1,205 research outputs found

    Knowledge-based Data Processing for Multilingual Natural Language Analysis

    Get PDF
    Natural Language Processing (NLP) aids the empowerment of intelligent machines by enhancing human language understanding for linguistic-based human-computer communication. Recent developments in processing power, as well as the availability of large volumes of linguistic data, have enhanced the demand for data-driven methods for automatic semantic analysis. This paper proposes multilingual data processing using feature extraction with classification using deep learning architectures. Here, the input text data has been collected based on various languages and processed to remove missing values and null values. The processed data has been extracted using Histogram Equalization based Global Local Entropy (HEGLE) and classified using Kernel-based Radial basis Function (Ker_Rad_BF). These architectures could be utilized to process natural language. We present solutions to the multilingual sentiment analysis issue in this research article by implementing algorithms, and we compare precision factors to discover the optimum option for multilingual sentiment analysis. For the HASOC dataset, the proposed HEGLE_ Ker_Rad_BF achieved an accuracy of 98%, a precision of 97%, a recall of 90.5%, an f-1 score of 85%, RMSE of 55.6% and a loss curve analysis attained 44%. For the TRAC dataset, the accuracy of 98%, the precision attained is 97%, the Recall is 91%, the F-1 score is 87%, and the RMSE of the proposed neural network is 55%

    Deep Learning Based Real Time Devanagari Character Recognition

    Get PDF
    The revolutionization of the technology behind optical character recognition (OCR) has helped it to become one of those technologies that have found plenty of uses in the entire industrial space. Today, the OCR is available for several languages and have the capability to recognize the characters in real time, but there are some languages for which this technology has not developed much. All these advancements have been possible because of the introduction of concepts like artificial intelligence and deep learning. Deep Neural Networks have proven to be the best choice when it comes to a task involving recognition. There are many algorithms and models that can be used for this purpose. This project tries to implement and optimize a deep learning-based model which will be able to recognize Devanagari script’s characters in real time by analyzing the hand movements

    A Pointillism Approach for Natural Language Processing of Social Media

    Get PDF
    Natural language processing tasks typically start with the basic unit of words, and then from words and their meanings a big picture is constructed about what the meanings of documents or other larger constructs are in terms of the topics discussed. Social media is very challenging for natural language processing because it challenges the notion of a word. Social media users regularly use words that are not in even the most comprehensive lexicons. These new words can be unknown named entities that have suddenly risen in prominence because of a current event, or they might be neologisms newly created to emphasize meaning or evade keyword filtering. Chinese social media is particularly challenging. The Chinese language poses challenges for natural language processing based on the unit of a word even for formal uses of the Chinese language, social media only makes word segmentation in Chinese even more difficult. Thus, even knowing what the boundaries of words are in a social media corpus is a difficult proposition. For these reasons, in this document I propose the Pointillism approach to natural language processing. In the pointillism approach, language is viewed as a time series, or sequence of points that represent the grams\u27 usage over time. Time is an important aspect of the Pointillism approach. Detailed timing information, such as timestamps of when posts were posted, contain correlations based on human patterns and current events. This timing information provides the necessary context to build words and phrases out of trigrams and then group those words and phrases into topical clusters. Rather than words that have individual meanings, the basic unit of the pointillism approach is trigrams of characters. These grams take on meaning in aggregate when they appear together in a way that is correlated over time. I anticipate that the pointillism approach can perform well in a variety of natural language processing tasks for many different languages, but in this document my focus is on trend analysis for Chinese microblogging. Microblog posts have a timestamp of when posts were posted, that is accurate to the minute or second (though, in this dissertation, I bin posts by the hour). To show that trigrams supplemented with frequency information do collect scattered information into meaningful pieces, I first use the pointillism approach to extract phrases. I conducted experiments on 4-character idioms, a set of 500 phrases that are longer than 3 characters taken from the Chinese-language version of Wiktionary, and also on Weibo\u27s hot keywords. My results show that when words and topics do have a meme-like trend, they can be reconstructed from only trigrams. For example, for 4-character idioms that appear at least 99 times in one day in my data, the unconstrained precision (that is, precision that allows for deviation from a lexicon when the result is just as correct as the lexicon version of the word or phrase) is 0.93. For longer words and phrases collected from Wiktionary, including neologisms, the unconstrained precision is 0.87. I consider these results to be very promising, because they suggest that it is feasible for a machine to reconstruct complex idioms, phrases, and neologisms with good precision without any notion of words. Next, I examine the potential of the pointillism approach for extracting topical trends from microblog posts that are related to environmental issues. Independent Component Analysis (ICA) is utilized to find the trigrams which have the same independent signal source, i.e., topics. Contrast this with probabilistic topic models, which leverage co-occurrence to classify the documents into the topics they have learned, so it is hard for it to extract topics in real-time. However, pointillism approach can extract trends in real-time, whether those trends have been discussed before or not. This is more challenging because in phrase extraction, order information is used to narrow down the candidates, whereas for trend extraction only the frequency of the trigrams are considered. The proposed approach is compared against a state of the art topic extraction technique, Latent Dirichlet Allocation (LDA), on 9,147 labelled posts with timestamps. The experimental results show that the highest F1 score of the pointillism approach with ICA is 4% better than that of LDA. Thus, using the pointillism approach, the colorful and baroque uses of language that typify social media in challenging languages such as Chinese may in fact be accessible to machines. The thesis that my dissertation tests is this: For topic extraction for scenarios where no adequate lexicon is available, such as social media, the Pointillism approach uses timing information to out-perform traditional techniques that are based on co-occurrence

