accesses. pchArray is pulled to high at the end of a write cycle and kept high

136

c------ntBLB RDBL
M M CQ RDWL

poly MMO,
S:CLM M activeIntBL ' ---- n-well

GBL GBLB RDWL

IntBL N 0 IntBLB

VDD VDD pchArray



(a)

R/W WRITE WRITE READ

clk

CL

pchArray

(b)

Figure 4-22: (a) Schematic of three rows and four columns of bit-cells in proposed
architecture and (b) waveforms for important signals during read and write accesses.
RDWL is used for row-select during write operation and pchArray signal is asserted
at the end of each write cycle.

during a read access.

4.3.3 Reference Selection Loop for Sense-Amplifier

Sense-amplifier input offset is a critical metric directly impacting the performance of

an SRAM. Because of the single-ended RDBL, 8T designs often use pseudo-differential

sense-amplifiers where one of the inputs is connected to RDBL while the other one is

connected to a reference voltage.

Figure 4-23 shows input offset of a widely-used sense-amplifier [77]. Four PMOS

137



REFI REF2

300 . . -

200 IN

o ENA
-50 -25 0 25 50

Figure 4-23: Sense-amplifier offset distribution and two-reference voltage scheme.
Reference levels can be chosen to reduce the offsets of the sense-amplifiers.

transistors that pre-charge internal nodes of the cross-coupled inverters are not shown

for clarity. Reference voltage (VREF) should be selected such that:

1. A sense-amplifier with a large negative offset can output '1' when RDBL=VDD

(neglecting leakage from RDBL) and

2. A sense-amplifier with a large positive offset can output '0' if RDBL is suffi-

ciently low after discharged by the bit-cell.

For a worst-case input offset of ±50mV as shown in Figure 4-23, VREF can be

placed 50mV below VDD . As a result, to sense a logic low, RDBLs should be

discharged by at least VDISCH=100mV. Alternatively, if two reference voltages are

available (VREF1, VREF2), these voltage levels can be selected to compensate for the

offset of each sense-amplifier. Specifically, a sense-amplifier with a negative offset

can be assigned a higher reference and a sense-amplifier with a positive offset can be

assigned a lower reference voltage. This lowers VDISCH and hence improves SRAM

performance significantly at low voltages where the ratio of worst-case cell current

to nominal cell current is very large due to variation. The work in [92] proposes a

similar approach with 16 reference voltage levels for a specific SRAM architecture

where a hierarchical sensing scheme is used and total number of sense-amplifiers are

138



much lower.

In this work, column-circuit is designed with a simple reference selection logic and

two reference voltages. To minimize area overhead, only a latch and a few logic gates

are used. At the start-up, selection loop is triggered by a series of off-chip signals

and each sense-amplifier is tested with RDBL=VDD and VREF=VREFH. If the output

of the sense-amplifier is correct ('1'), then VREFH is selected. Otherwise, VREFL is

assigned to the sense-amplifier. The result of the selection loop is stored in a latch in

column circuit.

0 100ps 200ps 300ps
* * * IVDD 1

RDBL: :REF I #

Sense-i REF BL -
....... A." * 0 1OOps 200ps 300ps

(a) (b)

Figure 4-24: Effect of coupling to RDBL and REF nodes with different capacitive

divider ratios. Different level of coupling to input transistors alters sense-amplifier
inputs and negate the effect of offset compensation.

Robust operation of the sense-amplifier and the offset reduction through reference

voltage selection relies on stable, low-noise reference levels. In a single-reference

scheme, large decoupling capacitors for REF can be placed and their area can be

amortized over the entire array since every sense-amplifier is using the same reference

voltage. However, for our scheme, each sense-amplifier is connected to its assigned

reference voltage through a PMOS switch. Figure 4-24 plots the effect of signal

coupling on sense-amplifier inputs. After the assertion of EN, node V is rapidly

pulled down which is coupled to both inputs through capacitor dividers. If divider

ratios are significantly different, RDBL and REF voltages are altered at the beginning

of sensing. Although REF is actively driven by a PMOS, the response of the PMOS

139



to this coupling might not be adequate especially at the early stage of sensing. To

address this problem, in this work, GBLB for every column is connected to REF

during read-accesses. GBLB is designed to have a capacitance very close to CBL SO

the amount of coupling to both inputs is almost the same.

4.3.4 45nm Test Chip Architecture

Test chip consists of four macros each having 256 rows and 128 columns. A column-

interleaving ratio of 4-to-i is implemented for the standard 8T cell. Address and data

generation circuits similar to the ones explained in Section 4.2 are placed on the chip

to ease testing and characterization.

4.3.5 45nm Test Chip Measurement Results

A column-interleaved architecture suitable for 8T bit-cell and reference selection loop

for sense-amplifier ideas are implemented in a 128Kbit 45nm SRAM test chip. Die

photo is shown in Figure 4-25 and Table 4.2 provides a summary of the test chip.

Die size is 0.9mm x 1.5mm and total pin count is 46. Die are packaged into a 64-pin

QFP ceramic package for testing.

Technology 45nm Low-Power CMOS

Die Size 0.9mm x 1.5mm

Number of Pads 46

Total SRAM on die 128Kbits

SRAM Macro Organization 256 words x 128bits/words x 4 blocks

Column-Interleaving Ratio 4-to-I

Voltage Range 0.5V - 1.1V

Table 4.2: Summary of the 45nm test chip.

Test chips achieve functionality down to 0.6V with no bit-errors and down to 0.5V

with 2 x 10-4 bit-error-rate.

Figure 4-26 shows measured performance of the test array. When operating at

140



Figure 4-25: Die photo of the 128Kbit SRAM test chip fabricated in 45nm CMOS
process.

1.1V, this design achieves 450MHz read and write functionality. Reference selection

loop improves performance by around 10%. Leakage power scales down from 179ptW

to 10.7pLW on 1.1-0.5V range. Below 0.5V, write-ability problems begin to emerge

and increase bit-error-rate to 10-3 at O.4V.

Figure 4-27 plots measured energy vs. VDD for the 45nm SRAM test chip. Active

and leakage components of the total energy are plotted on the figure. Leakage energy

increases rapidly because of the rapid performance drop as VDD approaches sub-VT

region. Active energy scales down quadratically with VDD as expected. Total energy

makes a minimum around 0.5V. As mentioned above, bit failures occur at O.4V but

the error rate is very low to have an effect on the measured energy.

4.4 Summary and Conclusions

Due to the increasing amount of SRAMs in SoC, SRAM energy is becoming a de-

termining factor in the overall energy-efficiency of a system. Voltage scaling is an

effective way of reducing energy/operation for digital circuits and applying voltage

scalability to SRAMs is a critical problem because conventional SRAMs suffer from

functional failures as the supply voltage is scaled down.

141

Block< #3

Block <#4

Block< #1

Block< #2



with offset.eduction - --...............

S2
... .. .. .1it - of s e - -u o ....

