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ABSTRACT 
 

Research and development of body-worn communication systems and electronics have 

become very prominent in recent years. Some applications include intelligent garments 

equipped with wireless communication devices for sports, astronauts’ spacesuits [1], and 

fire fighters’ uniforms [2]. These systems are unthinkable without different kinds of body-

worn textile or flexible antennas. In this thesis, we will discuss the design and fabrication 

of a compact wearable textile antenna within the Industrial, Scientific and Medical (ISM) 

band operating frequency, proposed for incorporation into a flight jacket of the astronaut 

inside the habitat. The antenna is integrated with artificial material known as 

Electromagnetic Band Gap (EBG) structures for performance enhancement. The purpose 

of the system is to constantly monitor vital signals of the astronauts.  

In this thesis the design, simulation, prototype fabrication and antenna testing under 

different environmental condition, in a word the entire design cycle of wearable Co-Planar 

Waveguide (CPW) fed monopole antenna is discussed. As human body tissues are lossy in 

nature, the radiation efficiency of the antenna will be affected due to the absorption of the 

radiated energy. Therefore, alteration in the radiation characteristics of the wearable 

antenna like resonant frequency, realized gain and impedance bandwidth will take place. 

For overcoming these obstacles, addition of EBG layers are recommended to isolate the
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antenna from near body environments. The proposed wearable antenna was tested under 

real operating conditions such as pressure and stretching conditions.  
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CHAPTER I 

INTRODUCTION 
 

The first public research report on wearable antenna goes back to the late nineties 

[3]. After that the growth in the academic and industrial research on wearable antenna has 

taken pace and resulted in the design of antennas on flexible substrate followed by textile 

substrate antennas [4]. The latest embodiments are taking advantages of Electromagnetic 

Band Gap (EBG) structures for the improvement of antenna performances. In the following 

section, the motivations behind the research work in this thesis will be highlighted. 

1.1 Motivation 
 

Continuous growth of personal communications and handheld devices such as 

smart phones, organizers, space communication, tablets, computers, navigation devices, 

etc. which are using wireless access points to transfer data has opened great opportunities 

in research and development of small antennas and antenna miniaturization techniques. 

From the engineering point of view the antenna is an indispensable part of any handheld 

and/or mobile wireless devices. However, for the designers and users, a large piece such 

as an antenna on the device is inelegant, therefore it is desired to have antennas that are 

small in size and as much as invisible possible. These demands are reconciled through the 

development of small antennas, typically integrated into the handheld device’s structure. 
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Antennas’ performance are strongly linked with the size and shape of the antennas. 

The first major results showing the link between antenna size, gain and its maximum 

bandwidth were presented in the late nineties [18]. The antenna size is not evaluated by the 

technology used for its fabrication rather by its physical laws. When the size of the antenna 

is analogous to the wavelength and the antenna is resonating, good performance may be 

obtained. At usual operating frequencies of wireless networks this means that the antenna 

should be quite large. Numerous methods and approaches have been experimented and 

applied to minimize the antenna dimensions as well as maintain good radiation properties.  

Immense amount of interest is being shown in the recent years from both academia 

and industry in the field of flexible electronics. Even more, this research topic is on the top 

of the pyramid of research priorities requested by many national research organizations. 

From the market analysis, it is shown that the revenue of flexible electronics is projected 

to be 30 billion USD in 2017 and over 300 billion USD in 2028 [5]. 

One specific demand in flexible electronic systems is the requirement of the 

integration of flexible antennas operating in precise frequency bands as a crucial part of 

wireless connectivity. This has high demand by today’s information oriented society [6]. 

Obviously, the characteristics of the integrated antenna primarily determine the efficiency 

of these systems. The flexible wireless technologies require the combination of light-

weight, flexible, compact, and low profile antennas. At the same time, these antennas 

should be efficient, mechanically flexible with a fairly wide bandwidth and desirable 

radiation characteristics. 
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Shorted microstrip patches and Planar Inverted F Antennas (PIFAs) are an example 

of the methods used to reduce the antenna dimensions. To reduce the antenna structure 

further modifications have to be introduced in the patch. Now-a-days the space filling 

curves have become popular. Also, many other methods like EBG, metamaterials etc. are 

being used.  The research on antenna designs and performance measurement results 

presented in this thesis range from gaining experience in the application of miniaturization 

techniques, material selection to designing antennas and EBG arrays for specific 

applications in prescribed frequency bands. 

1.2 Thesis Outline 
 

Chapter 2 summarizes the significant previous work and ideas that motivate and 

drive this thesis. The reader will be introduced to the subject of wearable antennas and their 

applications into different disciplines in the literature review section. The history of 

wearable antennas and High Impedance Structures (HISs) structures will also be given. 

Additionally, the relevant theory of EBG will be provided. Their unique electromagnetic 

properties of in-phase reflection and surface wave suppression will be discussed as well. 

In Chapter 3, we will discuss about the Coplanar Waveguide (CPW) fed fully textile 

monopole antenna. The design parameters, design variables, simulation setup in the CST 

Microwave Studio [82] are presented. In addition to that the design of the proposed single 

EBG cell structure and phase reflection characteristic are introduced. The antenna is 

integrated with EBG for performance enhancement. The simulated as well as measured 

results of reflection coefficient and radiation patterns are presented.  
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In order to validate the proposed design for wearable antenna application, 

performance characteristics of the monopole antenna and the antenna integrated on EBG 

structure under pressurized and stretching conditions will be discussed in Chapter 4. 

Stretching in different planes of the antenna structure for different cases, approximating 

real-life situations, are presented in this chapter.   

Chapter 5 is dedicated to discussion of future work and the conclusions of this work. 

This chapter gives guidelines on how this project can be extended to produce a functional 

benchmarking tool set. 
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CHAPTER II 

LITERATURE REVIEW 
 

This chapter includes a discussion of the research, challenges and opportunities in 

the field of wearable antenna and HIS. This includes theoretical background of flexible 

antenna, and progress involved in developing wearable electronics. It also focuses on the 

modeling and measurement of environmental effects on the wearable and flexible material. 

2.1 Wearable Antenna 

2.1.1 Introduction 
 

The aspiration to effortlessly incorporate complete situational consciousness with 

ever increasing data usage, video, and voice service competencies into body-worn systems 

has become an area of significant importance, especially for military and emergency first-

responder personnel. It has also become severely important and significant to personnel 

working routinely in the most remote of locations, namely, astronauts. 

Wearable antenna has been utilized in many applications, such as in-space 

applications, military domains, firefighting, personal communications, and health 

monitoring [7]. They might be a part of a system that provides information about the
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wearer’s health and environmental states. In general, wearable antennas can be defined as 

those that can be integrated into clothing.  

The requirements can vary depending on the application specifications of wearable 

antenna. However, some common features that can be listed as follows [8, 9]: 

1) Low profile, 

2) Flexible and withstand bending, damage from obstacles, and stretching, 

3) Low fabrication and maintenance cost, 

4) Capable of providing shielding from the adverse effects on the human body, 

5) Less disturbing, and not causing extra drag for the operating system, and 

6) Hidden and water proof to avoid wet weather conditions. 

2.1.2 Wearable Antenna: Types 
 

Textile and fabric-based antenna design is among the overwhelming scrutinize 

topics in antennas for body-centric communication applications. Generally, wearable 

antenna necessities those to be low cost, light weight, nearly maintenance-free. A number 

of occupations need body centric correspondence systems, for example, paramedics, 

firefighters, and military soldiers. Besides, wearable antennas likewise could make a 

contribution when connected with youngsters, elders, and athletes for the purpose of 

monitoring. 

The understanding of electromagnetic properties such as permittivity, and loss 

tangent of the textile material is essential for the design of the textile antennas. 

Nonconductive textile material like Pellon, silk, felt and fleece may be used as substrates, 

whereas conductive textile such as pure copper polyester taffeta fabrics, Flectron and Zelt 
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are some choices suitable for radiating elements. The measurement is done in [10] to find 

the electromagnetic properties of textile substrate using a transmission/reflection 

waveguide method.  

Depending on the antenna material, wearable antennas can be categorized into two 

types: 

I. Flexible wearable antennas:  The antennas that use flexible materials such 

as foam, polyimides, commercial papers, and flexible Printed Circuit Board (PCB) are 

called flexible antennas. This type of antennas shows additional flexibility as compared 

with firm dielectric substrate. The use of this kind is still restricted due to the size of 

antenna and the complication to be well integrated with clothing in numerous 

applications. Textile-based antenna is another type of flexible antenna, where the 

conductive material or/and non-conductive are based on fabrics. Therefore, the 

integration of the antenna with clothing can be done easily, which can produce more 

freedom to design without restrictions on the antenna area.  

II. Inflexible wearable antenna: The antennas that are made of substrates that 

are not flexible in nature are called the inflexible wearable antenna. However, these 

antennas are designed in compact size, made in a curved contoured shape to be mounted 

on the human body. Regardless of the restrictions on the antenna area and shape, it is 

impractical and inconvenient to use these kinds of antennas for on-body communication 

system [11].  
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2.1.3 Wearable Antennas: Desirable Features and Critical Design Issues  
 

In recent years a lot of attention is being given to wearable antenna due to the fact 

that they can be integrated into clothing with ease [12, 13-15]. This feature is very much 

desired for military applications as well, such applications as those requiring low visibility 

and hands-free. For improving the quality of signal in wireless communications all the 

available space on clothing can be utilized in wearable antennas.  

Another major problem in wireless communication is the drop of signal strength 

due to multipath fading when the mobile terminal shifts to a wavelength distance. A very 

efficient way to counter the effect multipath fading is antenna diversity. To utilize the 

diversity system antenna elements need to be half wavelength apart from each other. Due 

to lack of space this becomes impractical on small form-factor of hand-held units, which 

limits the use of antenna diversity. However, in body worn wireless system antenna 

diversity can be utilized on a large scale [16]. 

The human body has a frequency dependent permittivity and conductivity with 

irregularity in shape. Human body geometry, physiological parameters, frequency and 

polarization of the incident field define the electromagnetic field distribution inside the 

body and scattering field. As body tissues have high permittivity [17] the resonant 

frequency of the antenna will change and detune to a lower ones. Antenna gain or the 

transmitted power in the direction of maximum radiation is another important parameters 

that are affected due to the conductivity of the human tissues.  