    Handbook of Stemmatology

    Get PDF
    Stemmatology studies aspects of textual criticism that use genealogical methods. This handbook is the first to cover the entire field, encompassing both theoretical and practical aspects, ranging from traditional to digital methods. Authors from all the disciplines involved examine topics such as the material aspects of text traditions, methods of traditional textual criticism and their genesis, and modern digital approaches used in the field

    Onsetsu hyoki no kyotsusei ni motozuita Ajia moji nyuryoku intafesu ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3450号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2011/10/26 ; 早大学位記番号:新577

    Computational approaches to semantic change (Volume 6)

    Get PDF
    Semantic change — how the meanings of words change over time — has preoccupied scholars since well before modern linguistics emerged in the late 19th and early 20th century, ushering in a new methodological turn in the study of language change. Compared to changes in sound and grammar, semantic change is the least understood. Ever since, the study of semantic change has progressed steadily, accumulating a vast store of knowledge for over a century, encompassing many languages and language families. Historical linguists also early on realized the potential of computers as research tools, with papers at the very first international conferences in computational linguistics in the 1960s. Such computational studies still tended to be small-scale, method-oriented, and qualitative. However, recent years have witnessed a sea-change in this regard. Big-data empirical quantitative investigations are now coming to the forefront, enabled by enormous advances in storage capability and processing power. Diachronic corpora have grown beyond imagination, defying exploration by traditional manual qualitative methods, and language technology has become increasingly data-driven and semantics-oriented. These developments present a golden opportunity for the empirical study of semantic change over both long and short time spans

    Relocating Jainism

    Get PDF

    Understanding the structure and meaning of Finnish texts: From corpus creation to deep language modelling