0 -.. ..... -.-........ .... :.----

~~~~.M.... :5zH

0.5 0.6 0.7 0.8 0.9 1 1.1
VDD (V)

Figure 4-26: Measured performance vs. VDD with and without offset reduction.
SRAM performance scales from 450MHz down to 5.8MHz over the voltage range.

Since SRAMs are often designed with minimum-size devices to maximize transistor

density, their operation is severely affected by process variation. At low voltages, the

exacerbated effects of transistor variation limit SRAM operation due to functional

failures related to the bit-cell or related to peripheral circuits such as sense-amplifiers.

Since an SRAM consists of a large number of bit-cells and peripheral elements, it is

essential to consider the worst-case process, voltage and temperature conditions on

these circuits to ensure robust operation at low voltages.

Different bit-cell topologies and various peripheral assist circuits are considered in

this chapter for achieving low voltage operation.

First, a 6T SRAM is considered. Trade-offs associated with achieving 0.6V opera-

tion by supporting an industry-standard 6T bit-cell with peripheral assist circuits in

28nm CMOS is analyzed. With this approach, no area overhead is introduced at the

bit-cell level and overhead associated with peripheral circuits is amortized across the

142

i
a

1-11x 1

+ Le a
U Act

-+--Tot

..-..

0.6 0.8
V DD(V)

1

Figure 4-27: Measured energy vs. VDD -

entire macro. Short local bit-lines, voltage boosting and low voltage oriented read

path optimization ideas are developed and implemented in a test chip. Fabricated

chips show functionality down to 0.6V while SRAM macros achieve an array efficiency

of -70% with <21% area overhead. In comparison, a conventional array employing

the same bit-cell would start to fail below 0.9V and an 8T design achieving 0.6V

would introduce 35-40% area overhead in the bit-cell.

8T bit-cell holds great promise for overcoming device variability in deeply scaled

SRAMs and enabling aggressive voltage scaling. However, one major limitation of

this topology is the half-select problem which occurs if an 8T bit-cell is used in

a column-interleaved architecture. This led many 8T designs to be implemented

without column-interleaving at the expense of potential area savings.

Second SRAM design presented in this chapter addresses this problem by intro-

ducing a new array architecture to allow column-interleaving for the 8T bit-cell. The

143

41

31

2i

1K_

0
0.4

kage
ve

l.

..

12% of area overhead introduced at the array can be justified by >20% area savings by

4-to-1 column-interleaving and shared sense-amplifiers (for the same sense-amplifier

offset in both cases). Moreover, an on-chip reference selection loop is implemented to

boost performance by ~10%. The 45nm design achieves functionality down to 0.5V

with nearly 80 x scaling in performance which makes this design very suitable for

applications with large variations in throughput requirements.

It should be noted that the target Vmim is extremely important and critical on

the design decisions such as bit-cell topology and assist circuits. For designs with

extremely low Vmin, 8T bit-cell is the suitable option. However, although 8T bit-cell

is regarded as the main low voltage option, this work demonstrated that a high-density

bit-cell supported with assist circuits can achieve low voltage operation and be more

area efficient than an 8T design. Hence, tailoring the SRAM design to the needs of

an application provides the best trade-off in terms of area, power and performance.

144

Chapter 5

Motion Estimation Specific SRAM

Design for Low-Power Operation

Application-specific designs can improve energy efficiency when compared to general-

purpose designs as the former has the opportunity to optimize for the specific needs of

a single scenario whereas the latter has to support a wider range of possible scenarios.

Supporting a wider range of scenarios often results in a larger hardware and larger

energy consumption.

The concept of hardware reconfigurability (e.g. reconfigurable SRAM in [46])

provides a balance between the two ends of the spectrum. By introducing some

programmability to the hardware, a design can support more than one scenario while

introducing minimal penalty in area and energy-efficiency.

Voltage scaling is an effective method to achieve energy savings at the expense of

lower performance. An application-specific design, on the other hand, can provide the

next level of energy consumption savings on top of the savings from voltage scaling.

This can be very critical for applications running from a limited energy source. In this

chapter, we will present the design of an SRAM that has been tailored at the transistor

level to fit the features and necessities of its target application. It should be noted

that although the SRAM design presented here is targeted for motion estimation, it

can be used for other applications possessing similar features like motion estimation

as well.

145

5.1 Motion Estimation Specific Features

In motion estimation, reference pixel buffers constitute the dominant portion of on-

chip storage. In this section, we will make some observations and demonstrate analysis

results of some specific features of SRAMs in motion estimation. These features

will be critical in designing a circuit level low-power SRAM solution specific to this

application.

5.1.1 Correlation of Pixel Data in Reference Buffers

In hardware implementation of video encoders, motion estimation is performed on

the luminance (Y) component of the frame data to reduce hardware complexity by

reducing the number of computations and on-chip bandwidth. For the chrominance

(U, V) components, MVs calculated for the corresponding Y component are used. In

other words, cost calculations are performed on the Y component of the pixels.

It should be noted that the contents of the reference buffer are portions of a

previously coded frame. For example, for a block size of 64 x 64 and a search range

of ±64 in both directions, a block of 192 x 192 pixels of the reference frame is filled

into the reference buffers. Since these pixels are coming from the same part of the

frame, there is a good chance that these pixels belong to the same object or same

background. Moreover, since only Y components are used in motion estimation, the

luminance of a part of the frame can be highly correlated i.e. pixel values are similar.

Figure 5-1-a and Figure 5-1-b show two video frames and mark areas with high

correlation of pixels. Traffic sequence in Figure 5-1-a consists of many small objects

moving but still has large areas in the background where pixel luminance is corre-

lated. Another example is BasketballDrive sequence in Figure 5-1-b. Although it is

a sequence with fast motion, large background areas are present in the frames.

To quantify the correlation of pixels, a block average can be calculated for every

16 x 16 region and then the difference of each pixel value from the block average can

be plotted. Figure 5-2 shows the distribution of these differences for the video frames

in Figure 5-1.

146

(a)

(b)

Figure 5-1: One frame from (a) 2560 x 1600 Traffic sequence and (b) 1920 x 1080
BasketballDrive sequence. Areas with high correlation of pixels are marked with
white rectangles.

The distributions of differences from block average show that 58% and 76% of the

pixels lie within ±3LSB of the block average. In other words, out of 8 bits of a pixel,

more than half of the bits can be the same with the block average. Of course, the

binary representation of the pixels will result in the MSBs to switch at certain values.

For example, from the binary representation of 127 ('01111111') to 128 ('10000000'),

all bits do change. However, it should be noted that this is a corner case. Moreover,

a simple mapping can be done by shifting every pixel's binary representation by a

certain value [93] to reduce these effects.

147

2.5

2--

1.5 -.-
e

00.5

+6LSB +3LSB-3LSB -6LSB
Variation from Average in LSB units

(a)

2
! 0

01 5

1.5 --

+6LSB +3LSB-3LSB -6LSB
Variation from Average in LSB units

(b)

Figure 5-2: Distribution of pixel values from 16 x 16 block average for (a) 2560 x 1600
Traffic sequence and (b) 1920 x 1080 BasketballDrive sequence.

5.1.2 Access Patterns for Reference Buffers

As explained in Chapter 2, data reuse between consecutive blocks is necessary for

reducing off-chip bandwidth. Reusing the same data for more than one block results

in the same data to be read multiple times from the reference buffer before it is

overwritten. Moreover, depending on the implementation of the search algorithms,

same reference data can be accessed multiple times even for the same block. An

example is the fast search algorithm in HM-3.0 where multiple passes of refinement

are done. This results in the number of read accesses to be higher than the number

of write accesses for reference buffers in motion estimation. Consequently, energy

148

consumed during read accesses is more dominant in total energy consumption of the

reference buffers.

For the CCE motion estimation algorithms presented in Chapter 2, read-to-write

ratio in reference buffers is found to be slightly larger than three.

5.2 A 65nm Application-Specific SRAM Design Tar-

geted for Motion Estimation

As explained in Section 5.1, SRAMs in motion estimation possess two important

features. First, the data stored in the reference buffers is correlated. Secondly, the

number of read accesses is higher than the number of write accesses so addressing

read energy consumption is more critical for reference buffers. So a design taking

these features into consideration can provide significant benefits in terms of energy-

efficiency.

5.2.1 Contribution of Bit-line Switching to SRAM Power

Consumption