Stretching and compression are typical for fabric. The antenna structure can easily 

deform due to stretching and crumbling and this affects its performance characteristics. As 
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a result, it will be difficult to mass-produce an antenna with the same radiation 

characteristics even using the same materials. 

Fabric antennas made of textile materials contain voids that can easily absorb water 

and moisture, and therefore, can change the resonance frequency and impedance bandwidth 

of an antenna. 

In the next section the literature that has contributed to the evolution of wearable 

antennas will be briefly reviewed and summarized, in order to point out the areas of 

wearable antenna research that need further study. 

2.1.4 Wearable Antennas Literature Review 
 

The research work done on wearable antennas is categorized by the type of antennas 

used like monopole, dipole, microstrip patch, E-shaped, PIFA and U-slot patch antennas. 

The applications of the antenna like cellular mobile communications, Frequency 

Modulation (FM) radio and Television (TV), Global Positioning Systems (GPS), Wireless 

Local Area Network (WLAN) and Ultra-Wide Band (UWB) wireless systems play a vital 

role on the categorization of the antenna. Some research that has been done so far on 

wearable antennas and their applications is summarized below:  

A dual band planar antenna was designed for wearable application by Salonen [18] 

in 1999. It is claimed this antenna was the first of its kind. A U-shaped slot was inserted 

into a planar inverted F antenna (PIFA) in order to achieve a dual-band antenna for mobile 

cellular band Global System for Mobile Communications (GSM) 900 MHz band and 

Industrial, Scientific, and Medical radio (ISM) 2.4 GHz band. The proposed idea was to 

mount this antenna on the sleeve to make it wearable, although the antenna was made out 
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of rigid material. The human body effect on the radiation characteristics was minimized by 

the introduction of the ground plane in the antenna design. 

The research on wearable antennas brought noteworthy interest among many 

researchers in industry and academia. Considering the comfort level of the wearer, a fabric-

based wearable antenna for mobile phone antenna for GSM 900 MHz was designed in [19]. 

Copper plated rip-stop nylon was used to construct the conducting parts and a foam spacer 

was used as the dielectric. The antenna was placed on the outside of the upper arm in order 

not to be affected by human, and on-body efficiency was reported to be 50%. In [20] a 

PIFA wearable antenna which was flexible in nature was designed for 2.4 GHz WLAN and 

Universal Mobile Telecommunication Systems (UMTS) 2100 MHz. A fleece fabric based 

microstrip antenna was designed in [3] which is to be used for an emergency workers’ 

outfit at 2.4 GHz WLAN band. The bending effect on wearable microstrip patch antenna 

was studied in [21]. The study showed that bending in E-plane has changed the resonance 

frequency, whereas H-plane bending has minimal effects on resonance frequency. 

Wearable antennas are gaining popularity in their use in military uniforms [22]. The 

difficulty is that the radio operators can be easily identified by their protruding antennas 

and can become targeted by the enemy. In addition, the antennas can be easily broken by 

trees and bushes, which prohibit their mobility. To overcome these problems different 

wearable antenna designs seamlessly integrated into a soldier uniform have been proposed 

[23-25]. As any conducting structure can radiate, if designed properly, some researchers 

proposed to use the metal button of jackets and belts as antennas [26-28]. The first U-

shaped patch antenna design was successfully implemented for wearable applications using 

copper tape and fleece fabric [14].  
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As textile-conducting materials continue to find use in wearable antenna designs, it 

was deemed necessary to characterize their electrical properties. The measurement 

techniques of surface resistivity and conductivity of electro-textiles were carried out in [29, 

30]. The use of electro-textiles in wearable antennas applications was explored in [31]. For 

this purpose a fabric antenna was designed and its efficiency was reported to be 80%. This 

research supported the idea of using textile-conducting materials in place of traditional 

copper for light-weight wearable antennas. 

As a result of different textile materials appearing in the area of wearable antenna 

design, it became necessary to characterize the performance of wearable antenna with 

different textiles. Testing of six different textile fabrics as wearable antenna substrates is 

presented in [32]. To achieve uniform separation distance between antenna and textile 

substrate, it was concluded that the textile material should be inelastic and it should have a 

smooth surface. 

Wearable antennas are meant to work in close proximity to the human body. That 

is why it is very important to characterize the effect of human body on its performance. 

The first in-depth research on textile antenna performance close to the human body was 

given in [33]. The results showed that wearable antennas performed well near human body 

and performance was only marginally affected by human body interaction.  

Major parts of our discussion so far are linearly polarized antennas. In [34] the first 

circular polarized wearable antenna was presented. A corner-truncated patch was designed 

for this experiment. To design WLAN wearable antenna with circular polarization another 

conventional technique of feeding along the diagonal of square patch was employed in 
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[35]. The intent of these results is to show that conventional antenna design techniques 

works almost same for textile based antennas. For dual band operation an E-shaped 

microstrip patch wearable antenna was also proposed [36] using standard designs and 

results were similar to conventional E-shaped patch design. 

A GPS wearable antenna was proposed [37], which uses a water-resistant and fire-

resistant foam substrate. This made this antenna especially suitable for using in rescue 

worker’s garments. This antenna was shown to work well even when covered with textiles, 

integrated into a jacket or worn on the human body.  As athletes use very light clothes, to 

make the wearable antenna feather light a flexible and lightweight antenna at 2.4 GHz was 

proposed in [38].  

Different fabrication techniques of textile antennas were discussed in [39]. For 

conducting part of the antenna copper tape, copper thread and conductive spray were used 

to see their effects on wearable antenna performance. It was mentioned that most of the 

general public will accept wearable antenna if the antennas are hidden, small in size and 

lightweight.  

The large space available on the human body can be used for designing a high gain 

antenna array. This concept was explored in [40] for a body-worn electro-textile antenna 

array. A novel wideband antenna element, referred as a complementary-8 element because 

of its shape, was investigated for use in possible Extra Vehicular Activity (EVA) 

communication systems. A self-complementary antenna was designed for use above 2.1 

GHz, using the Nora conductive fabric and a 0.635-cm Nomex substrate. Investigation of 
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six complementary-8 antenna elements placed around the periphery of an EVA suit for 

navigation purposes was discussed in this work. 

Federal Communications Commission (FCC) has approved Ultra-wide band 

(UWB) for different application. UWB is an emerging wireless technology. This 

technology allows high data rate over short distances with low power consumption [41]. 

The first UWB textile antenna was proposed in [42] in which, two design topologies were 

investigated. The first design was a CPW fed disc monopole antenna and the other was a 

microstrip fed annular slot antenna. The designs had a small thickness of 0.5mm and very 

flexible to be easily integrated into clothing. A UWB antenna based on a button structure 

was proposed in [43, 44].  

EBG structures are also known as Artificial Magnetic Conductor (AMC) or High 

Impedance surface (HIS) [45] surfaces. These are getting noticed to be used in antenna 

designs [46-48] due to their unique electromagnetic properties of in-phase reflection of 

plane waves and stopband for propagation of surface waves. These properties have been 

exploited in designing low-profile antennas and improving the bandwidth, gain and 

backward radiation in patch antenna designs. 

The use of EBG structures in wearable antenna designs has not been explored to a 

great extent, although some designs have been proposed which have incorporated them. 

The first EBG based antenna design for wearable application was proposed in [49]. 

Although it was not a truly wearable antenna as it was constructed on traditional rigid FR4 

substrate, however the idea was to use this for wearable applications. A 2.45 GHz patch 

antenna was fabricated on a thin FR4 substrate and EBG pattern was etched on the ground 
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plane of the antenna. It was observed that the effect of EBG was to increase the impedance 

bandwidth, and gain, and reduce the backward radiation as well as the size of the antenna.  

In [50], the design of flexible M-shaped printed monopole antenna, operating in the 

ISM 2.45 GHz band, was proposed for telemedicine communications. The antenna 

substrate was made of polyimide Kapton flexible material, and the AMC ground-plane was 

used in the design of the antenna in order to isolate the user’s body from undesired 

electromagnetic radiations in addition to minimizing the antenna’s impedance mismatch, 

caused by the high permittivity human tissues. A design of a purely textile patch antenna 

on top of EBG array, for bandwidth enhancement and size reduction, was presented in [51] 

for wearable applications. Fleece fabric was used as antenna substrate, and the conducting 

parts were made of copper tape. 

The first truly wearable EBG antenna is presented in [52]. This was a design of a 

patch antenna fabricated on top of a periodic square patch array, working as EBG. Copper 

tape was used to make conducting parts of an antenna while the fleece fabric was used as 

an antenna substrate. The EBG had two effects on the antenna performance. Firstly, it 

increased the input match bandwidth by 50%, and secondly, it reduced the antenna size for 

a fixed frequency by 30%. The effect of wearable EBG antenna bending on input match 

and impedance bandwidth was examined in [53]. It was shown that when the antenna is 

bent along the direction that determines its resonant length, it has the greatest effect on the 

input matching and impedance bandwidth.  

A dual-band triangular patch antenna integrated with dual-band EBG was proposed 

in [54]. The dual-band was achieved by a parasitic element close to the triangular patch. 



15 

 

The dual-band EBG was realized by using a combination of patches and concentric rings. 

It was shown that EBG structure helped in reducing the back radiation by up to 15 dB. In 

[55] a CPW fed dual band wearable antenna was integrated with a dual band EBG structure. 

The antenna operated in the 2.45 GHz and 5 GHz WLAN bands. The EBG structure 

consisted of only 3 x 3 EBG elements, but helped in reducing the backward radiation 

towards the body by over 10 dB and also improved the antenna gain by 3 dB.  

After this extensive review of research work done in the wearable antenna design 

field the research done on EBG will be highlighted in the next section. 

2.2 Electromagnetic Band Gap (EBG) Structures 

2.2.1 Introduction 
 

Due to the immense application in commercial and defense industry great attention 

is given to the research of electromagnetics by the researchers all over the world. The use 

of microwave started in RADAR systems, and after that it was extensively used in 

microwave communication systems during World War 2. As a result of this change the 

demand for more advanced materials in the high frequency performance domain increased 

and new dimensions in the field of electromagnetic materials opened up. 

