616 research outputs found

    Intelligent Routing Metric for Wireless Body Area Networks

    Get PDF
    Routing in Wireless Body Area Networks (WBANs) is a critical requirement due to its dynamic behaviour. This paper proposes an intelligent framework for link cost evaluation. A suitable Quality of Service (QoS) parameters based function has been proposed. The sensors in WBANs would be capable of computing the Link Cost (LC) function based upon the current values of QoS parameters: throughput, delay of the link and residual energy of the sensor. A fuzzy logic based system is proposed at the sensor to evaluate the LC. Nodes of architecture evaluate a set of possible paths between source-terminal pairs. This LC is then used to evaluate the suitable path for the routing

    Wireless body area networks for intra-spacesuit communications: modeling, measurements and wearable antennas

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringWilliam B. KuhnBalasubramaniam NatarajanWireless body area networks (WBANs) are an important part of the developing internet of things (IOT). NASA currently uses space suits with wired sensors to collect limited biomedical data. Continuous monitoring and collecting more extensive body vital signs is important to assess astronaut health. This dissertation investigates wireless biomedical sensor systems that can be easily incorporated into future space suits to enable real time astronaut health monitoring. The focus of the work is on the radio-wave channel and associated antennas. We show that the space suit forms a unique propagation environment where the outer layers of the suit’s thermal micrometeoroid garment are largely radio opaque. This environment can be modeled as a coaxial one in which the body itself plays the role of the coax center conductor while the space suit shielding materials play the role of the outer shield. This model is then validated through simulations and experiments. Selecting the best frequency of operation is a complex mixture of requirements, including frequency allocations, attenuation in propagation, and antenna size. We investigate the propagation characteristics for various frequency bands from 315 MHz to 5.2 GHz. Signal attenuation is analyzed as a function of frequency for various communication pathways through 3D simulations and laboratory experiments. Small-scale radio channel results indicate that using lower frequency results in minimal path loss. On the other hand, measurements conducted on a full-scale model suggest that 433 MHz and 2400 MHz yield acceptable path loss values. Propagation between the left wrist and left ankle yielded the worst overall path loss, but signals were still above –100 dBm in raw measurements for a 0dBm transmission indicating that the intra-suit environment is conducive to wireless propagation. Our findings suggest that the UHF bands are best candidate bands since there is interplay between the body conductivity favoring lower frequencies, and the difficulty of coupling RF energy into and out of the channel using suitably sized antennas favoring higher frequencies. Finally, a new self-shielded folded bow-tie antenna is proposed that can be a promising choice for the general area of WBAN technologies as well as potential new space suit environments

    The State of the Art of Information Integration in Space Applications

    Get PDF
    This paper aims to present a comprehensive survey on information integration (II) in space informatics. With an ever-increasing scale and dynamics of complex space systems, II has become essential in dealing with the complexity, changes, dynamics, and uncertainties of space systems. The applications of space II (SII) require addressing some distinctive functional requirements (FRs) of heterogeneity, networking, communication, security, latency, and resilience; while limited works are available to examine recent advances of SII thoroughly. This survey helps to gain the understanding of the state of the art of SII in sense that (1) technical drivers for SII are discussed and classified; (2) existing works in space system development are analyzed in terms of their contributions to space economy, divisions, activities, and missions; (3) enabling space information technologies are explored at aspects of sensing, communication, networking, data analysis, and system integration; (4) the importance of first-time right (FTR) for implementation of a space system is emphasized, the limitations of digital twin (DT-I) as technological enablers are discussed, and a concept digital-triad (DT-II) is introduced as an information platform to overcome these limitations with a list of fundamental design principles; (5) the research challenges and opportunities are discussed to promote SII and advance space informatics in future

    A study of perturbations in linear and circular polarized antennas in close proximity to the human body and a dielectric liquid filled phantom at 1.8 GHz

    Get PDF
    In the design and synthesis of wearable antennas isolation distance from the body is a critical parameter. This paper deals with the comparison of perturbations caused to the matching of simple linear and circular polarized patch antennas due to the close proximity of a human torso and rectangular box phantom filled with muscle simulating liquid at 1.8GHz. The isolated variable is return loss (S11). Results show that both linear and circularly polarized antennas produce an optimal return loss closer to the surface of a typical phantom than the back of a human volunteer