From [94], during a read operation, SRAM power consumption can be given as

PACC,RD = CWL VlDf + nCSAVlDDf + TCBLVDDZAminf

where f is the frequency of operation, CWL, CSA and CBL are effective word-line,

sense-amplifier and bit-line capacitances that are switching and n is the number of

columns or word-length of the SRAM array. One important observation from this

equation is as follows: for a large array with a large word-length (e.g. 64 or 128), the

multiplicative factor n results in bit-line and sense-amplifier energy consumption to

dominate total read energy consumption of SRAMs.

Analyzing the power consumption due to bit-line switching in SRAMs more closely

gives power consumed by bit-line switching as

149

Pcnsumed = a0o 1 X CBL X VDD X AVmin X f

where ao,1 is the activity factor and f is the frequency of operation.

WL ='1' . I .

OUT OUT

Figure 5-3: In an SRAM array, sense-amplifier activation time is set by the slowest
bit-cell's read current to create a AVmin on the bit-lines. During this time, all other
cells in the array discharge their bit-lines at a faster rate.

In high density arrays, bit-lines are shared across 256 or 512 bit-cells. The parasitic

capacitance due to the devices connected to this signal as well as the metal parasitic

capacitance due to routing of this signal contribute to the total capacitance of a bit-

line. For a constant array size, bit-line capacitance can be assumed to be constant

between different topologies.

Since bit-lines are used to read data from memory cells, during a read access, all

bit-lines go through pre-charging and signal development phases. For 6T bit-cells,

differential bit-lines result in one of the bit-lines to be actively pulled down during

a read access. Hence, activity factor of one of the bit-lines in a 6T SRAM cell is 1.

For an 8T bit-cell, discharging of RBLs depends on the data that is being read from

150

the bit-cell. Hence, the activity factor of bit-lines in an 8T SRAM is data dependent

and can range from 0 to 1. It can be seen from the equation above that reducing the

activity factor results in linear savings in power consumption due to bit-lines.

Finally, AVmin is set by the offset of the sense-amplifiers in the memory. For high-

density arrays, sense-amplifier input referred offset can range from 50-150mV. Since

there is an inverse relation between the area of transistors and transistor mismatches

[88], input referred offset can be reduced by up-sizing the sense-amplifiers but this will

result in an increase in the area of the SRAM. Moreover, up-sizing sense-amplifiers

will result in their energy consumption to be larger as well.

It is important to note that AVmin voltage differential has to occur for all the

bit-lines in the design to be able to perform a read operation without errors. Conse-

quently, the slowest bit-cell in the array has to discharge its bit-line by ALVmin, before

sense-amplifiers are activated as shown in Figure 5-3. However, while waiting for the

slowest cell in the array, all other cells discharge their bit-lines at a faster rate. Hence,

effective AV for the array is larger than the minimum A1Vmin set by sense-amplifier

input referred offset.

11

W 7-

a5
1

0.4 0.6 0.8 1 1.2
V DD

Figure 5-4: Ratio of the 4- cell current to average cell current at different supply
voltages.

This effect is even more prominent at low voltage levels where the difference

151

between the slowest cell and an average cell is larger. This is because the drive

strength of transistors gets closer to an exponential relationship as VDD approaches

sub-VT region and a shift in the threshold voltage causes a larger change in the

transistor current at low voltages. Figure 5-4 plots the ratio of 4- read current to

nominal read current at different voltages. The ratio is very close to 1 at VDD =1.2V

but it becomes as large as 11 at O.4V. For large arrays, even higher -s should be

considered as explained in Chapter 1. Hence at low voltage levels, the large difference

between slowest cell's current and average current causes almost all bit-lines to be

discharged to OV while waiting for the slowest cell to develop A/Vmin on its bit-line.

Based on the discussion above, reducing the switching activity on the bit-lines

is the most effective way of reducing SRAM energy consumption, especially at low

voltages where VDD is close to the threshold voltage of transistors.

5.2.2 Prediction-Based Reduced Bit-line Switching Activity

(PB-RBSA) Scheme

Since reducing bit-line activity is an important factor in reducing energy consumption

of SRAMs and motion estimation data are correlated, a new bit-cell topology is

proposed to reduce bit-line switching activity based on a prediction on the output

bit.

RWL WWL WWL RWL

MI
RBL1 BLB BL RBLO

predB pred

Figure 5-5: PB-RBSA bit-cell topology.

Figure 5-5 shows the PB-RBSA bit-cell topology. It consists of a cross-coupled

152

inverter pair, two NMOS access devices connected to the storage nodes and two

read-buffers. The footer node of the read-buffers are not connected to ground, but

connected to a predictor, pred and its complement predB. In other words, pred is a

prediction of what the data stored in the bit-cell are.

Figure 5-6 shows the array architecture for the PB-RBSA SRAMs. pred/predB

pair is routed in the column-wise direction and they are shared by the entire column

of PB-RBSA bit-cells. Compared to an SRAM constructed with 8T bit-cells, an

additional row-wise signal (RWL1) and three additional column-wise signals (pred,

predB and RBL1) are introduced in this scheme.

column [c]

Figure 5-6: Array architecture for the PB-RBSA SRAM. WWL, RWLO and RWL1
are routed in horizontal direction and BL/BLB, RBLO/RBL1 and pred/predB pairs
are routed in vertical direction.

153

Data Retention

In data retention mode for PB-RBSA bit-cell, WWL and both RWLs are '0' and

cross-coupled inverters hold the state of the bit-cell.

Write Operation

BL/BLB pair and WWL are used to exert a write operation on PB-RBSA bit-cell

similar to a 6T or an 8T bit-cell. After BL and BLB are driven to correct voltages

corresponding to the input data, WWL is asserted.

Read Operation

Read operation is performed through the read-buffers. At the beginning of a read

cycle, RBLO and RBL1 are pre-charged to VDD and then RWL is asserted.

'1''1'

'1' -

(a)

'1' '0'

(b)

Figure 5-7: The cases when (a) pred is correct and matches
and (b) pred is incorrect.

the data in the bit-cell

If the prediction is correct (Figure 5-7-a), there is no voltage drop across one of

the read-buffer (on the right in Figure 5-7-a) and one of the transistors is 'OFF' for

154

the second read-buffer (on the left in Figure 5-7-a). Consequently, both RBLO and

RBL1 stay at VDD (ignoring the effect of leakage). In contrast, if the prediction is

incorrect (Figure 5-7-b), one of the read-buffers drives its RBL to ground (on the

right in Figure 5-7-b) and the other RBL stays at VDD as one of the transistors in

the stack is 'OFF' (on the left in Figure 5-7-b). Consequently, one of the RBL is

discharged to ground in this case.

With PB-RBSA scheme, if the predictor is correct, both bit-lines stay at VDD

and energy consumption associated with charging these nodes back to VDD can be

prevented. For motion estimation where pixel values are highly correlated, a pixel-

predictor can be calculated and used in this scheme.

In the column circuit, it can be determined if the predictor is correct or not

through the evaluation of RBLO and RBL1 being discharged to ground or not so data

in the bit-cell can be inferred based on bit-line transitions and the value of pred.

5.2.3 Introducing Throughput Scalability to PB-RBSA Bit-

cell

PB-RBSA bit-cell presented above has two read-buffers and these read-buffers can

potentially be accessed independently by:

1. routing separate RWL signals to read-buffers, namely RWLO and RWL1 and

2. forcing both pred and predB signals to '0' during a read access.

This change will enable a throughput-scalable SRAM with two modes:

Low-Power (LP) Mode In LP mode, PB-RBSA bit-cell is used with a predictor.

RWLO and RWL1 are asserted together for the same row and pred and predB

signals are driven to the predictor and its complement. In this mode, SRAM can

output one word/access but energy savings can be achieved through PB-RBSA

scheme.

High-Throughput (HT) Mode In HT mode, PB-RBSA bit-cell is used without a

predictor. RWLO and RWL1 are independently asserted for different rows. pred

155

and predB are driven to '0'. In this mode, SRAM can output two words/access,

doubling its read throughput. It should be noted that read-buffer connected

to RBL1 and RWL1 is connected to the complement of the data in the bit-

cell. Hence, RBL1 and REF should be connected to opposite terminals of the

corresponding sense-amplifier.

Lastly, In layout implementation, PB-RBSA bit-cell requires 20% larger area com-

pared to an 8T bit-cell due to the additional read-buffer. RDWLO and RDWL1 are

routed in the fifth metal layer and WWL is routed in third metal layer. Since the

width of the cell is longer, BL, BLB, RBLO, RBL1, pred and predB are all routed in

second metal layer.

5.2.4 Hierarchical Sensing and Statistical Sense-Amplifier Gat-

ing

Since PB-RBSA scheme needs two separate read-buffers and RBLs, two separate

sense-amplifiers are necessary. A differential sense-amplifier cannot work as both

RBLs can stay at '1' if the prediction is correct in LP mode. Having two sense-

amplifiers results in extra energy consumption in the column circuit so a hierarchical

sensing and sense-amplifier gating idea is implemented in this work.

Figure 5-8 shows a straightforward way of implementing read path from PB-

RBSA bit-cell to the sensing network. Pseudo-differential sense-amplifiers are used

with global reference voltage (REF). Two main sense-amplifiers (M-SA) are directly