When the wave has a much smaller period in physical size compared to the 

wavelength of the electromagnetic wave, different periodic structures such as photonic 

crystals or EBG structures, have also been termed as “Metamaterial” by some authors. The 

community of electromagnetic has been fascinated with the research possibilities provided 

by EBG structures. As a result of the EBG’s attractive electromagnetic properties [56], 
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these materials have been given immense interest to study for potential applications in 

antenna engineering. 

 

2.2.2 Classifications of electromagnetic band-gap structures 
Defected Ground Structures (DGS): 

A Defected Ground Structure (DGS) is located on the ground plane and shaped like 

an etched lattice. DGS has self-assertive shapes and is situated on the rear metallic ground 

plane. DGS is realized on the bottom plane with one island placed on both sides of the 

microstrip line on the upper plane. DGS can be used for the microstrip line by etching 

defects in the backside metallic ground plane. It has also become a hotspot concepts of 

microwave circuit design nowadays. Compared to photonic band-gap (PBG) structures, 

DGS has simple structure and potentially great applicability to design different kinds of 

microwave circuits, for example amplifiers, filters and oscillators. DGSs have achieved 

noteworthy interests. It discards specific frequency bands, and consequently it is called 

electromagnetic band-gap (EBG) structures as appeared in Figure 1 [57]. The DGS cell has 

a simple geometrical shape, such as a rectangle. Its band-gap and slow-wave characteristics 

are better than the conventional ground plane. DGSs have picked up very noteworthiness 

in filter design [58] indicating optimal pass-band and stop-band responses in addition to 

sharp selectivity and ripple rejection. Application of CPW-based spiral-shaped DGS to 

Monolithic Microwave Integrated Circuit (MMIC) for reduced phase noise oscillator [57], 

active devices (Bipolar Junction Transistors (BJTs) and Field-Effect Transistors (FETs) 

can likewise be mounted utilizing DGS procedure. High amount of isolation is achieved in 

microstrip diplexer and harmonic control, and can also be achieved in microstrip antenna 
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structures using DGS. Figure 2 gives the schematic of such a DGS with its approximate 

surface area. A novel DGS based meander microstrip line providing a broad stop-band is 

presented in [59]. Novel DGS with Islands (DGSI) is proposed in [58]. Careful selection 

of the line width guarantees 50Ω characteristic impedance (Z0). 

 

Figure 1: Schematic diagram of a unit DGS cell [4]. 

 

Figure 2: Different shapes of DGS structures [4]. 

The results from the Electro-Magnetic (EM) simulation of the DGSI and the circuit 

simulation using extracted parameters are compared [4], showing excellent agreement 

between the two in a wide band. Examination of stop-band characteristics is studied using 

concentric circular rings in different configurations. Metallic backing significantly reduces 

interference effects, harmonics and phase noise. Numerous novel 1D DGS are presented 

for Microwave Integrated Circuits (MICs), Monolithic MIC (MMICs), Low Temperature 

Cored Ceramic (LTCC) including Radio Frequency (RF) front-end applications. 
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Significant changes in the attributes including Slow-Wave Factor (SWF) of intermittent 

structures like transmission lines is accomplished by means of quite a few unconventional 

DGS, like spiral-shaped and Vertically Periodic DGS (VPDGS). VPDGSs have been 

utilized as a part of lessening the dimension of MICs and amplifiers, therefore increasing 

SWF significantly. Harmonic control can also be achieved in microstrip antenna structures 

using one-dimensional (1D) DGS [59]. 

The DGS: 

1) disturbs shielding fields on the ground plane, 

2) increases effective permittivity, 

3) increments effective capacitance and inductance of transmission line, 

4) has one-pole Low Pass Filter (LPF) characteristics (3 dB cutoff and resonance 

frequency), and, 

5) provides size reduction for components. 

Photonic Band-Gap (PBG) structures: 

PBG structures are periodic structures that manipulate electromagnetic radiation in 

a manner similar to semiconductor devices manipulating electrons. The semiconductor 

material exhibits an electronic band-gap electrons cannot exist. Similarly, a photonic 

crystal that contains a photonic band-gap does not allow the propagation of electromagnetic 

radiation within specific frequencies in the band-gap [60]. This property has a significant 

importance in many microwave and optical applications to improve their efficiency. The 

PBG structures were first investigated in [61] by Yablonovitch. Since then, many 

researchers in various fields, such as physics, electronics, waves, optics, fabrication, and 
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chemistry, have been engaged in the realization of PBG, localized defect modes, and other 

microwave and optical properties peculiar to the PBG structures [62]. Some of the common 

applications in both microwaves and optics are power splitters, switches, directional 

couplers, high quality filters, and channel drop filters. Figures 3 and 4 show different 

configurations of PBG structures composed of two different materials. These 

configurations include 1D, 2D and 3D periodicities. The 2D materials of a PBG structure 

can be two different dielectric materials or a metal and a dielectric material. 

 

Figure 3: Examples of different PBG, (a) 1D, (b) 2D and (c) 3D configurations [4]. 

 

Figure 4: Typical examples of 3D photonic crystals [4]. 

(a) (c) (b) 

(b) (a) (c) 
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The idea of EBG structures starts from the solid-state physics and optic fields. The 

photonic crystals with forbidden band-gap for light emissions were proposed in [63–64] 

and after that it was extensively investigated in [65–67]. EBG can be utilized either in 1D, 

2D or 3D forms. The directions of the periodicity determine the dimensions. However, 3D 

EBG are more suitable for getting a complete band-gap because then the waves can be 

inhibited from all the incident angles. The band-gap in EBG is equivalent to a forbidden 

energy gap in electronic crystals. 

 

Figure 5: Permittivity, permeability and refractive index diagram [4]. 

Multiple band-gaps can be created by a periodic structure. Nevertheless, periodicity 

of the structure is not the only reason behind the band gap in EBG. Individual resonance 

of one element also plays a vital role. A study showing the mechanisms to form a band-

gap in an EBG is presented in [56]. Several applications of EBG are driven by the fact of 
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the characteristic property of stop-bands at certain frequencies. Within the stop-band the 

structure acts like a mirror and the electromagnetic wave is completely reflected back. For 

all other frequencies, structure acts as a transparent medium. Figure 6 illustrates this 

concept.  

 

Figure 6: Diagram illustrating the application of EBG as a mirror and its comparison with 

a metal reflector [63]. 

If the propagation through the substrate can be prohibited, then the efficiency of the 

antenna can be increased. This allows the antenna to radiate more towards the main beam 

direction and as a result it increases the efficiency. The propagation of the electromagnetic 

waves is effectively prevented within a specific frequency range (the band gap) by these 

structures. Two illustrations of such geometric structures are given in Figure 7 [69]. As 

shown in Figure 7, a Metallo-Dielectric (MDEBG) structure is basically a surface that 

consists of a number of elements. All elements are interconnected with one another to form 

an array of metallic parts that is embedded in a slab of dielectric. 
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Figure 7: Simple examples of Metallo-Dielectric EBG (MDEBG) structures [4]. 

 

2.2.3 Characterization of EBG 

2.2.3.1 In-phase Reflection Behavior  

Before starting the discussion on in-phase reflection feature of EBG, it is important 

to present the use of Perfect Electric Conductor (PEC) and Perfect Magnetic Conductor 

(PMC) as a ground plane in antenna design and their effects on the overall performance of 

the antenna. In general, the use of the ground plane in the antenna design has two 

advantages. One, it redirects one half of the radiation into the desired beam, which 

improves the antenna gain by a factor of 2 or 3 dB, given the correct position of the antenna 

radiating element; and two, it shields the body underneath the ground plane from the 

electromagnetic radiation. 

While a simple conducting surface has these desirable properties, it also exhibits 

one undesirable property of inverting the phase of the reflected wave for antenna 
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applications. As inside a perfect conductor the electric field is zero, the boundary condition 

of the metal/air interface forces the tangential electric field at the surface to be zero. When 

an electromagnetic wave is incident on a conductor, the reflected wave undergoes a phase 

reversal to satisfy boundary conditions of electric field node and magnetic field antinode 

[70]. Unfortunately, antennas do not operate efficiently if positioned very close and parallel 

above a PEC ground-plane. By image theory [71] the parallel electric source placed very 

close above the PEC surface will generate negative image currents on the PEC surface. The 

image currents in the conductive sheet cancel the currents in the antenna resulting in 

reduced radiation efficiency. This phenomenon can also be explained by considering the 

phase shift that occurs as incident wave propagates and then reflects back from the PEC. 

Finally, it adds to the incident wave and forms an interference pattern on the front side of 

the radiator. This sequence of operation is shown in Figure 8 for a λ / 4 distance between 

the radiator and the PEC ground plane. When an electromagnetic wave travels a distance 

of λ / 4 it undergoes a phase change of 90°.  
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Figure 8: Phase changes of incident wave for a λ/4 spacing between the radiator 

and PEC ground plane [9]. 

When wave impinges the PEC ground plane, it is reflected back and undergoes 

further 180° phase change. It then travels towards the radiator by travelling λ / 4 distance 

again and in the process its phase changes by a further 90°. Now, as shown in Figure 8, this 

wave and the incident wave are in phase. They add up constructively in the forward 

direction. However, if this spacing of λ / 4 is not present, the reflected wave is going to be 

180° out of phase, compared to the incident wave, and destructive interference will take 

place accordingly. This destructive interference phenomenon is shown in Figure 9 for a 

dipole antenna placed horizontally and very close to a PEC ground plane. The antenna is 

effectively shorted out by the metal surface and radiation efficiency is reduced significantly 
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due to destructive interference between reflected waves and original waves emitted directly 

by the radiating element. 

 

Figure 9: A Radiating element lying parallel and close to electric conductor [9]. 