    Get PDF
    Natural Language Processing (NLP) is a cross-disciplinary field combining elements of computer science, artificial intelligence, and linguistics, with the objective of developing means for computational analysis, understanding or generation of human language. The primary aim of this thesis is to advance natural language processing in Finnish by providing more resources and investigating the most effective machine learning based practices for their use. The thesis focuses on NLP topics related to understanding the structure and meaning of written language, mainly concentrating on structural analysis (syntactic parsing) as well as exploring the semantic equivalence of statements that vary in their surface realization (paraphrase modelling). While the new resources presented in the thesis are developed for Finnish, most of the methodological contributions are language-agnostic, and the accompanying papers demonstrate the application and evaluation of these methods across multiple languages. The first set of contributions of this thesis revolve around the development of a state-of-the-art Finnish dependency parsing pipeline. Firstly, the necessary Finnish training data was converted to the Universal Dependencies scheme, integrating Finnish into this important treebank collection and establishing the foundations for Finnish UD parsing. Secondly, a novel word lemmatization method based on deep neural networks is introduced and assessed across a diverse set of over 50 languages. And finally, the overall dependency parsing pipeline is evaluated on a large number of languages, securing top ranks in two competitive shared tasks focused on multilingual dependency parsing. The overall outcome of this line of research is a parsing pipeline reaching state-of-the-art accuracy in Finnish dependency parsing, the parsing numbers obtained with the latest pre-trained language models approaching (at least near) human-level performance. The achievement of large language models in the area of dependency parsing— as well as in many other structured prediction tasks— brings up the hope of the large pre-trained language models genuinely comprehending language, rather than merely relying on simple surface cues. However, datasets designed to measure semantic comprehension in Finnish have been non-existent, or very scarce at the best. To address this limitation, and to reflect the general change of emphasis in the field towards task more semantic in nature, the second part of the thesis shifts its focus to language understanding through an exploration of paraphrase modelling. The second contribution of the thesis is the creation of a novel, large-scale, manually annotated corpus of Finnish paraphrases. A unique aspect of this corpus is that its examples have been manually extracted from two related text documents, with the objective of obtaining non-trivial paraphrase pairs valuable for training and evaluating various language understanding models on paraphrasing. We show that manual paraphrase extraction can yield a corpus featuring pairs that are both notably longer and less lexically overlapping than those produced through automated candidate selection, the current prevailing practice in paraphrase corpus construction. Another distinctive feature in the corpus is that the paraphrases are identified and distributed within their document context, allowing for richer modelling and novel tasks to be defined

    Translation Alignment Applied to Historical Languages: methods, evaluation, applications, and visualization

    Get PDF
    Translation alignment is an essential task in Digital Humanities and Natural Language Processing, and it aims to link words/phrases in the source text with their translation equivalents in the translation. In addition to its importance in teaching and learning historical languages, translation alignment builds bridges between ancient and modern languages through which various linguistics annotations can be transferred. This thesis focuses on word-level translation alignment applied to historical languages in general and Ancient Greek and Latin in particular. As the title indicates, the thesis addresses four interdisciplinary aspects of translation alignment. The starting point was developing Ugarit, an interactive annotation tool to perform manual alignment aiming to gather training data to train an automatic alignment model. This effort resulted in more than 190k accurate translation pairs that I used for supervised training later. Ugarit has been used by many researchers and scholars also in the classroom at several institutions for teaching and learning ancient languages, which resulted in a large, diverse crowd-sourced aligned parallel corpus allowing us to conduct experiments and qualitative analysis to detect recurring patterns in annotators’ alignment practice and the generated translation pairs. Further, I employed the recent advances in NLP and language modeling to develop an automatic alignment model for historical low-resourced languages, experimenting with various training objectives and proposing a training strategy for historical languages that combines supervised and unsupervised training with mono- and multilingual texts. Then, I integrated this alignment model into other development workflows to project cross-lingual annotations and induce bilingual dictionaries from parallel corpora. Evaluation is essential to assess the quality of any model. To ensure employing the best practice, I reviewed the current evaluation procedure, defined its limitations, and proposed two new evaluation metrics. Moreover, I introduced a visual analytics framework to explore and inspect alignment gold standard datasets and support quantitative and qualitative evaluation of translation alignment models. Besides, I designed and implemented visual analytics tools and reading environments for parallel texts and proposed various visualization approaches to support different alignment-related tasks employing the latest advances in information visualization and best practice. Overall, this thesis presents a comprehensive study that includes manual and automatic alignment techniques, evaluation methods and visual analytics tools that aim to advance the field of translation alignment for historical languages

    Computational Methods for Medical and Cyber Security

    Get PDF
    Over the past decade, computational methods, including machine learning (ML) and deep learning (DL), have been exponentially growing in their development of solutions in various domains, especially medicine, cybersecurity, finance, and education. While these applications of machine learning algorithms have been proven beneficial in various fields, many shortcomings have also been highlighted, such as the lack of benchmark datasets, the inability to learn from small datasets, the cost of architecture, adversarial attacks, and imbalanced datasets. On the other hand, new and emerging algorithms, such as deep learning, one-shot learning, continuous learning, and generative adversarial networks, have successfully solved various tasks in these fields. Therefore, applying these new methods to life-critical missions is crucial, as is measuring these less-traditional algorithms' success when used in these fields
    corecore