connected to RBLs and activated by snsB signal.

In LP mode, RBL connected to the read-buffer with its footer (pred or predB)

driven to '0' has a chance of discharging to ground. To sense this voltage development,

one of the M-SAs is turned on. In HT mode, both M-SAs are activated as signal

development on both RBLs need to be resolved.

Schematic of M-SAs are given in Figure 5-8 and their offset distribution is given

in Figure 5-9. M-SAs are designed to have a t3o tail-to-tail offset distribution of

1OOmV. Hence, REF voltage can be set to VDD -50mV and AVmi can be 10OmV.

156

DIAR L

RWLI EN EN

WWL WrLpOB pO

_ BLB BL IRBL-| FREF

Ic c c c E N j
predB pred -

pOB pO

REF REF

-S predB pred

OUT1 OUTO OUT

Figure 5-8: A straightforward implementation of the sensing network employing two
sense-amplifiers with a global reference voltage, REF.

With the LP mode in PB-RBSA scheme, RBLs will have a higher probability

of staying at VDD provided that a good predictor can be generated for the data in

the SRAM. This motivates for designing a hierarchical-sensing technique and gating

M-SA with the output of a smaller sense-amplifier that is designed to favor an output

of '1' over '0' in its offset distribution.

Figure 5-10 shows the hierarchical sensing network implemented in this work.

Early decision sense-amplifier (E-SA) have the same topology as M-SA but they are

sized to be smaller than M-SAs so that their energy consumption is correspondingly

smaller than M-SA. However, this results into a larger offset distribution for E-SA

and can limit the performance of the SRAM if E-SA starts limiting AVmin.

If E-SAs are used in the sensing network alone to resolve RBLs with AVmin of

100mV, some sense-amplifiers would give erroneous results. However, in this work,

we use E-SAs to decide if M-SA need to be activated or not. The ambiguity in the

output of the E-SA can be avoided by skewing its input referred offset and enabling

M-SA every time E-SA's output is ambiguous.

E-SAs are sized to be 3x smaller than M-SA. Moreover, its offset distribution

157

100mV
250

200

|150
I-I

B 100 -.-.-..
U
0

0
-100 -50 0 50 100

Input Referred Offset (mV)

Figure 5-9: Offset distribution of M-SA used in this design. ±3o- tail-to-tail offset
distribution is designed to be 100mV.

is skewed by making one of its input transistors stronger than the other one. The

resulting offset distribution is shown in Figure 5-11. k3u tail-to-tail offset distribution

is 150mV for E-SA and it is skewed towards negative offsets.

For E-SAs not to limit AV,,in of the SRAM, REFEARLY voltage should be set

to a higher voltage, VDD . In this case, a 1OOmV of AV can be sensed by E-SA

and M-SA can be turned on to ensure that RBL is actually discharged. Because of

the larger offset distribution, sense-amplifiers that have a positive offset in Figure

5-11 will output a '1' erroneously and result in M-SA to be activated unnecessarily.

The percentage of sense-amplifiers with a positive offset from Figure 5-11 is only 5%.

Hence, 5% of the time, M-SA will be activated to resolve that RBL has actually not

been discharged.

Figure 5-12 summarizes the energy consumed in different cases when operating

in LP mode. Three main cases are considered and energy consumed by the sensing

network is given in each case.

Predictor Correct, E-SA with Negative Offset When predictor is correct, both

RBLs stay at VDD . For E-SAs with a negative input referred offset (REFEARLY

VDD), E-SA can resolve correctly that RBL stayed high and does not activate

M-SA. In this case, only E-SA is activated and energy consumed is due to E-SA

158

RWLO

RWL1

WWL WWL

BLB BL

predB pred

pred REFEARLY predB

REF , REF

snsEarl *s

M-SA predB pred -SA

.... snsB

OUT1 OUTO

Figure 5-10: The hierarchical sensing network design implemented in this work. E-
SAs are sized to be 3x smaller compared to M-SAs.

only.

Predictor Correct, E-SA with Positive Offset Again, when predictor is correct,

both RBLs stay at VDD . For E-SAs with a positive input referred offset

(REFEARLY = VDD), E-SA resolves this situation incorrectly and activates

M-SA. In this case, both E-SA and M-SA are activated.

Predictor Incorrect When predictor is incorrect, one of the RBLs is discharged

by A/ Vmai. E-SAs can resolve this correctly and activate M-SA. In this case,

both E-SA and M-SA are activated and energy consumed is the sum of both

sense-amplifiers.

Although it looks like energy consumed is larger than the straightforward im-

plementation (where one M-SA is activated every cycle), signal statistics play an

important role when computing the actual energy consumed.

159

U

0

150mV

. . .

..i

-50 0 50
Input Referred Offset (mV)

100

Figure 5-11: Offset distribution of E-SA used in this design. t3o- tail-to-tail offset
distribution is designed to be 150mV and distribution is skewed towards negative
offsets.

Low Power Mode

pred - Correct

E-SA w/ M-SA gated?

(-) offset Energy Consumed

E-SA w/ M-SA gated?

(+) offset Energy Consumed

Yes

CE-SAVDD
2

No

CE-SAVDD2 + CM-SAVDD2

pred - Incorrect

No

CE-SAVDD2 + CM-SAVDD
2

No

CE-SAVDD2 + CM-SAVDD2

Figure 5-12: Energy consumed
with different cases considered.

in the sensing network when operating in LP mode

First, because of the PB-RBSA scheme and pixel data being correlated, the cases

where predictor is correct should out-number the opposite cases. Secondly, in the

array, there are 19x more sense-amplifiers with negative offset than with positive

offset. So, when predictor is correct, 95% of the time, E-SAs will resolve the RBL

correctly and will not activate M-SA unnecessarily.

If we formulate the energy consumed in the sensing network:

160

Figure 5-13: Normalized energy consumed in the sensing-network with proposed hi-
erarchical sensing scheme and with the straightforward M-SA only scheme.

Esensing = p X (CE-SAVD x 0.95 + (CE-SAVD + CM-SAVD) x 0.05)+

(1 - p) x (CE-SAVD + CM-SAVD) (5.1)

where p is the correct prediction percentage. Figure 5-13 plots the energy con-

sumption in the sensing-network with respect to p. For the straightforward method

explained in Figure 5-8 to out-perform our proposed solution, p should be less than

35%.

It should be noted that this scheme can be easily turned-off if the predictor bits

are correct for < 35% by measuring the change in predictor. Moreover, by setting the

predictor as '00000000' or '11111111', one can assume to have roughly 50% matching

if the bits in the data is totally random.

The delay increase due to sense-amplifier gating is small (< 8%) when compared

to the time that is allocated for bit-line signal development.

5.2.5 Predictor Generation

To maximize savings with PB-RBSA scheme, a good predictor is needed to be cal-

culated and input to the SRAMs. However, it should be noted that pred and predB

161

1.2 -*-Hier. Gating

1 -4--Only M-SA

0.8

0.4

2 0.2

0

p - Correct Prediction (%)

signals are column-wise signals that are connected to the source/drain region of the

read-buffer devices from all rows. Effectively, pred and predB signals have a very

similar capacitance to RBLO and RBL1. Consequently, switching activity of pred

and predB signals can be a dominant factor of energy consumed in PB-RBSA if their

activity factor is large.

Since pixel data are correlated on large blocks in a video frame, pred and predB

can be updated much less frequently. Hence, energy consumed in switching of pred

and predB can be amortized across many cycles.

pixeldata
[63:0]

predictor
[7:0]

clkbyN

Figure 5-14: Predictor generation circuit used in this design.

In this work, we considered an arithmetic average of the output pixels from the

SRAMs as the predictor. Figure 5-14 shows the implementation of this circuit. Al-

though the sum of pixels is accumulated every cycle, it is updated every 2N cycles

and hence activity factors of bits of pred and predB are bounded by

1
OO-1 < 2

There is an interesting trade-off between the selection of N and the lag of the

average calculation. If N is selected to be a large number (e.g. 8), then predictor

will be updated less frequently (every 2N cycles) and cannot track recent changes in

162

the pixel data. This can cause PB-RBSA scheme to have a predictor that is often

incorrect. Choosing N to be a smaller value (e.g. 2), can enable the predictor to track

changes more frequently but this will increase the activity factor of pred/predB in

the SRAM and cause extra energy consumption due to averaging a small number of

pixels.

1 word
64 cycles

0
00 FF 00 FF

1 cycle 2Ncyces

PB-RBSA [out-Word Predictor
SRAM Gen.

predictor

Figure 5-15: A scenario where SRAM is filled with blocks of white and black pixels.

Figure 5-15 shows an example corner case where a frame consists of 64 x 64 blocks

of alternating black and white regions. SRAMs are accessed to read 64 rows of white

regions and then 64 rows of black regions and for simplicity energy consumption of

write accesses is not included. By using the pixel average generator updated every

2 N cycles, a prediction is calculated and input to the SRAMs in this work. Moreover,

let's assume the output of the predictor generator changes one cycle before the access

of a white or black block is finished.

To capture the effect of N, measured power consumption is plotted in Figure 5-

16. Because of the conflicting trade-offs of the selection of N explained above, power

makes a minimum around N = 3 (2 N = 8). Optimum selection of N provides 1.6x

savings in energy/access when compared to the case where N is selected to be 6 (i.e.

163

Figure 5-16: Normalized measured power consumption of the PB-RBSA SRAMs when
operating under the scenario described in Figure 5-15.

2N 64)

Finally, it should be emphasized that predictor generation is an important factor

determining the energy savings in this scheme. Arithmetic average is chosen to be a