This problem can be solved by separating the radiating element from the ground-

plane by at least one quarter of the operating wavelength as explained in Figure 8. This 

situation is depicted in Figure 10, the total phase shift (round trip) from the radiating 

element, to the conductor surface and back to the element equals one complete cycle. The 

two waves, therefor, become in phase and will interfere constructively. In this way the 

antenna will radiate efficiently even when placed close to the electric conductor. However 

the entire structure requires a minimum thickness of λ/4, which limits its applications in 

low-profile antenna designs. The low-profile design usually refers to the antenna structure 

whose overall height at the operating frequency is less than one tenth of a wavelength. 

Consequently, this minimum thickness requirement is the limitation in reducing the 

antenna profile, and also in achieving broadband design, as quarter wavelength separation 

only exists in a certain frequency range. 
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Figure 10: Radiating element separated by ¼ wavelength from the electric conductor [9]. 

In comparison to a PEC, the Perfect Magnetic Conductor (PMC) will generate in 

phase image currents, when a horizontal electric source is placed above it. This image 

current will reinforce the antenna current and increase the radiation efficiency of the 

antenna. Because the reflected wave has no phase shift upon reflection from PMC surface, 

the λ / 4 minimum distance is no longer needed. The in-phase reflected waves and the 

waves radiating directly from the source combine constructively, as shown in Figure 11. 

This helps to significantly reduce the antenna profile. However, unfortunately no natural 

material has been found to realize such a magnetic conductive surface. 
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Figure 11: A radiating source lying parallel above PMC ground plane [9]. 

A significant amount of effort has been devoted to realize a PMC like surfaces 

artificially. In the next section the artificially engineered HIS or EBG will be discussed that 

can mimic PMC behavior and has many interesting applications in antenna and microwave 

field. 

However, the reflection phase of an HIS varies from -180° to 180° with frequency. 

In the range of -90° to 90° of the reflection phase, the reflected wave back from an HIS is 

more in phase than out of phase with the original radiated wave. This means HIS behaves 

as PMC at a certain frequency, as shown in Figure 12. HIS showing such characteristics, 

has been called Artificial Magnetic Conductor (AMC) or Electromagnetic Band-Gap 

(EBG) structure, and are used as a ground-plane for low profile antenna design [66]. 
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Figure 12: A radiating dipole laying above a HIS ground-plane [9]. 

In Figure 12 a radiating element laying horizontally above a HIS ground plane is 

not shorted out as it would on a normal metal ground plane. The HIS ground plane reflects 

most of the power just like a metal ground plane, however its reflection phase is 0º, unlike 

180º of metal sheet, thus allowing the radiating element to be placed directly above the 

surface. In other words, the image current aid rather than oppose antenna current.  

2.2.3.2 Surface wave suppression  

A property of conductor surfaces is that they support surface waves [73]. These are 

propagating electromagnetic waves that are bound to the interface between conductor and 

free-space. When an antenna operates close to a conductive sheet, it will radiate plane-

waves into free space; however, it will also induce surface currents that will propagate 

along the conducting sheet. If the conductor is smooth and infinite in extent, the surface 

currents will not radiate into free-space and would result only as a slight reduction in 

radiation efficiency. In a real situation, the conducting ground-plane is always finite in size 

and not perfectly smooth. So these surface currents will propagate until they reach a 

discontinuity like an edge or corner. They will radiate and interfere with the antenna 
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radiation. The combined radiation from the antenna and different parts of the conducting 

ground- plane will form a series of lobes and nulls at various angles that will be seen as 

ripples in the far-field radiation pattern [74]. In addition parts of the surface currents will 

also radiate on the back side of the ground plane, decreasing front-to-back ratio. Moreover, 

when multiple antennas share the same ground-plane to form an array, surface currents in 

addition to free-space coupling also cause unwanted mutual coupling among them [75]. 

This may cause scan blindness in phased arrays [76]. In reality, due to the finite size of the 

ground plane, the surface waves can propagate until they reach the dielectric to the air 

boundary and then radiate into free-space in a cylindrical fashion, which causes a kind of 

multipath interference with the space waves, as illustrated in Figures 13 and 14. 

 

Figure 13: Multipath interference due to the surface waves on normal ground plane [4]. 
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Figure 14: Multipath interference due to the surface waves on alternative ground plane 

with HIS structure [4]. 

Surface wave suppression property is exploited to enhance printed antenna 

performance. The boundary between two different materials such as air and metal usually 

gives rise to the surface waves. They are bound to the interface and attenuate exponentially 

in the direction normal to the interface. The fields associated with surface waves usually 

extend thousands of wavelengths into the surrounding space at radio frequency and are 

frequently depicted as surface currents [72]. Surface waves exist mostly because of the 

finite size of the antenna ground plane. They reduce antenna gain, efficiency and 

bandwidth. By integrating HIS structure as a ground-plane with printed antennas, surface 

waves cannot propagate due to band-gap behavior. The increased amount of power couples 

to the space waves. Thus, antenna placed on HIS ground plane shows much improved 

radiation pattern performance as compared to those on a normal PEC ground plane. 

The unwanted effects of surface waves are expeditiously suppressed in many 

antenna designs, using EBG structures. EBG structures have been successfully utilized to 

improve the radiation pattern in the forward direction, reduce backward radiation and, 
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hence, increase in the gain, and improve the Front-to-Back-Ratio (FBR). For example, the 

integration of EBG structures with microstrip antenna arrays has been explored to reduce 

the mutual coupling between elements. In [77], a double layer EBG structure has been used 

for broadband mutual coupling reduction between UWB monopoles. 

It is worth mentioning that there are some structures, which show both EBG and 

AMC characteristics. For example, the mushroom-like HIS [45] and the uni-planar HIS 

[78] belong to both groups. Initially, it was proposed that if there were no vias in the 

mushroom like HIS, it does not show EBG behavior [79]. However, in [80], it was 

experimentally proved that when via is removed from the mushroom-like HIS, the EBG 

phenomenon still exists, but the spectral position moves to the higher frequency band, 

while the AMC band remains at the same position as in mushroom-like HIS. It was then 

proposed that by varying the periodicity of the HIS structure and keeping the patch size 

fixed, the AMC and EBG bands can be tailored independently and designed to overlap for 

simultaneous EBG and AMC operation. 

2.2.4 Design of single patch antennas with EBG 
 

The conventional half-wavelength size is relatively large in modern portable 

communication devices. Various techniques have been proposed, for example, cutting 

slots, using shorting pins, and designing meandering microstrip lines. Increasing the 

dielectric constant of the substrate is also a simple and effective way in reducing the 

antenna size. Compact size and conformability can be achieved for Microstrip Patch 

Antennas (MPAs) on a high dielectric constant substrate, which make its application a 

growing interest. Due to the result of strong surface waves excited in the substrate, quite a 
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few drawbacks are there with the use of high dielectric constant substrate, namely, narrow 

bandwidth, low radiation efficiency, and poor radiation patterns. If we increase the 

thickness of the substrate it will help expand the frequency bandwidth, however, stronger 

surface waves will be there as a result. Consequently, the radiation efficiency and patterns 

of the antenna are further degraded. To quantify this phenomenon, a comparative study of 

MPAs on substrates with different dielectric constants and different thicknesses is 

performed in [4]. Table 1 illustrates the four samples under study. Two of them with low 

dielectric constant substrate (εr = 2.2) and the other two are built on the high dielectric 

constant substrate (εr =10.2). 

Table 1: The patch antenna parameters [4] 

Example Patch size mm2 Dielectric Constant 

(εr) 
Height 

1 18 × 10 2.2 1 

2 16 × 13 2.2 2 

3 9 × 6 10.2 1 

4 8 × 6 10.2 2 

 

The simulated S11 of the four structures is shown in Figure 15. By tuning the feeding 

probe location and patch size, all the antennas match well to 50 Ω around 5.1 GHz. It is 

noticed that the patch sizes on the high dielectric constant substrate are remarkably smaller 

than those on the low dielectric constant substrate as shown in table 5, which is the main 

advantage of using high dielectric constant substrate. However, the antenna bandwidth (S11 

< -10 dB) on 1 mm substrate height is decreased from 1.38% to 0.61% when the εr is 

increased from 2.2 to 10.2. A Similar phenomenon is observed for 2 mm height, the 

bandwidth is decreased from 2.40% to 1.71%. For the same dielectric constant substrates, 
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the antenna bandwidth is enhanced when the thickness is doubled. For example, the 

antenna bandwidth on the high dielectric constant substrate is increased from 0.61% to 

1.71% when the substrate thickness is increased from 1 mm to 2 mm. It’s important to 

point out that the bandwidth of example (4) is even larger than that of example (1), which 

means that the bandwidth of MPAs on high permittivity substrates can be recovered by 

increasing the substrate thickness. 

 

Figure 15: Reflection coefficient comparison of patch antennas with different dielectric 

constants and substrate height [4]. 

Figure 16 compares the H-plane radiation patterns of these four antennas. A finite 

ground plane of λ × λ size is used in the simulations, where λ is the free space wavelength 

at 5.1 GHz. The antennas on the high dielectric constant substrates exhibit lower 

directivities and higher back radiation lobes than those on the low dielectric substrates. For 

antennas on the same dielectric constant substrate, when the thickness increases, the 

antenna directivity decreases, especially for those on high dielectric constant substrates. 
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Similar observations are also found in the E-plane patterns. These phenomena can be 

explained from the excitation of surface waves in the substrate. When a high dielectric 

constant and thick substrate is used, strong surface waves are excited. This causes reduction 

of the radiation efficiency and directivity. In addition, when the surface waves diffract at 

the edges of the ground plane, the back radiation is typically increased. 

 

Figure 16: H-Plane radiation pattern of patch antennas with different dielectric constants 

and substrate heights [4]. 

2.2.4.1 Gain enhancement of a single patch antenna 

Different methods are suggested to overcome the disadvantages of using the thick 

and high dielectric constant substrate, for manipulating the antenna substrate. One 

approach suggested is to lower the effective dielectric constant of the substrate under the 

patch using micromachining techniques [81]. Larger patch size than that on an unperturbed 

substrate is a shortcoming of this approach. Alternatively, synthesized low dielectric 

constant substrate or band gap structure can be used to surround the patch so that the surface 
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waves’ impacts can be reduced. An MPA design is proposed that does not excite surface 

waves [4]. To overcome the unwanted features of the high dielectric constant substrates 

EBG structure is applied in patch antenna design while maintaining the desirable features 

of utilizing small antenna size. 