    Electromagnetic Band Gap Structure Integrated Wearable Monopole Antenna For Spacesuit

    Get PDF
    Research and development of body-worn communication systems and electronics have become very prominent in recent years. Some applications include intelligent garments equipped with wireless communication devices for sports, astronauts’ spacesuits [1], and fire fighters’ uniforms [2]. These systems are unthinkable without different kinds of body worn textile or flexible antennas. In this thesis, we will discuss the design and fabrication of a compact wearable textile antenna within the Industrial, Scientific and Medical (ISM) band operating frequency, proposed for incorporation into a flight jacket of the astronaut inside the habitat. The antenna is integrated with artificial material known as Electromagnetic Band Gap (EBG) structures for performance enhancement. The purpose of the system is to constantly monitor vital signals of the astronauts. In this thesis the design, simulation, prototype fabrication and antenna testing under different environmental condition, in a word the entire design cycle of wearable Co-Planar Waveguide (CPW) fed monopole antenna is discussed. As human body tissues are lossy in nature, the radiation efficiency of the antenna will be affected due to the absorption of the radiated energy. Therefore, alteration in the radiation characteristics of the wearable antenna like resonant frequency, realized gain and impedance bandwidth will take place. For overcoming these obstacles, addition of EBG layers are recommended to isolate the antenna from near body environments. The proposed wearable antenna was tested under real operating conditions such as pressure and stretching conditions

    Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    Get PDF
    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS

    Research Naval Postgraduate School, v.13, no.1, February 2003

    Get PDF
    NPS Research is published by the Research and Sponsored Programs, Office of the Vice President and Dean of Research, in accordance with NAVSOP-35. Views and opinions expressed are not necessarily those of the Department of the Navy.Approved for public release; distribution is unlimited

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Wearable antennas: design, connectivity and evaluation measurement techniques

    Get PDF
    Wearable antennas and electronics technology rapidly grows the last decades and leads to a future where smart textiles will be integrated into our garments. However the wearable technology research includes unsolved or of different approach challenges. This thesis deals with challenges regarding wearable antenna characterization and measurements, textile antennas feeding and textile transmission lines interconnecting. Regarding the wearable antenna characterization and measurements, a novel design of a liquid torso phantom and a new methodology for evaluating wearable antenna performance by using the cylindrical near field measurement technique are proposed. As for the textile antennas and transmission lines feeding and interconnecting, two novel methods are proposed

    Human Activity Recognition Based On Wearable Flex Sensor and Pulse Sensor

    Get PDF
    In order to fulfill the needs of everyday monitoring for healthcare and emergency advice, many HAR systems have been designed [1]. Based on the healthcare purpose, these systems can be implanted into an astronaut’s spacesuit to provide necessary life movement monitoring and healthcare suggestions. Most of these systems use acceleration data-based data record as human activity representation [2,3]. But this data attribute approach has a limitation that makes it impossible to be used as an activity monitoring system for astronavigation. Because an accelerometer senses acceleration by distinguishing acceleration data based on the earth’s gravity offset [4], the accelerometer cannot read any type of acceleration when it is in the actual free fall environment. Since astronauts will experience microgravity and/or zero environments in outer space, all existing acceleration data-based HAR systems cannot fulfill this requirement. Therefore, it is necessary to design a new data attribute for HAR systems to specifically work under microgravity and zero gravity environments. The angular change of body joints during activity can be a good solution. By attaching sensors onto body joints, the system can recognize an activity by analyzing the change pattern of bend angles similarly to how people recognize others’ activity by looking at their posture during movement. Considering the possibility of overlapping data from multiple different activities that may have similar angular changes, a life activity related data called Beats Per Minute (BPM) is thus used to differentiate overlapping activities. With the new compilation and format of activity data, the HAR system should be able to work under both microgravity and non-gravity environments with similar or better accuracy than existing HAR system implementations. This paper demonstrates the implementation of new data attributes based on existing HAR systems by using angular data and BPM data, then makes comparison between acceleration data-based HAR and angular data-based HAR systems to verify the performance similarities, and comparison among different neural network structures to analyze and provide the most suitable machine learning technique to train the system
    • …
    corecore