simple yet efficient solution to predictor generation. However, more complex predictor

generation schemes are possible at the expense of a larger hardware area. An example

is a weighted running average calculator which favors more recent outputs over past

outputs.

Arithmetic average calculation block can be shared by two blocks in this work and

introduces an overhead of 3% in layout . This overhead can be smaller if there are

more than two blocks and predictor generation circuit is shared across many blocks.

5.2.6 Test Chip Architecture

Ideas presented in this section are implemented in a test chip in 65nm CMOS low-

power process. Top level test chip architecture is shown in Figure 5-17. Two blocks of

motion estimation specific SRAMs as well as two blocks of conventional 8T SRAMs

are placed in the test chip with the same inputs so that the outputs can be compared

against each other and their power consumption can be measured and compared as

well. Blocks are organized as 256 rows and 64 columns.

164

LP/HT Mode

Address,R/W predictor

(2 Blocks)
Config BitsI

Test Chi

Figure 5-17: High level architecture of the test chip fabricated in 65nm low-power
CMOS process.

Data inputs are provided from off-chip pins. Since only 16 pins can be allocated

for this, a shift register structure is used to buffer input bits for four cycles before

writing them to the SRAMs. For outputs, multiplexer trees are used to select two

8-bit outputs from motion estimation specific SRAMs and one 8-bit output from 8T

SRAMs. Output of the on-chip predictor generator can also be output to off-chip.

Finally a configuration register is also placed on the chip to set various configura-

tion bits in the design to ease testing and debugging.

5.2.7 Measurement Results

A die photograph of the test chip is shown in Figure 5-18. The die size is 2.3mm x

2.3mm and total number of pads is 100. Table 5.1 provides a summary of the test

chip specifications.

Figure 5-19 plots measured energy/access numbers for the test chip at 0.6V for

varying correct prediction percentage. Energy/access values are normalized to en-

ergy/access at 100% correct prediction.

Measurements are done to achieve no errors in the memory by sweeping the word-

165

8T SRAM
B#0

Input Buf.

8T SRAM
B#1

Figure 5-18: Die photograph of the 65nm test chip.

Technology 65nm Low-Power CMOS

Die Size 2.3mm x 2.3mm

Number of Pads 100

Total SRAM on die 32Kbits of PB-RBSA & 8T SRAMs

SRAM Macro Organization 512 words x 64bits/words

Voltage Range 0.52V - 1.2V

Table 5.1: Summary of the 65nm PB-RBSA test chip.

line activation time to the point where the worst-case cell is capable of discharging

its RBLs by AVmai. Correct prediction percentage values from 50% to 100% are

shown. With increasing correct prediction percentage, energy/access is reduced as

this corresponds to reduced RBL transitions.

Also plotted in Figure 5-19 is the energy/access when SRAMs are operated in

high-throughput mode. It should be noted that in this mode, read bandwidth of

the memories is two times larger than the read bandwidth in low-power mode. It is

important to emphasize that this feature introduces almost no area overhead as HT

mode is fully compatible with the original PB-RBSA scheme idea and is beneficial

166

IPred.Ge.

3.5
V =0.6V

2.5

c 1.5 -- - -

00.5
0

100% 75% 50% HT 8T

Correct Prediction (%,HT, 8T

Figure 5-19: Measured energy/access with respect to correct prediction percentage
at VDD =0-6V. Energy/access numbers are normalized to energy/access with 100%
correct prediction. HT denotes measured energy/access in high-throughput mode

and 8T denotes measured energy/access of 8T SRAMs.

in applications where slight changes in read bandwidth can be adjusted by switching

the operating mode rather than the supply voltage.

To provide a comparison between PB-RBSA SRAMs and a conventional 8T SRAM,

last bar graph provides energy/access numbers at VDD= 0-6V for the 8T SRAMs

in the prototype chip. It should be noted that 8T energy/access is data dependent

and bit-line switching activity depends on the data stored in the bit-cell being a '0'

or a '1'. Here an equal distribution of '0's and '1's are used in the array to achieve

the ao-1,sz = 0.5. With this activity factor, 8T SRAM energy/access is 1.75x larger

than PB-RBSA SRAMs with 100% correct prediction.

It should be noted that when accessing reference frames, neither the activity

factor of the 8T will be exactly 0.5 nor PB-RBSA scheme will achieve 100% correct

prediction. Hence, energy savings with PB-RBSA SRAMs will be different from one

frame to the other.

To capture this, 1100 frames with resolutions ranging from 1280 x 720 to 2560 x

1600 are provided to the prototype test chip to measure energy/access for the PB-

RBSA SRAMs and for the 8T SRAMs. Figure 5-20 shows the distribution of the PB-

RBSA SRAM's energy savings with respect to the 8T SRAM. The savings achieved

167

over the 8T SRAM can be up to 1.9x. Moreover, for sequences with higher reso-

lution, energy savings are found to be higher. This is due to the fact that objects

are represented with a larger number of pixels in higher resolution sequences and

consequently correlation of pixels is higher.

150

U100-.---

U

U 50 --- -'-- -
0

1.4 1.6 1.8 2
Norm. Energy Savings w.r.t. 8T

Figure 5-20: Distribution of PB-RBSA SRAM's energy savings with respect to the
8T SRAM for 1100 different video frames with resolutions ranging from 1280 x 720
to 2560 x 1600.

Figure 5-21-a and Figure 5-21-b shows measured energy/access numbers for PB-

RBSA SRAM and 8T SRAM respectively both normalized to the average energy/access

of the 8T SRAMs. Energy/access numbers are shown for a 416 x 240 sequence for

150 frames. Figure 5-21-c and Figure 5-21-d shows the contents of the 40th image

frame and 139th image frame respectively. Energy/access of the PB-RBSA SRAM

changes as the contents of the image frames change. When the image frame consists

of smoother objects predictor for PB-RBSA scheme works better and energy/access

goes down. It should be noted that for the 8T SRAMs, energy/access depends on

the number of '0's and '1's in the pixels and it does not change significantly from one

frame to the next.

Figure 5-22 shows the effect of the predictor accuracy on energy/access for the PB-

RBSA SRAM. Specifically, energy/access results for N=4 and N=6 are provided where

168

0

25

25

50 75 100 125 150
Frame Number

(a)

50 75 100 125 150
Frame Number

(b)

(d)

Figure 5-21: Measured energy/access numbers for (a) PB-RBSA SRAM and (b) 8T
SRAM normalized to the average energy/access of the 8T SRAMs for a 416 x 240 video
sequence for 150 frames. Red lines show the average for each SRAM implementation.
(c) 40th and (d) 139th frames of the sequence are also shown.

169

: Frame 40 :

::Frame139

U0.75

U

U

0z
0.6500

1.05

1

U

0

E

0.95

(c)

predictor is updated every 2N cycles with the predictor generation circuitry given in

Figure 5-14. For the same sequence in Figure 5-21, when the predictor is updated

less frequently the prediction accuracy is degraded and consequently energy/access

goes up.

0 .8 ----. --------.--.---- ' .---

U

0.75 - ---- - - -
U

.7

0

0.65
0 25 50 75 100 125 150

Frame Number

Figure 5-22: Effect of predictor accuracy on energy/access for the PB-RBSA SRAM.

Figure 5-23 plots measured energy/access numbers, again at VDD = 0.6V with

and without sense-amplifier gating. Similar to Figure 5-19, values are normalized to

energy/access at 100% correct prediction with sense-amplifier gating.

SA gating provides -20% energy savings for the overall SRAM when correct

prediction rate is 100%. With smaller rate of correct prediction, sense-amplifier gating

begins to be more costly. The break-even point for correct prediction percentage

happens at nearly 40%.

Figure 5-24 plots measured frequency of operation vs. VDD when operating in

LP mode. SRAMs achieve functionality down to 0.52V where timing violations and

retention problems begin to occur. SRAM performance at 1.2V is 145 MHz and it

scales down to 0.11MHz at 0.52V. It should be noted that SRAM performance is

independent of the operation mode as the same timing generation circuit is used in

both modes. In LP mode, an additional signal for early sensing is generated and sent

170

3 m SA Gating

)2.5 No SA gating

ai1.5
C

LU

Z0.5

0
100% 75% 50% 25% 0%

Correct Prediction (%)

Figure 5-23: Measured energy/access with and without sense-amplifier gating at VDD
= 0.6V. Energy/access numbers are normalized to energy/access with 100% correct
prediction.

to the column circuits and the effect of this additional path on total timing is < 8%

at 1.2V.

5.3 Summary and Conclusions

Designing circuits to be application specific can provide significant improvements in

terms of power and performance by

" optimizing the design for a specific target and

" exploiting the specific features of the application.

For example, supporting processors with hardware accelerators for specific tasks

results in achieving orders of magnitude savings in power [95]. This idea of application

specific hardware, however, should not limited to algorithm and architecture level and

can be implemented at the circuits level as well. In this chapter, application specific

SRAM design is investigated for motion estimation application and a power reduction

technique is developed for applications where input data are correlated.

First, prediction-based reduced bit-line switching activity (PB-RBSA) scheme is

proposed in this chapter to exploit the correlation of input data to the memories.

171

Figure 5-24: Measured SRAM performance for the 65nm test chip.

Specifically, PB-RBSA scheme introduces a predictor for the output of the SRAM

and bit-line transitions are avoided when the predictor is correct. To complement