2.2.4.2 Patch antenna surrounded by EBG structures 

An MPA surrounded by a mushroom-like EBG [4] structure is shown in Figure 17. 

The surface wave band gap of the EBG is designed in such a way so that it covers the 

antenna resonance frequency. Thus, the EBG structures constrain the propagation of the 

surface waves excited by the patch antenna. To effectively suppress the surface waves, four 

rows of EBG cells are used in the design. It can be noted that the EBG cell is very compact 

because of the high dielectric constant and the thick substrate employed. As a result, the 

size of the ground plane can remain small, for instance 1λ × 1λ. MPA designed on a step-

like substrate is also investigated due to comparison. By using a thick substrate under the 

patch the antenna bandwidth can be kept and by using a thin substrate around the patch the 

surface waves can be reduced. The distance between the patch and the step needs to be 

chosen carefully. If the distance is too small, the resonance frequency of the patch will 

change and the bandwidth will decrease. However, when the distance is too large, it cannot 

reduce the surface waves effectively. To validate the above design concepts, four antennas 

were simulated on RT/Duroid 6010 (εr = 10.2) substrate with a finite ground plane of 52 × 

52 mm2. Two of them are normal patch antennas built on 1.27 mm and 2.54 mm thick 

substrates as references. The step-like structure stacks two 1.27 mm thick substrates under 

the patch and the distance from the patch edge to the step is 10 mm. The EBG structure is 

built on 2.54 mm height substrate and the EBG patch size is 2.5 × 2.5 mm2 with 0.5 mm 
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separation. Figure 18 compares the measured S11 results of these four antennas. All the four 

patches are tuned to resonate at the same frequency 5.1 GHz. It is noticed that the patch on 

the thin substrate has the narrowest bandwidth of only 1% while the other three have similar 

bandwidths of about 3–4 %. Thus, the thickness of the substrate under the patch is the main 

factor determining the impedance bandwidth of the antenna. The step substrate and the 

EBG structure, which are located away from the patch antenna, have less effect on the 

antenna bandwidth. 

 

Figure 17: Patch antenna surrounded by a mushroom-like EBG structure: (a) geometry 

and (b) cross section [4]. 

The antenna on the height 2.5mm has the lowest front radiation while its back 

radiation is the largest. When the substrate thickness is reduced, the surface waves become 

weaker and the radiation pattern improves. The step-like structure exhibits similar radiation 

performance as the antenna on the thin substrate. The best radiation performance is 

achieved by the EBG antenna structure. Due to successful suppression of surface waves, 

its front radiation is the highest, which is about 3.2 dB higher than the thick case. Since the 

surface wave diffraction at the edges of the ground plane is suppressed, the EBG antenna 

has a very low back lobe, which is more than 10 dB lower than other cases. Table 2 lists 

the simulated results of these antennas. Note that the radiation patterns are normalized to 

the maximum value of the EBG antenna. 

(a) (b) 
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Table 2: Simulated performance of four different MPA designs on the high dielectric 

constant substrate. 

Antenna Bandwidth % Front Radiation  Back Radiation  

Thin 1 -2.3 -15.5 

Thick 4 -3.2 -12 

Step stair 4.7 -2 -14 

EBG 3 0 -25 

 

 

Figure 18: Comparison of the measured reflection coefficient of the four MPA structures 

[4]. 

It is also interesting to notice that in the E-plane the beam-width of the EBG case 

is much narrower than the other three cases whereas in the H-plane it is similar to other 

designs. The reason is that the surface waves are mainly propagating along the E-plane as 

shown in Figure 19. Once the EBG structure stops the surface wave propagation, the beam 

becomes much narrower in the E-plane. From above comparisons it is clear that the EBG 

structure improves the radiation performances of the patch antenna while maintaining its 

compact size and adequate bandwidth.  
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Figure 19: Simulated radiation patterns of different patch antennas: (a) E-plane and (b) 

H-plane pattern [4]. 

(a) 

(b) 
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CHAPTER III 

TEXTILE MONPOLE ANTENNA INTGRATED 

WITH EBG 
 

In this chapter, the design cycle of the CPW fed textile monopole antenna and 

flexible EBG structure, simulation and measurement results will be presented. The antenna 

key performance indicators such as reflection coefficient (S11), impedance bandwidth, 

antenna gain, co-polarization and cross-polarization are studied and compared for the 

monopole antenna with and without EBG reflector. 

3.1 Introduction 

3.1.1 Reflection Co-efficient (S11) 
 

A parameter that describes the amount of an electromagnetic wave that is reflected 

back by the discontinuity of an impedance in the transmission medium is called reflection 

coefficient. S-parameters describe the input-output relationship between ports (or 

terminals) in an electrical system. If we have two ports we call them port 1 and port 2. 

Here, S12 will symbolize the power that is transferred from port 2 to port 1. On the other 

hand, S21 will represent the power transferred from port 1 to port 2. In summary, Snm 

denotes the power transferred from port m to port n in a multi-port network. 

https://en.wikipedia.org/wiki/Electromagnetic_wave
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S11 is the most commonly quoted parameter in regards to antenna design, since a 

single antenna element is a one-port system. S11 represents the amount of power that is 

reflected from the antenna, and therefore it is also known as the reflection coefficient (also 

known as gamma = Γ or return loss). If S11=0 dB the power that is supplied to the antenna 

is reflected back from the antenna and as a result nothing is radiated. If S11= -10 dB, this 

indicates that 10% of the power that is delivered to the antenna is reflected. The remaining 

90% of power is delivered or accepted by the antenna. This amount of power is either 

radiated by the antenna or absorbed as losses within the antenna. As antennas are usually 

designed to be low loss, most of the power delivered to the antenna is radiated. 

3.1.2 Realized Gain  
 

Compared to that of an isotropic source the power that is transmitted in a specified 

frequency in a particular direction (usually in the direction of signal propagation) is called 

antenna’s realized gain. As antenna gain takes into account the real losses that occur, 

generally gain is mentioned in the antenna's specification sheet. Gain is the key 

performance figure and is a product of the antenna's electrical efficiency and directivity. 

From a transmitting antenna perspective, the gain parameter defines how efficiently the 

antenna converts the input power into radio waves in a specified direction. From the 

perception of a receiving antenna, the same gain parameter describes how efficiently the 

antenna converts radio waves into electrical power. An antenna that has a gain of 3 dBi 

means that the received power from the antenna in the far-field will be 3 dB higher (twice 

as much) compared to that of the amount of power a lossless isotropic antenna would 

receive with the same input power. 

https://en.wikipedia.org/wiki/Antenna_(radio)
https://en.wikipedia.org/wiki/Antenna_efficiency
https://en.wikipedia.org/wiki/Radio_wave
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The realized gain is determined by the antenna shape, the material, input impedance 

matching, and the antenna’s surrounding environment. Radiation patterns characterize the 

variation of the radiated far-field intensity of an antenna as an angular function at a specific 

frequency. Usually, they are shown as cuts along two orthogonal planes of the antenna, 

namely E-plane and H-plane. In this thesis the antenna is placed on XY plane and facing 

towards +Z direction, so the radiation patterns are defined in the same manner for all 

antennas investigations, so that, E-plane is YZ plane and H-plane is XZ plane. Also, these 

planes can be defined by the cut angle, so that, E-plane is defined at φ=90° and H-plane is 

defined at φ=0°, where φ is the angle measured from x axis. 

3.1.3 Co- and Cross-Polarization 
 

Co-polarization (co-pol) is the polarization that is in the direction of the desired 

polarization. On the other hand, cross-polarization (X-pol) is the polarization that is 

orthogonal to the polarization being discussed. For example, if the antenna is designed in 

a way that the fields are meant to be horizontally polarized, then the cross-polarization 

happens in vertical direction and co-polarization happens in horizontal direction. In the 

case of circular polarization with Right Hand Circularly Polarized (RHCP), then co-

polarization is RHCP and the cross-polarization is Left Hand Circularly Polarized (LHCP).  

These terms appear because an antenna is never 100% polarized in a single mode 

polarization (linear, circular, etc.). Therefore, two radiation patterns of an antenna are 

presented sometimes, the co-pol (or desired polarization component) radiation pattern and 

the cross-polarization radiation pattern. 
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3.2 Design Characteristics and Performance Results of the 

Proposed CPW-Fed Textile Monopole Antenna 
 

The CPW-fed monopole antenna is designed to operate in IEEE 802.11 frequency 

band of 5.725-5.875 GHz band (ISM band). This frequency band is used in space 

biomedical application, earth stations, microwave links and Radar and, amateur radio. The 

antenna is designed, simulated and optimized using commercial electromagnetic 

simulation software CST Microwave Studio [82]. The radiating element of the antenna is 

square shaped with two slots. The feeding method is through a CPW feeding line. This 

feeding method helps the antenna to be uniplanar, which can eliminate the problems 

associated with the alignment of different conducting layers. Pellon, which is a textile 

material with a thickness of 1.8 mm, relative dielectric permittivity (εr) of 1.08 and 

electrical loss tangent of 0.008 is used as a substrate material for the antenna. Two layers 

of the substrate made the antenna height 3.6 mm. Figure 20 (a) and Table 3 show the design 

and parameters of the antenna.  Pellon fabric is chosen as the antenna’s substrate since it 

exhibits a low profile and flexible characteristics, also the thickness can be controlled by 

stacking up multiple layers. The conducting material of the antenna is nickel/copper ripstop 

fabric.  
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Figure 20: CPW-fed monopole antenna, (a) geometry, and (b) fabricated prototype. 

Table 3: Parameters of CPW-fed monopole antenna shown in Figure 20. Dimensions 

are given in mm. 

Parameters Dimension (mm) 

L 34.00 

W 34.00 

LP 20.00 

WP 20.00 

LT 4.00 

WT 0.35 

LG 0.90 

WG 6.96 

A 14.8 

B 13.6 

D 4.00 

S 0.20 

WM 4.00 

G 0.46 

H 1.80 

 

(a) (b) 
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Figure 21 depicts the measured and simulated reflection co-efficient of the antenna. 

Reflection coefficient measurements have been carried out using Agilent E5071C Network 

Analyzer. The simulation gives us an impedance bandwidth of  7.3 GHz starting from 2.7 

GHz to 10 GHz, with -30 dB reflection co-efficient at 5.8 GHz. In the measurement result 

we can notice that the impedance bandwidth reduces. This is due to the error in fabrication 

and matching error while measurement. However from the measurement the impedance 

bandwidth is found to 4.5 GHz, starting from 4 GHz to 8.5 GHz. The reflection Co-efficient 

at 5.8 GHz is  -10.8 dB. 

 

Figure 21: Simulated and measured reflection co-efficient of the CPW-fed antenna. 

Furthermore, radiation patterns measurements have been performed using the 

anechoic chamber in Antenna Measurements Laboratory at University of North Dakota. 

Figure 22 shows the E-plane radiation pattern of the monopole antenna at 5.8 GHz based 

on simulation and measurement results. It’s worth mentioning that the simulated cross-pole 

                Measurement 

                Simulation 
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component isn’t shown in the figure since it has a low value that is less than -80 dB. Figure 

23 shows the simulation and measurement results of the H-plane radiation pattern of the 

antenna alone at 5.8 GHz. The simulated antenna gain is 1.17 dBi while the measured value 

is 2.97 dBi, which means an improvement by 1.8 dBi. Also, an increament of 1 dB in the 

antenna gain is obtained from the measured radiation pattern in H-plane as compared with 

simulated value. 

 

Figure 22: E-plane gain of the antenna (a) Polar plot, and (b) 2D plot. 

(a) (b) 
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Figure 23: H plane gain of the antenna alone (a) Polar plot, and, (b) 2D plot. 

 

3.3 Geometry of the EBG Unit Cell and Reflection Phase 

Characteristic 
 

In this part geometry and dimensions of the EBG unit cell will be discussed. 

Addition to that the simulation results of the phase reflection characteristic will also be 

discussed. The geometry of the EBG unit cell is based on the proposed design in [83]. The 

design is based on a fractal shape. The shape is known as the first order Peano curve. A 

flexible substrate, Rogers 3003 material, with a thickness of 1.52 mm, relative dielectric 

permittivity of 3 and electrical loss tangent of 0.001 is used for the design of the EBG. 

Figure 24 and Table 4 show the dimensions (in mm) of a single cell of the EBG structure. 

CST Microwave Studio is used for the simulation of the EBG. 

(a) (b) 
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Figure 24: Geometry of the proposed EBG cell. 

Table 4: Parameters of EBG unit cell shown in Figure 22. Dimensions are given in 

mm. 

Parameters Dimension (mm) 

EL 31.60 

EW 61.10 

SL 26.40 

SW 7.00 

SG 3.10 

ST 2.70 

H 1.52 

 

The EBG structure is designed by means of reflection phase characterization. The 

reflection phase is examined with the simulation model shown in Figure 25. In order to 

search for the AMC in phase band, a single cell with Periodic Boundary Conditions (PBC) 

in x and y directions was simulated.  

Figure 26 shows the calculated reflection phase diagram of EBG structure. As the 

frequency increases the phase decreases continuously from 180° to -180°. At low and high 

frequency regions, EBG structure shows a similar phase to a perfect electric conductor 
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case, which is 180°. The EBG reflection phase is 0° at the resonance frequency, which 

resembles the unique property of EBG surface. The useful bandwidth of EBG surface has 

been defined by the range +90° to -90°. Within this range, image currents are almost in 

phase rather out of phase, thereby, the reflected wave makes constructive interference with 

the radiated wave. In the proposed cell, the exact AMC point is located at 5.782 GHz, 

having a narrow bandwidth of 2 KHz (5.781 GHz to 5.783 GHz) within +90 to -90 phase 

values. 

 

 

 

Figure 25: A unit cell simulation model set up for reflection phase analysis. 

               Periodic Boundary 

               Periodic Boundary 

               Open Boundary 

                Electric Boundary 
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Figure 26: Reflection phase diagram of an EBG cell at normal incidence. 

3.4 CPW Monopole Antenna Performance with EBG 

Structure 
 

In this section the design, simulation and measurement results of the CPW 

monopole antenna integrated with the EBG structure will be discussed. For this design a 3 

× 2 array of the EBG unit cell is used. The dimension of the EBG array is 122 mm × 94.8 

mm. Figure 27 illustrates the design of the EBG array structure. The array size was 

increased by one row and one column at a time until satisfactory performance was achieved 

in terms of high gain within the frequency range of interest and relatively small size. Figure 

28 shows the integration of the antenna with EBG.  
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Figure 27:  3 × 2 array of the EBG unit cells: (a) simulated, and (b) prototype. 

The EBG array structure is cut out of a 12 inch × 9 inch of RO3003 sheet. Milling 

machine is used for cutting purposes. The copper clading on the sheet is 7.5 µm.   

 

Figure 28: CPW monopole antenna on EBG structure. 

By comparing the antenna gain with and without EBG structure the effectiveness 

and usefulness of the EBG ground plane can be assessed. A few important observations 

can be made from the results shown in Figures 29 and 30. In Figure 29 (a) and (b) illustrate 

Antenna Radiating Element 

Antenna Substrate 

High Impedance Substrate 

EBG Substrate 

Ground Plane 

(a) (b) 
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the 3D realized gain at 5.8 GHz for conventional monopole antenna and the antenna 

integrated on AMC.  

 

 

Figure 29: 3D patterns at 5.8 GHz of (a) monopole antenna, and (b) antenna integrated 

with the EBG. 

(a) 

(b) 

dBi 

dBi 
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Figure 30 (a) and (b) show the E-plane and H-plane radiation patterns at 5.8 GHz, 

for conventional monopole antenna and the antenna integrated on EBG, respectively. As it 

was expected, the backward radiation of the antenna is reduced significantly by EBG, 

hence the gain is considerably improved. The antenna on EBG has a realized gain of 7.28 

dBi, while the antenna alone shows 1.17 dBi gain. This means improvement of 522% in 

antenna gain using the EBG. Furthermore, FBR is a critical factor in wearable antennas. 

FBR increased from 0.09 dB in the conventional monopole antenna to 21.87 dB using the 

EBG structure.The radiation patterns at 5.8 GHz show the improvement in the antenna gain 

and directivity as well. Antenna directivity has been increased from 1.25 dB to 7.8 dB using 

EBG structure. However, the power level of the cross-pol components of the antenna’s 

field has been increased using EBG, which is usually undesirable.  

 

 

Figure 30: Simulated radiation patterns of monopole antenna with and without EBG 

structure at 5.8 GHz: (left) E-plane and (right) H-plane; Co Polarization (CP) and Cross 

Polarization (XP). 

 

E-Plane (YZ), Φ = 90  H-Plane (XZ), Φ = 0  
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Simulated reflection coefficient of the proposed antenna with EBG is compared 

with the measured one as shown in Figure 31. It can be observed that there is an 

improvement in the reflection co-efficient based on the measurement results. In simulation 

the value is -10.59 dB and in measurement it shows -14.53 dB at 5.8 GHz. The impedance 

bandwidth for measurement is 4.3 GHz (4.2 GHz to 8.5 GHz), whereas the simulation 

result shows an impedance bandwidth of 4.6 GHz (5.3 GHz to 9.9 GHz). 

On the other hand, a significant reduction in the impedance bandwidth of monopole 

antenna by about 2.4 GHz (based on simulation) due to the usage of EBG structure, which 

makes it hard to compare both results in the same figure. However, the obtained bandwidth 

of EBG antenna is obviously covering the ISM-5.8 GHz band with a good matching 

characteristics. 

 

Figure 31: S11 results of the antenna with EBG structure integrated.  

 Figures 32 and 33 show the comparison between simulation and measured 

radiation pattern of the antenna with EBG structure.  

                Measurement 

                Simulation 
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Figure 32: E plane Gain of the antenna with EBG (a) polar plot and, (b) 2D plot. 

 

Figure 33: H-plane gain of the antenna with EBG, (a) polar plot and, (b) 2D plot. 

These figures show the co-polarization and cross-polarization of E-plane and H-

plane radiation patterns of the antenna on EBG. From Figures 32 and 33 it can be seen 

(a) (b) 

(a) (b) 
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that the E-plane gain for measurement result at 5.8 GHz is 7.76 dBi which is very close to 

the simulation value of 7.28 dBi. Also the FBR of the measured antenna with EBG 

structure is 13.2 dB, which is 10.28 dB higher than the measured antenna alone. This 

means the antenna with EBG is more directive. The cross-polarization of the 2D plot of 

the E-plane is not shown because of it is very small value.    

Table 5 presents a comparison of the results on the single antenna without EBG  

and antenna with EBG structure. The comparison is based on the simulation and 

measurement results. 

Table 5: Comparison of performances on antenna on free space and antenna on EBG 

simulation and measurement. 

Parameter 
Antenna alone 

simulation 

Antenna 

alone 

measurement 

EBG+antenna 

simulation 

EBG+antenna 

measurement 

Size (𝑳 ×𝑾) mm2 34 × 34  122.2 × 94.8  

fl (GHz) 2.8 3.9 5.3 4.2 

fh (GHz) 10.1 8.8 9.9 8.5 

fr (GHz) 5.6 7.3 5.4 7.7 

Gain @ 5.8 GHz (dBi) 1.17 2.97 7.28 7.76 

S11 @ fr (dB) -35.00 -32.12 -27.52 -29.41 

S11 @ 5.8 GHz (dB) -30.76 -10.17 -10.59 -14.53 

FBR (dB) 0.09 2.92 21.87 13.2 
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3.5 CPW Monopole and EBG Integrated Antenna 

Performance on Spacesuit Structure 
 

The antenna and EBG performance are also examined on the spacesuit material. As 

the ultimate goal is to integrate the antenna with EBG on the spacesuit of the astronauts. 

For this purpose University of North Dakota’s NDX-II spacesuit [84] was considered. To 

reduce the effects of bending and crumbling condition the chest part of the suit is 

considered to be optimum place to integrate the antenna with the EBG. From the 

measurement of the spacesuit it was found that the dimension of this part is 13 × 2 cm2. 