this idea, a hierarchical sensing network with sense-amplifier gating is developed to

take advantage of the biased transition probability on the bit-lines due to PB-RBSA.

A small sense-amplifier that is intentionally designed with a non-symmetric input

offset distribution is used to do a pre-evaluation of the bit-line and to gate M-SAs.

Proposed techniques are implemented in a 65nm prototype which is tested for

functionality down to 0.52V. PB-RBSA scheme with sense-amplifier gating provides

up to 1.9x energy reduction with respect to a similar 8T design that is also imple-

mented on the same test chip. To achieve a similar energy reduction through only

voltage scaling would require an additional 1.4x scaling of VDD from C x VAD for-

mula. However, this would result in slower performance and potential assist circuits

requiring additional silicon area.

It should be noted that energy savings achieved through application-specific SRAM

design is the next level of savings on top of the savings from voltage scaling. In other

words, PB-RBSA scheme does not prevent SRAMs to do voltage scaling but this

scheme enables a completely new dimension for savings that can be achieved by using

application-specific features.

172

Chapter 6

Conclusions and Future Work

This thesis presented design optimizations for cost and coding efficient implementa-

tion of a motion estimation block at three different levels of the design: at algorithms,

architectures and transistor-level circuits. First, a methodology is presented to char-

acterize hardware cost vs. coding efficiency. This analysis is used to quantify design

trade-offs between algorithm and architecture decisions for their hardware complexity

and coding impact. Depending on the priorities of different designs in terms of sili-

con area, power consumption and coding efficiency, optimum decisions can be made.

Second, hardware-oriented algorithms are developed to reduce hardware area and

data bandwidth. Cost and coding efficient (CCE) implementation provided orders of

magnitude reduction in hardware complexity. Considering the hardware implemen-

tation cost of algorithms at the design stage can provide valuable insight to where

the bottlenecks occur and how these problems can be addressed.

At the circuit level, SRAM design considerations are optimized for voltage scal-

ability and performance with minimum impact on array efficiency. Design decisions

in terms of circuit topologies and low voltage assist techniques are based on target

operating voltage and frequency range. Lastly, application-specific SRAM design for

motion estimation is presented. This approach using the correlation of storage data

in SRAMs to predict future outputs is not limited to motion estimation and can be

generalized to other applications as well. Application-specific SRAMs can provide

next level of savings in energy/access on top of the savings from voltage scaling and

173

maximize overall energy efficiency at the circuit level. Incorporating signal statistics

into transistor-level circuit design can provide a new dimension for circuit designers

to explore.

6.1 Summary of Contributions

In this section, we will summarize the key ideas presented in this thesis.

This thesis focuses on hardware-oriented algorithm and architecture development

for motion estimation. At circuit level, low-power SRAM design techniques are ex-

plored.

6.1.1 Hardware-Oriented Algorithms and Architectures for

Motion Estimation

Motion estimation hardware cost vs. coding efficiency analysis for HEVC

" Development of a methodology to quantify hardware cost (in terms of core/memory

area and data bandwidth) vs. coding efficiency for next generation video coding

standard, HEVC.

* Trade-off analysis for the effect of supported block sizes in HEVC motion esti-

mation on coding performance and hardware complexity.

Cost and Coding Efficient (CCE) Motion Estimation for HEVC

e CCE motion estimation design with hardware-oriented search algorithms to ad-

dress hardware area and memory bandwidth. With respect to the anchor config-

uration, 4.3x core area and 5.3x on-chip memory area, 56x on-chip bandwidth

and 151 x off-chip bandwidth savings are achieved.

" Hardware-oriented advanced motion vector prediction (AMVP) algorithm. 2x

reduction in hardware area is achieved.

" Adoption of proposed AMVP algorithm to HEVC.

174

Highly-Parallel Multi-Standard Motion Estimation Design

" Development of hardware-oriented search algorithms suitable for frame and MB

parallel motion estimation.

" Design of a reconfigurable motion estimation engine supporting two standards

(AVC/H.264 and VC-1) to maximize hardware sharing between standards. 85%

and 40% of hardware is shared across standards in integer and fractional motion

estimation parts respectively.

6.1.2 Low-Power SRAM Design

" Development of area-efficient assist circuits for a high-density 6T SRAM and

demonstration of these ideas in a 28nm test chip. This work presented one of

the first published SRAMs in 28nm to work down to 0.6V.

" Development of an array architecture enabling column-interleaving for 8T de-

signs and an on-chip reference selection loop to reduce sense-amplifier offset.

* Implementation of a 45nm test chip featuring an 8T design using the techniques

above. 0.5V-1.1V operating voltage range is demonstrated for this work.

6.1.3 Application-Specific SRAM Design

" Proposal of a prediction-based reduced bit-line switching activity (PB-RBSA)

scheme and a bit-cell design to implement it.

" Proposal of hierarchical sensing and sense-amplifier gating techniques to com-

plement PB-RBSA scheme.

* Implementation of above ideas on a test chip in 65nm CMOS technology. Up

to 1.9x energy/access reduction is achieved over an 8T design.

175

6.2 Future Work

There are many interesting challenges that lie ahead for next generation video coding

and application-specific SRAM design.

" Application-Specific SRAM in Other Areas. Application-specific SRAM has the

potential to be applied to various areas as SRAMs are integral parts of almost

all SoC designs. Features of input data and access patterns to the SRAM can

change greatly from one application to the other. Taking these features into

account at the design stage can provide a new dimension to address energy-

efficiency and can provide significant savings. An example is using adaptive

cache sizing in the design of a processor where special SRAMs can be employed

to flush caches quickly between adaptations. Although these designs are mainly

targeted for a specific application, the level of energy savings or performance

improvements can be substantial.

" Extension of Hardware Cost vs. Coding Efficiency Analysis to HEVC Encoder.

The analysis provided in Chapter 2 for motion estimation can be extended

to cover the rest of the encoder. This can provide valuable insight on the

relative complexity and hardware cost of various tools to identify key areas

to do algorithm and architecture level optimizations. For example, Skip/Merge

estimation and transform engines are highly complex in HEVC. Quantifying this

complexity and decision of supported transform sizes and skip/merge modes can

provide significant savings.

" Integration of PB-RBSA SRAMs with CCE Motion Estimation for HEVC. PB-

RBSA SRAMs can be used in the hardware implementation of a CCE motion

estimation for HEVC to maximize energy savings at algorithm, architecture and

circuit level.

" Motion Estimation Algorithms for Multiview and Scalable Video Coding. The

extensions of HEVC standard in the multiview and scalable video coding areas

will introduce interesting challenges for motion estimation. Data bandwidth will

176

be an important issue especially for multiview coding. Hardware-efficient mo-

tion estimation algorithms can be very beneficial for hardware implementation

of these.

* 3D Chip Stacking and Cache Architectures. Motion estimation requires a large

off-chip bandwidth to access reference picture frames. Stacking a video encoder

with a DRAM chip can provide significant savings in terms of power consump-

tion as well as a higher bandwidth. This can provide a new space for hardware

efficient search algorithms if it is supported with new cache architectures to take

advantage of the 3D implementation.

177

178

Appendix

Test Sequences Used in HEVC

Standardization

Standard set of sequences for HEVC standardization are given in Table A. 1.

179

A

Name Resolution fps Number of Frames

BQMall 832x480 60 600

BQSquare 416x240 60 600

BQTerrace 1920x1080 60 600

BasketballDrill 832x480 50 500

BasketballDrive 1920x1080 50 500

BasketballPass 416x240 50 500

BlowingBubbles 416x240 50 500

Cactus 1920x1080 50 500

Kimonol 1920x1080 24 240

NebutaFestival 2560x1600 60 300

ParkScene 1920x108 24 240

PartyScene 832x480 50 500

PeopleOnStreet 2560x1600 30 150

RaceHorsesD 416x240 30 300

RaceHorsesC 832x480 30 300

SteamLocomative 2560x1600 60 300

Traffic 2560x1600 30 150

vidyol 1280x720 60 600

vidyo3 1280x720 60 600

vidyo4 1280x720 60 600

Table A.1: Standard set of sequences used in HEVC.

180

Bibliography

[1] G. E. Moore, "Cramming More Components onto Integrated Circuits," Electron-

ics, vol. 38, no. 8, pp. 114-117, Apr. 1965.

[2] A. P. Chandrakasan, D. Daly, J. Kwong, and Y. K. Ramadass, "Next Generation

Micro-power Systems," in Symp. on VLSI Circuits (VLSI) Dig. Tech. Papers,
Jun. 2008, pp. 2-5.

[3] "iPhone Specifications." [Online]. Available: http://www.apple.com/iphone/specs.html.

[4] S. Borkar, "Obeying Moore's Law beyond 0.18 micron [microprocessor design],"

in IEEE International ASIC/SOC Conference, Sep. 2000, pp. 26-31.

[5] "AnandTech." [Online]. Available: http://www.anandtech.com/show/2671.

[6] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, and