The outer layer of the spacesuit is made out of Ortho-fabric. The effects of the stainless 

steel rings in the spacesuit are also taken into account. Figures 34 and 35 show the 

simulated structure of the spacesuit and the integration of antenna and EBG on the 

spacesuit material, including the fabric and aluminum. 

 

Figure 34: Simulation model of the chest part of the spacesuit. 
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Figure 35: Integration of the antenna and EBG on the spacesuit material. 

In Table 6 the parameters of the spacesuit structure are listed. 

Table 6: Parameters of the space suit structure 

Parameters Dimension (mm) 

WA 240 

LA 20 

HA 20 

WO 240 

LO 130 

T 3.6 

WS 100 

LS 20 

HS 20 

 

Figure 36 shows the comparison result of S11 parameters of the antenna alone in 

free space and antenna on spacesuit material.  
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Figure 36: Reflection co-efficient of the antenna in free space and on spacesuit. 

It can be noticed that the impedance bandwidth of the antenna on spacesuit is 

reduced by 0.3 dB (From 2.7 dB to 9.7 dB) compared to the antenna in free space. The 

reflection co-efficient at 5.8 GHz is reduced to -25.6 dB for antenna on spacesuit compared 

to -30 dB of the antenna in free space.  

From the Figure 37 (a) and (b) and Figure 38 (a) and (b) the information about the 

co-polarization and cross-polarization of the E-plane and H-plane can be obtained. It can 

be noticed from Figure 37 that the realized gain of the E–plane of the antenna on spacesuit 

has about 0.5 dB increment in co-polarization level (from 1.16 dBi to 1.63 dBi) and almost 

3 dB (-98.4 dBi to -95.1 dBi) increment in the cross-polarization compared to the antenna 

in free space. On the other hand, similar performance is also found in Figure 38, which 

shows about 0.5 dB increment in co-polarization and 3 dB increment in cross-polarization 

of the H-plane. 
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Figure 37: Simulated E-plane radiation patterns of monopole antenna with and without 

spacesuit material at 5.8 GHz (a) co-polarization, and (b) cross polarization. 

 

 

Figure 38: Simulated H-plane radiation patterns of monopole antenna with and without 

spacesuit material at 5.8 GHz: (a) co-polarization, and (b) cross-polarization. 

E-Plane (YZ), Φ = 90  E-Plane (YZ), Φ = 90  

(a) (b) 

(a) (b) 

H-Plane (XZ), Φ = 0  H-Plane (XZ), Φ = 0  
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Next, the performance of the antenna with EBG structure on spacesuit is discussed. 

From Figure 39 it can be seen that by using the EBG structure the effects of the spacesuit 

material on the antenna becomes almost negligible. The S-parameter results shows very 

similar performance of the EBG antenna with and without the spacesuit material. The 

reflection coefficient at 5.8 GHz is -10.59 dB and -12.85 dB, respectively for EBG antenna 

and EBG antenna on spacesuit. The impedance bandwidth at -8 dB of the EBG antenna on 

spacesuit is about 4.6 GHz, which is same as the EBG antenna in free space at -10 dB. 

Figure 40, 41 and 42 illustrates the radiation pattern of the E-plane and H-plane of 

the EBG antenna in free-space and EBG antenna on spacesuit. The realized gain is 7.28 

dBi and 6.38 dBi for the EBG antenna in free space and EBG antenna on spacesuit, 

respectively. 

 

Figure 39: Reflection co-efficient (S11) of the antenna integrated with EBG in free-space 

and on the spacesuit material. 
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Figure 40: E-plane realized gain. 

 

 

Figure 41: H-plane realized gain. 
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Figure 42: Comparison of gain patterns of the antenna integrated with EBG in free-space 

and on the spacesuit, (a) E-plane, and (b) H-plane.  

The comparison of co-polarization and cross polarization of the E-plane and H-

plane of the EBG antenna with and without spacesuit is illustrated in Figure 43. The FBR 

of the EBG antenna on spacesuit is 17.75 dB, which is around 5 dB less than the EBG 

antenna in free space (22.23 dB). This FBR is still better than that for a single antenna in 

free space, which ensures that there is minimum back radiation. This is important to make 

sure the astronauts are less exposed to the electromagnetic waves of the antenna. 

 

E-Plane (YZ), Φ = 90  H-Plane (XZ), Φ = 0  

(a) (b) 
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Figure 43: Antenna radiation patterns (a) E-plane and, (b) H-plane. 

  

  

 

(a) (b) 

E-Plane (YZ), Φ = 90  H-Plane (XZ), Φ = 0  

(a) 
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CHAPTER IV 

ANTENNA PERFORMANCE UNDER STRETCHING 

CONDITION 
 

4.1 Introduction: 
 

In the harsh environment of outer space like vacuum and extreme temperature to 

keep a human alive a space suit is worn as a garment. As a safety precaution flight jackets 

are worn inside the spacecraft. For extravehicular activity (EVA), which means work done 

outside spacecraft, it is mandatory to wear spacesuit. With a complex system of equipment 

and environmental systems the modern spacesuits have developed the basic pressure 

garment. It is designed keeping in mind the comfort level of the wearer. Additionally 

minimizing the effort required to bend the limbs is also an important parameter for the 

design. Independent of the spacecraft, a self-regulating oxygen supply and environmental 

control system is installed to allow complete freedom of movement. 

Commonly, to confirm enough oxygen is supplied for respiration, a pressure of 

about 32.4 kPa (4.7 psi) is required for a space suit that is using pure oxygen. It is actually 

an addition of the partial pressure of oxygen in the earth's atmosphere at sea level 20.7 kPa 

(3.0 psi), 5.3 kPa (0.77 psi) CO2 and 6.3 kPa (0.91 psi) water vapor pressure. In the 

spacesuits that use 20.7 kPa, there are 20.7 kPa − 11.7 kPa = 9.0 kPa (1.3 psi) of oxygen 

https://en.wikipedia.org/wiki/Outer_space
https://en.wikipedia.org/wiki/Vacuum_(outer_space)
https://en.wikipedia.org/wiki/Spacecraft
https://en.wikipedia.org/wiki/Extravehicular_activity
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Partial_pressure
https://en.wikipedia.org/wiki/Earth%27s_atmosphere
https://en.wikipedia.org/wiki/Water_vapor
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that is available for the astronauts. This is almost the oxygen partial pressure attained at a 

height of 1,860 m (6,100 ft) above sea level, which is about the same pressure as in a 

commercial passenger jet aircraft. As a result, this is practically the lower limit of pressure 

for safe ordinary space suit pressurization. 

The performance of the textile or flexible antennas can be affected by many factors 

such as bending, crumbling, stretching, temperature change, and humidity. Due to the 

pressure inside the spacesuit the fabric material tends to stretch. As the antenna is made up 

of textile, it will be prone to stretch due to the pressure. The estimated stretch is assumed 

to be up to 3% of its original size. The stretching was simulated for 3 cases: width only, 

length only, and width and length together.  

In this chapter we will discuss the stretching effects on the performance of the 

antennas for 1%, 2% and 3% of width and length. Simulation results are presented for a 

single antenna element and antenna mounted the EBG layer. CST Microwave Studio has 

been used for the simulations. 

4.2 Performance of the Stretched CPW Monopole Antenna  
 

CPW monopole antenna’s performance in free-space is investigated in details in 

Section 2 of Chapter 3. The results obtained in that section are for the antenna with its 

original dimensions. In this section antenna under different stretching conditions will be 

investigated for their performance to observe the changes in the radiation performance and 

the limitations for any stretching plane. Return loss and impedance bandwidth results for 

both E-plane (width) and H-plane (length) stretching will be presented. Moreover, radiation 

characteristics and radiation patterns at 5.8 GHz in the E and H planes of the antenna will 
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be presented as well. Geometry of the monopole antenna under stretching conditions in H-

plane and E-plane individually and together are shown in Figure 44.  

 

 

Figure 44: CPW monopole antenna stretched in (a) H-plane, (b) E-plane, and, (c) both E- 

and H-planes. 

 

(a) (b) 

(c) 

L W 

L&W 
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Figures 45-47 show the S-parameter of the CPW monopole antenna in free-space 

under different stretching conditions. It can be noticed that stretching in length or H-plane 

for up to 3% of the original length does not cause significant changes in the antenna 

performance. The performance almost similar to the original antenna is observed in Figure 

45. However, when the antenna is stretched in width or E-plane the performance drops 

drastically, to the point that it was meaningless to compare the results with the original. 

Similarly stretching in both length and width together causes a lot of deteriorating effects 

in the antenna performance.  Figure 48 shows the S-parameters for all cases in one plot.  

 

Figure 45: S parameter of the CPW antenna stretched in H-plane (L). 
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Figure 46: S parameter of the CPW antenna stretched in E-plane (W). 

 

Figure 47: S parameter of the CPW antenna stretched in both E-plane and H-plane 

(L&W). 
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Figure 48: S-parameter comparision for stretching in different cases. 

Figures 49-51 show the realized gain of the antenna in E-plane and H-plane when 

stretched in length, width and both length and width, respectively. Compared to the original 

antenna’s radiation patterns it can be noticed that the gain remains almost the same when 

the stretching is done in length. However, the gain value decreases quite a bit when the 

antenna is stretched in width. When the stretching is done in both length and width together 

the realized gain value also drops drastically. All these results are summarized in Table 7. 
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Figure 49: Realized gain of the antenna stretching in length, (a) E-plane, and, (b) H-

plane. 

 

Figure 50: Realized gain of the antenna stretching in width, (a) E-plane, and, (b) H-plane. 

(a) (b) 
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Figure 51: Realized gain of the antenna stretching in both length and width, (a) E-plane, 

and, (b) H-plane. 

 

Table 7: Simulated S11 and gain at 5.8 GHz for monopole antenna under stretching 

conditions. 