T. Grutkowski, "A 32nm 3.1 billion transistor 12-wide-issue Itanium processor for

mission-critical servers," in Solid-State Circuits Conference Digest of Technical

Papers (ISSCC), 2011 IEEE International, Feb. 2011, pp. 84 -86.

[7] "YouTube." [Online]. Available: littp://www.youtube.com.

[8] "Cisco Virtual Networking Index: Global Mobile Data

Traffic Forecast Update, 2011-2016" [Online]. Available:
http://www.cisco.com/en/US/solutions/collateral/ns3 4 1/ns525/ns537/ns7O5

/ns827/white-paper-cl1-520862.html.

[9] J. Ostermann, P. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, "Video coding with H.264/AVC: Tools, Per-
formance and Complexity," IEEE Circuits and Systems Magazine, vol. 4, pp.

7-28, 2004.

[10] G. Delagi, "Harnessing technology to advance the next-generation mobile user-

experience," in Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2010 IEEE International, Feb. 2010, pp. 18 -24.

[11] D. Markovic, B. Nikolic, and R. Brodersen, "Power and Area Minimization

for Multidimensional Signal Processing," Solid-State Circuits, IEEE Journal of,
vol. 42, no. 4, pp. 922 -934, Apr. 2007.

181

[12] "Joint Call for Proposals on Video Compression Technology," ITU-T SG16/Q6,
39th VCEG Meeting: Kyoto, 17-22 Jan. 2010, Doc. VCEG-AM91.

[13] J. S. Lim, Two-Dimensional Signal and Image Processing. Prentice-Hall, 1989.

[14] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, "Motion compensated
interframe coding for video conferencing," in Proc. NTC81, New Orleans, LA,,
Nov. 1981, pp. C9.6.1-9.6.5.

[15] R. Li, B. Zeng, and M. Liou, "A new three-step search algorithm for block motion
estimation," Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 4, no. 4, pp. 438 -442, Aug. 1994.

[16] J. Jain and A. Jain, "Displacement Measurement and Its Application in Inter-
frame Image Coding," Communications, IEEE Transactions on, vol. 29, no. 12,
pp. 1799 - 1808, Dec. 1981.

[17] R. Srinivasan and K. Rao, "Predictive Coding Based on Efficient Motion Esti-
mation," Communications, IEEE Transactions on, vol. 33, no. 8, pp. 888 - 896,
Aug. 1985.

[18] S. Kappagantula and K. Rao, "Motion Compensated Interframe Image Predic-
tion," Communications, IEEE Transactions on, vol. 33, no. 9, pp. 1011 - 1015,
Sep. 1985.

[19] L.-M. Po and W.-C. Ma, "A novel four-step search algorithm for fast block mo-
tion estimation," Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 6, no. 3, pp. 313 -317, Jun. 1996.

[20] S. Zhu and K.-K. Ma, "A new diamond search algorithm for fast block match-
ing motion estimation," in Information, Communications and Signal Processing,
1997. ICICS., Proceedings of 1997 International Conference on, vol. 1, Sep. 1997,
pp. 292 -296 vol.1.

[21] T.-H. Tsai and Y.-N. Pan, "A novel predict hexagon search algorithm for fast
block motion estimation on H.264 video coding," in Circuits and Systems, 2004.
Proceedings. The 2004 IEEE Asia-Pacific Conference on, vol. 1, Dec. 2004, pp.
609 - 612 vol.1.

[22] M. Ghanbari, "The cross-search algorithm for motion estimation [image coding] ,"
Communications, IEEE Transactions on, vol. 38, no. 7, pp. 950 -953, Jul. 1990.

[23] Y.-W. Huang, T.-C. Wang, B.-Y. Hsieh, and L.-G. Chen, "Hardware Ar-
chitecture Design for Variable Block Size Motion Estimation in MPEG-4
AVC/JVT/ITU-T H.264," in Int. Symp. on Circuits and Systems (ISCAS) Dig.
Tech. Papers, vol. 2, May 2003, pp. II-796 - II-799.

182

[24] S. Y. Yap and J. McCanny, "A VLSI Architecture for Variable Block Size Video
Motion Estimation," Circuits and Systems II: Express Briefs, IEEE Tran. on,
vol. 51, no. 7, pp. 384 - 389, Jul. 2004.

[25] T.-H. Tsai and Y.-N. Pan, "High Efficiency Architecture Design of Real-Time
QFHD for H.264/AVC Fast Block Motion Estimation," IEEE Trans. Circuits
Syst. Video Technol., vol. 21, no. 11, pp. 1646 -1658, Nov. 2011.

[26] C.-C. L. et al., "PMRME: A Parallel Multi-Resolution Motion Estimation Al-
gorithm and Architecture for HDTV Sized H.264 Video Coding," in IEEE Int.
Conf. on Acoustic, Speed, and Signal Processing (ICASSP) Dig. Tech. Papers,
vol. 2, Apr. 2007, pp. II-385 -II-388.

[27] Y.-K. Lin, D.-W. Li, C.-C. Lin, T.-Y. Kuo, S.-J. Wu, W.-C. Tai, W.-C. Chang,
and T.-S. Chang, "A 242mW 10mm 2 1080p H.264/AVC High-Profile Encoder
Chip," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb.
2008, pp. 314-315.

[281 J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, "Video coding with H.264/AVC: tools, perfor-
mance, and complexity," Circuits and Systems Magazine, IEEE, vol. 4, no. 1,
pp. 7 - 28, quarter 2004.

[29] Y.-W. Huang, T.-C. Chen, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, C.-S. Chen, C.-
F. Shen, S.-Y. Ma, T.-C. Wang, B.-Y. Hsieh, H.-C. Fang, and L.-G. Chen, "A
1.3TOPS H.264/AVC single-chip encoder for HDTV applications," in IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 128-129.

[30] C.-P. Lin, P.-C. Tseng, Y.-T. Chiu, S.-S. Lin, C.-C. Cheng, H.-C. Fang, W.-M.
Chao, and L.-G. Chen, "A 5mW MPEG4 SP encoder with 2D bandwidth-sharing
motion estimation for mobile applications," in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006, pp. 1626-1627.

[31] H.-C. Chang, J.-W. Chen, C.-L. Su, Y.-C. Yang, Y. Li, C.-H. Chang, Z.-M.
Chen, W.-S. Yang, C.-C. Lin, C.-W. Chen, J.-S. Wang, and J.-I. Quo, "A 7mW-
to-183mW Dynamic Quality-Scalable H.264 Video Encoder Chip," in IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 280-281.

[32] T. Burd and R. Brodersen, "Design issues for Dynamic Voltage Scaling," in
Low Power Electronics and Design, 2000. ISLPED '00. Proceedings of the 2000
International Symposium on, 2000, pp. 9 - 14.

[33] V. Gutnik and A. Chandrakasan, "Embedded power supply for low-power DSP,"
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 5,
no. 4, pp. 425 -435, Dec. 1997.

[34] B. H. Calhoun and A. Chandrakasan, "Characterizing and Modeling Minimum
Energy Operation for Subthreshold Circuits," in Int. Symp. on Low-Power Elec.
and Design (ISLPED) Dig. Tech. Papers, 2004, pp. 90-95.

183

[35] A. Wang, A. Chandrakasan, and S. Kosonocky, "Optimal Supply and Threshold
Scaling for Sub-threshold CMOS Circuits," in IEEE Computer Society Annual
Symposium on VLSI, Apr. 2002, pp. 7-11.

[36] A. Chandrakasan, S. Sheng, and R. Brodersen, "Low-Power CMOS Digital De-
sign," IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992.

[37] A. Wang and A. Chandrakasan, "A 180mV FFT Processor Using Sub-threshold
Circuit Techniques," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, 2004, pp. 292-293.

[38] J. Kwong, Y. Ramadass, N. Verma, and A. Chandrakasan, "A 65 nm Sub-V
Microcontroller With Integrated SRAM and Switched Capacitor DC-DC Con-
verter," Solid-State Circuits, IEEE Journal of, vol. 44, no. 1, pp. 115 -126, Jan.
2009.

[39] B. Zhai, L. Nazhandali, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant,
D. Blaauw, and T. Austin, "A 2.6OpJ/Inst Subthreshold Sensor Processor for
Optimal Energy Efficiency," in VLSI Circuits, 2006. Digest of Technical Papers.
2006 Symposium on, 2006, pp. 154 -155.

[40] S. Hanson, B. Zhai, M. Seok, B. Cline, K. Zhou, M. Singhal, M. Minuth, J. Olson,
L. Nazhandali, T. Austin, D. Sylvester, and D. Blaauw, "Performance and Vari-
ability Optimization Strategies in a Sub-200mV, 3.5pJ/inst, 11nW Subthreshold
Processor," in VLSI Circuits, 2007 IEEE Symposium on, Jun. 2007, pp. 152
-153.

[41] V. Sze, R. Bld'zquez, M. Bhardwaj, and A. Chandrakasan, "An Energy Efficient
Sub-Threshold Baseband Processor Architecture For Pulsed Ultra-Wideband
Communications," in IEEE Int. Conf. on Acoustic, Speed, and Signal Processing
(ICASSP) Dig. Tech. Papers, May 2006, pp. 908-911.

[42] G. Gammie, N. Ickes, M. Sinangil, R. Rithe, J. Gu, A. Wang, H. Mair, S. Datla,
B. Rong, S. Honnavara-Prasad, L. Ho, G. Baldwin, D. Buss, A. Chandrakasan,
and U. Ko, "A 28nm 0.6V Low-Power DSP for Mobile Applications," in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 132-
133.

[43] N. Ickes, Y. Sinangil, F. Pappalardo, E. Guidetti, and A. Chandrakasan, "A 10
pJ/cycle ultra-low-voltage 32-bit microprocessor system-on-chip," in ESSCIR C
(ESSCIR C), 2011 Proceedings of the, Sept. 2011, pp. 159 -162.

[44] G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel, S. En-
gel, P. Royannez, R. Lagerquist, H. Mair, J. Vaccani, G. Baldwin, K. Heragu,
R. Mandal, M. Clinton, D. Arden, and U. Ko, "A 45 nm 3.5G Baseband-and-
Multimedia Applications Processor using Adaptive Body-Bias and Ultra-Low-
Power Techniques," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2008, pp. 258-259.

184

[45] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A
Design Perspective, 2nd ed. Prentice Hall, 2003.

[46] M. Sinangil, N. Verma, and A. Chandrakasan, "A Reconfigurable 8T Ultra-
Dynamic Voltage Scalable U-DVS SRAM in 65 nm CMOS," Solid-State Circuits,
IEEE Journal of, vol. 44, no. 11, pp. 3163 -3173, Nov. 2009.

[47] J. Burr, "Cryogenic Ultra Low Power CMOS," in Int. Symp. on Low-Power Elec.
and Design (ISLPED) Dig. Tech. Papers, 1995, pp. 82-83.

[48] D. F. Finchelstein, V. Sze, , M. E. Sinangil, Y. Koken, and A. P. Chandrakasan,
"A low-power 0.7V H.264 720 video decoder," in IEEE Asian Solid State Circuits
Conference, Nov. 2008, pp. 173-176.

[49] C.-D. Chien, C.-C. Lin, Y.-H. Shih, H.-C. Chen, C.-J. Huang, C.-Y. Yu, C.-L.
Chen, C.-H. Cheng, and J.-I. Guo, "A 252kgate/7lmW multi-standard multi-
channel video decoder for high definition video applications," in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 282-283.

[50] T.-M. Liu, T.-A. Lin, S.-Z. Wang, W.-P. Lee, K.-C. Hou, J.-Y. Yang, and C.-
Y. Lee, "A 125pW, fully scalable MPEG-2 and H.264/AVC video decoder for
mobile applications," IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 161-169,
Jan. 2007.

[51] D. Boning and S. Nassif, Models of Process Variations in Device and Intercon-
nect. IEEE Press, 2001, pp. 98-115.

[52] "BSIM4v4.7 Mosfet Model User's Manual." [Online]. Available: http://www-
device.eecs.berkeley.edu/bsim/files/bsim4/bsim470/bsim470_manual.pdf.

[53] E. Seevinck, F. List, and J. Lohstroh, "Static Noise Margin Analysis of MOS
SRAM Cells," IEEE J. Solid-State Circuits, vol. SC-22, no. 5, pp. 748-754, Oct.
1987.

[54] L. Chang and et al., "Stable SRAM Cell Design for the 32nm Node and Beyond,"
in Symp. on VLSI Circuits (VLSI) Dig. Tech. Papers, Jun. 2005, pp. 128-129.

[55] I. J. Chang, D. Mohapatra, and K. Roy, "A Priority-Based 6T/8T Hybrid SRAM
Architecture for Aggressive Voltage Scaling in Video Applications," Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 21, no. 2, pp. 101
-112, Feb. 2011.

[56] M. Khare, S. Ku, R. Donaton, S. Greco, C. Brodsky, X. Chen, A. Chou, R. Del-
laGuardia, S. Deshpande, B. Doris, S. Fung, A. Gabor, M. Gribelyuk, S. Holmes,
F. Jamin, W. Lai, W. Lee, Y. Li, P. McFarland, R. Mo, S. Mittl, S. Narasimha,
D. Nielsen, R. Purtell, W. Rausch, S. Sankaran, J. Snare, L. Tsou, A. Vayshenker,
T. Wagner, D. Wehella-Gamage, E. Wu, S. Wu, W. Yan, E. Barth, R. Fergu-
son, P. Gilbert, D. Schepis, A. Sekiguchi, R. Goldblatt, J. Welser, K. Muller,

185

and P. Agnello, "A high performance 90nm SOI technology with 0.992Irn 2 6T-
SRAM cell," in Electron Devices Meeting, 2002. IEDM '02. International, Dec.
2002, pp. 407 -410.

[57] A. Kawasumi and et al., "A Single-Power-Supply 0.7V 1GHz 45nm SRAM with
An Asymmetrical Unit-/3-ratio Memory Cell," in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 382-383.

[58] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, "A Sub-200mV 6T SRAM
in 0.13pm CMOS," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2007, pp. 332-333.

[59] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii, and
H. Kobatake, "A Read-Static-Noise-Margin-Free SRAM Cell for Low-Vdd and
High-Speed Applications," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2005, pp. 478-479.

[60] L. Chang, Y. Nakamura, R. K. Montoye, J. Sawada, A. K. Martin, K. Kinoshita,
F. Gebara, K. Agarwal, D. Acharyya, W. Haensch, K. Hosokawa, and D. Jamsek,
"A 5.3GHz 8T-SRAM with Operation Down to 0.41V in 65nm CMOS," in Symp.
on VLSI Circuits (VLSI) Dig. Tech. Papers, Jun. 2007, pp. 252-253.

[61] S. Ishikura, M. Kurumada, T. Terano, Y. Yamagami, N. Kotani, K. Satomi,
K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, T. Oashi, H. Makino, H. Shi-
nohara, and H. Akamatsu, "A 45nm 2port 8T-SRAM using hierarchical replica
bitline technique with immunity from simultaneous R/W access issues," in Symp.
on VLSI Circuits (VLSI) Dig. Tech. Papers, Jun. 2007, pp. 254-255.

[62] R. Joshi and et al., "6.6+ GHz Low Vmin, read and half select disturb-free 1.2Mb
SRAM," in Symp. on VLSI Circuits (VLSI) Dig. Tech. Papers, Jun. 2007, pp.
250-251.

[63] Y. Morita and et al., "An Area-Conscious Low-Voltage-Oriented 8T-SRAM De-
sign under DVS Environment," in Symp. on VLSI Circuits (VLSI) Dig. Tech.
Papers, Jun. 2007, pp. 256-257.

[64] B. Calhoun and A. Chandrakasan, "A 256-kbit Sub-threshold SRAM in 65nm
CMOS," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2006, pp. 628-629.

[65] T.-H. Kim, J. Liu, J. Keane, and C. H. Kim, "A High-Density Subthreshold
SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica
Scheme," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2007, pp. 330-331.

[66] I. J. Chang, J. Kim, S. P. Park, and K. Roy, "A 32kb 10T Subthreshold SRAM
Array with Bit-interleaving and Differential Read Scheme in 90nm CMOS," in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp.
388-389.

186

[67] K. Itoh, A. Fridi, A. Bellaouar, and M. Elmasry, "A Deep Sub-V, Single Power-

Supply SRAM Cell with Multi-VT, Boosted Storage Node and Dynamic Load,"

in Symp. on VLSI Circuits (VLSI) Dig. Tech. Papers, Jun. 1996, pp. 132-133.

[68] K. Kanda, T. Miyazaki, M. K. Sik, H. Kawaguchi, and T. Sakurai, "Two Orders
of Magnitude Leakage Power Reduction of Low Voltage SRAM's by Row-by-

Row Dynamic VDD Control (RRDV) Scheme," in IEEE International ASIC/SOC
Conference, Sep. 2002, pp. 381-385.

[69] M. Yamaoka, K. Osada, and K. Ishibashi, "0.4-V Logic Library Friendly

SRAM Array Using Rectangular-Diffusion Cell and Delta-Boosted-Array-
Voltage Scheme," in Symp. on VLSI Circuits (VLSI) Dig. Tech. Papers, 2002,
pp. 170-173.

[70] N. Verma and A. Chandrakasan, "A 65nm 8T Sub-Vt SRAM Employing Sense-
Amplifier Redundancy," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2006, pp. 328-329.

[71] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli,
Y. Wang, B. Zheng, and M. Bohr, "A 3-GHz 70Mb SRAM in 65nm CMOS
Technology with Integrated Column-Based Dynamic Power Supply," in IEEE

Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 474-

475.

[72] M. Yamaoka, N. Maeda, Y. Shinozaki, Y. Shimazaki, K. Nii, S. Shimada,
K. Yanagisawa, and T. Kawahara, "Low-Power Embedded SRAM Modules with

Expanded Margins for Writing," in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2005, pp. 480-481.

[73] Y. Fujimura, 0. Hirabayashi, T. Sasaki, A. Suzuki, A. Kawasumi, Y. Takeyama,
K. Kushida, G. Fukano, A. Katayama, Y. Niki, and T. Yabe, "A configurable
SRAM with constant-negative-level write buffer for low-voltage operation with

0.149pm 2 cell in 32nm high-k metal-gate CMOS," in IEEE Int. Solid-State Cir-

cuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 348-349.

[74] K. Takeda, H. Ikeda, Y. Hagihara, M. Nomura, and H. Kobatake, "Redefinition

of Write Margin for Next-Generation SRAM and Write-Margin Monitoring Cir-

cuit," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb.
2006.

[75] Y. Ye, M. Khellah, D. Somasekhar, and V. De, "Evaluation of Differential vs.

Single-Ended Sensing and Asymmetric Cells in 90nm Logic Technology for On-

Chip Caches," in Int. Symp. on Circuits and Systems (ISCAS) Dig. Tech. Papers,
2006, pp. 963-966.

[76] N. Verma and A. Chandrakasan, "A High-Density 45nm SRAM Using Small-

Signal Non-Strobed Regenerative Sensing," in IEEE Int. Solid-State Circuits

Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 380-381.

187

[77] T. Kobayashi, K. Nogami, T. Shirotori, and Y. Fujimoto, "A Current- Controlled
Latch Sense Amplifier and a Static Power-Saving Input Buffer for Low-Power
Architecture," IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 523-527, Apr.
1993.

[78] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, "Yield and Speed Optimization
of a Latch-Type Voltage Sense Amplifier," IEEE J. Solid-State Circuits, vol. 39,
no. 7, pp. 1148-1158, Jul. 2004.

[79] R. Singh and N. Bhat, "An Offset Compensation Technique for Latch Type Sense
Amplifiers in High-speed Low-power SRAMs," IEEE Transactions on Very Large
Scale Integration(VLSI) Systems, vol. 12, no. 6, pp. 652-657, Jun. 2004.

[80] M. E. Sinangil, V. Sze, M. Zhou, and A. P. Chandrakasan, "Hardware-Aware Mo-
tion Estimation Search Algorithm Development for High-Efficiency Video Coding
(HEVC) Standard," in Image Processing (ICIP), 2012 19th IEEE International
Conference on, Sept. 2012, [Accepted].

[81] , "Memory Cost vs. Coding Efficiency Trade-Offs for HEVC Motion Es-
timation Engine," in Image Processing (ICIP), 2012 19th IEEE International
Conference on, Sept. 2012, [Accepted].

[82] M. Zhou, M. Sinangil, V. Sze, S. Park, J. Park, and B. Jeon, "JCTVC-F088:
CE9: Simplified AMVP Design," in Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WPS and ISO/IEC JTC1/SC29 WG11, Jul. 2011.

[83] M. Sinangil, H. Mair, and A. Chandrakasan, "A 28nm high-density 6T SRAM
with optimized peripheral-assist circuits for operation down to 0.6V," in Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE In-
ternational, Feb. 2011, pp. 260 -262.

[84] M. Sinangil, N. Verma, and A. Chandrakasan, "A 45nm 0.5V 8T column-
interleaved SRAM with on-chip reference selection loop for sense-amplifier," in
Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE Asian, Nov. 2009,
pp. 225 -228.

[85] T. Lu, X. Lu, Q. Xu, Y. Zheng, J. Sole, and P. Yin, "A video coding analyzer
for next-generation compression standards," in Consumer Electronics (ICCE),
2011 IEEE International Conference on, Jan. 2011, pp. 707 -708.

[86] "JCT-VC Reference Software HM-3.0," ISO/lEO MPEG and ITU-T.

[87] "Taiwan Semiconductor Manufacturing Company Limited." [Online]. Available:
http://www.tsmc.com/english/dedicatedfoundry/technology/65nm.htm.

[88] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching Prop-
erties of MOS Transistors," IEEE J. Solid-State Circuits, vol. 24, no. 5, pp.
1433-1439, Oct. 1989.

188

[89] S. 0. Toh, Z. Guo, T.-J. Liu, and B. Nikolic, "Characterization of Dynamic
SRAM Stability in 45 nm CMOS," Solid-State Circuits, IEEE Journal of, vol. 46,
no. 11, pp. 2702 -2712, Nov. 2011.

[90] M. Yamaoka, K. Osada, and T. Kawahara, "A cell-activation-time controlled

SRAM for low-voltage operation in DVFS SoCs using dynamic stability analy-

sis," in IEEE European Solid-State Circuits Conf. (ESSCIRC) Dig. Tech. Papers,
Sep. 2008, pp. 286-289.

[91] K. Kushida and et al., "A 0.7V single-supply SRAM with 0.495pm 2 cell in 65nm
technology utilizing self-write-back sense amplifier and cascaded bit line scheme,"

in Symp. on VLSI Circuits (VLSI) Dig. Tech. Papers, Jun. 2008, pp. 46-47.

[92] S. Cosemans, W. Dehaene, and F. Catthoor, "A 3.6pJ/access 480MHz, 128Kbit

on-chip SRAM with 850MHz boost mode in 90nm CMOS with tunable sense

amplifiers to cope with variability," in IEEE European Solid-State Circuits Conf.

(ESSCIRC) Dig. Tech. Papers, Sep. 2008, pp. 278-281.

[93] R. Rithe, C.-C. Cheng, and A. Chandrakasan, "Quad Full-HD transform engine

for dual-standard low-power video coding," in Solid State Circuits Conference

(A-SSCC), 2011 IEEE Asian, Nov. 2011, pp. 401 -404.

[94] N. Verma, "Ultra-Low-Power SRAM Design In High Variability Advanced
CMOS," Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge,
MA, 2009.

[95] J. Kwong and A. P. Chandrakasan, "An Energy-Efficient Biomedical Signal Pro-
cessing Platform," IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1742

1753. Jul. 2011.

189