Parameter fr (GHz) 
S11 (dB)  

@ 5.8 GHz 

Gain (dBi) 

@ 5.8 GHz 

Original - 5.59 -30 1.17 

Stretching 

length, L 

1% 5.53 -28.24 0.62 

2% 5.47 -25.85 0.70 

3% 5.41 -23.97 0.78 

Stretching 

width, W 

1%  -0.125 -18.91 

2%  -0.119 -19.19 

3%  -0.112 -19.51 

Stretching 

L and W 

1%  -0.122 -19.20 

2%  -0.113 -19.58 

3%  -0.105 -20.01 

 



72 

 

4.3  Performance of the Stretched CPW Monopole Antenna 

on EBG  
 

In this section we will discuss the antenna perfromance under different stretching 

condition on the EBG structure and compare it with the previous performance of the EBG 

antenna in free-space. Under the spacesuit pressure the textile substrate of the antenna tends 

to stretch while the flexible substrate of the EBG structure is less prone to stretch, In the 

simulation the EBG dimensions are kept original and only antenna dimesions are changed 

based on the percentage of the stretching. Again the antenna was stretched in length, width 

and both length and width togetehr from 1% to 3% of the original dimension. The antenna 

and EBG are integrated the same way it was done earlier. Figures 52-54 show the S-

parameters of the antenna stretched in length, width and both in length and width, 

respectively. 

 

Figure 52: Reflection co-efficient of the antenna on EBG when stretched in length (L). 

It can be seen from figure 52 that the resonannt frequency for length stretching is 

shifted to 4.5 GHz in comparison to original EBG antenna’s 5.3 GHz. The S-parameter at 
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5.8 GHz for length stretching is around -10.3 dB , which is almost similar to the original’s 

-10.59 dB. 

 

Figure 53: Reflection co-efficient of the antenna on EBG when stretched in width (W). 

 

Figure 54: Reflection co-efficient of the antenna on EBG when stretched in both length 

and width (L&W). 

From Figures 53 and 54 it can be noticed that when the antenna is stretched in width 

or both length and width together the perfromance of the antenna on EBG also drops 

drastically. 
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Figures 55-57 illustrate the realized gain patterns in the E-plane of the EBG antenna 

when stretched in length, width and in length and width togetehr. The gain when antenna 

was stretched in length alone is 8.37 dBi which is almost 1 dBi better than the orignal EBG 

antenna. On the other hand the when the antenna is stretched in width the E-plane gain is 

about -7.7 dBi. When stretched in both length and width the gain is -9.62 dBi. The antenna 

obviously is not working when it is streched in E-plane.  

 

 

Figure 55: E-plane realized gain of EBG antenna stretched in length, (a) co-polarization, 

and, (b) cross-polarization.  

 

E-Plane (YZ), Φ = 90; 

Co-polarization 

E-Plane (YZ), Φ =90; 

X-polarization 

(a) (b) 
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Figure 56: E-plane realized gain of EBG antenna stretched in width, (a) co-polarization, 

and, (b) cross-polarization. 

 

 

Figure 57: E-plane realized gain of EBG antenna stretched in length and width, (a) co-

polarization, and,  (b) cross-polarization. 

Figures 58-60 show the H-plane gain patterns of the antenna on EBG. With 

stretching in eht length the gain is about 8.25 dBi. Stretching in width the gain reduces to 

-9.11 dBi, and when streched in both length and width gain is reduced to -9.61 dBi. 

 

E-Plane (YZ), Φ = 90; 

Co-polarization 
E-Plane (YZ), Φ = 90; 

X-polarization 

E-Plane (YZ), Φ = 90; 

Co-polarization 

E-Plane (YZ), Φ = 90; 

X-polarization 
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Figure 58: H-plane realized gain of EBG antenna stretched in length, (a) co-polarization, 

and, (b) cross-polarization. 

 

 

Figure 59: H-plane realized gain of EBG antenna stretched in width, (a) co-polarization, 

and, (b) cross-polarization. 

 

 

H-Plane (XZ), Φ = 0; 

X-polarization 
H-Plane (XZ), Φ = 0; 

X-polarization 

H-Plane (XZ), Φ = 0; 

X-polarization 

H-Plane (XZ), Φ = 0; 

X-polarization 
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Figure 60: H-plane realized gain of EBG antenna stretched in length and width, (a) co-

polarization, and, (b) cross-polarization. 

 

Table 8: Simulated S11 and gain summary at 5.8 Ghz for antenna on EBG under 

different stretching effects. 

Stretch fr (GHz) 

S11 (dB) 

@ 5.8 

GHz 

Gain 

(dBi) 

@ 5.8 

GHz 

E-plane (copol-

crosspol) (dB) 

H-plane (copole-

crosspol) (dB) 

L 

1% 5.33 -10.38 8.186 17.43 13.54 

2% 5.27 -11.48 8.180 17.42 13.85 

3% 5.25 -12.74 8.236 17.22 13.91 

W 

1%  -0.133 -9.191 17.67 10.29 

2%  -0.132 -9.110 17.81 10.37 

3%  -0.155 -8.115 17.82 10.77 

L

&

W 

1%  -0.110 -9.147 16.64 10.34 

2%  -0.120 -9.447 16.63 10.34 

3%  -0.130 -9.623 16.56 10.77 

 

H-Plane (XZ), Φ = 0; 

X-polarization 

H-Plane (XZ), Φ = 0; 

X-polarization 
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In Table 8 simulation results of the EBG antenna is summerized. Also the 

differences between the co-pol and cross-pol maximum levels (in dB) are given.   
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CHAPTER V 

CONCLUSION AND FUTURE WORK 
 

5.1 Introduction 
 

The design and fabrication of fully textile wearable antennas integrated with EBG 

structures was studied in this thesis. The details of design cycle of wearable antennas 

including suitable material selection, EBG design, and integration of EBG with wearable 

antennas, performance of the EBG antenna on spacesuit material, performance of the 

antenna under stretching effects and finally, measurements of radiation performance of the 

overall antenna system were presented. It was shown that the performance of wearable 

antennas improves by EBG integration. In this chapter, summary of the main research work 

of the thesis, its significance and conclusions based on the results will be presented. To 

conclude, proposals for future work and continuation of the work will be presented. 

5.2 Conclusions 
 

The thesis has presented a wearable CPW-fed monopole antenna for 5.8 GHz ISM 

band and an EBG structure is used to enhance its performance. The EBG structure is an 

array of 3 × 2 unit cells and has dimensions of 122.2 × 94.8 mm2. The antenna is intended 

to be used on human body (astronaut spacesuit) and back radiation of the antenna is a 
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concern. Therefore, EBG was added to the antenna. EBG does not allow the propagation 

of waves in all directions at a specific frequency band, and the structure, like a mirror, 

reflects back all electromagnetic waves. As a result, there will be less back radiation. The 

FBR is improved from 0.09 dB to 21.87 dB when EBG structure is used. In addition, the 

EBG structure improved the gain of the antenna by 6.11dB, from 1.17 dBi to 7.28 dBi. 

The performance of the antenna, with and without EBG, was also investigated when 

placed on the spacesuit material. The spacesuit material has more significant effects when 

the antenna is not on the EBG structure. In this case, the impedance bandwidth decreases 

by 300 MHz compared to the antenna in free-space (7.3 GHz bandwidth) and the reflection 

co-efficient at 5.8 GHz is almost 5 dB less than the antenna in free-space. On the other 

hand, the EBG antenna with and without spacesuit material has reflection coefficient -

10.59 dB and -12.59 dB, respectively. The impedance bandwidth is about 4.6 GHz at -8 

dB for the EBG antenna on spacesuit, which is the same for the EBG antenna in free space 

at -10 dB. 

Additionally, realized gain of the E-plane of the antenna on spacesuit shows about 

0.5 dB increment (from 1.16 dB to 1.63 dB) and almost 3 dB (-98.4 dB to -95.1 dB) 

increment in the cross-polarization compared to the antenna in free-space. About 0.5 dB 

increment in co-polarization and 3 dB increment in cross-polarization of the H-plane was 

also seen. For the antenna integrated on EBG the realized gain was 7.28 dBi in free-space 

and 6.38 dBi, for the EBG antenna on spacesuit. The FBR of the EBG antenna on spacesuit 

is 17.75 dB, which is around 5 dB less than the EBG antenna in free-space (22.23 dB). 
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The antenna’s textile material was considered to be stretched up to 3% due to 

pressure inside the spacesuit. It makes it important to evaluate the performance of the 

antenna under stretching conditions. The stretching is done in three different ways. Length 

only, width only, and length and width together. From the simulation results it was shown 

that when the antenna is stretched in length (E-plane) the performance remains close to the 

performance of the original antenna. However, the antenna may not be stretched in width, 

or length and width together, without degrading the antenna performance.  

Although the EBG material is flexible, it is less prone to stretching. As a result 

simulation has been done by stretching the antenna only and keeping EBG in its original 

shape. The results are similar to the single antenna stretching. Stretching in length does not 

have pronounced effects on the antenna performance. On the other hand antenna’s 

performance deteriorates if it is stretched in width or length and width together. 

5.3 Future Work 
 

This thesis has presented wearable antenna design cycle and proposed a new 

wearable antenna for spacesuit applications. However, any new design leads to more 

questions and future studies that needs further research. There is still an enormous amount 

of research and development that needs to be performed in this area. 

Firstly, after considering different materials Pellon substrate was selected in this 

research. There is still need for study on material selection. There are a variety of textile 

materials available that need to be studied for their viability and suitability in wearable 

antenna designs. Also more attention needs to be paid to the firmness and durability of 

fabric in the final selection of materials. 
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Secondly, conventional soldering method was used to connect SMA connectors to 

the conducting fabric. The heat generated by the soldering machine can cause the 

conducting fabric to be burnt out. Also the soldered connection between metal connector 

and conducting fabric is brittle and tend to break easily if some force is applied. Rather 

than using conventional soldering method some new solder-less techniques can be 

proposed in future study to avoid this problem. 

Thirdly, wearable antennas designed in this research are not tested under bending, 

crumbling and wet conditions. These topics can be explored in future studies. If 

performance deteriorates under wet conditions then search needs to be carried out on 

waterproof materials for future wearable communication designs. 

Fourthly, stretching conditions have been investigated based on simulation results. 

However, measurements of the antenna under different stretching condition can be carried 

out as future experiment. 

Lastly, the interaction between the proposed EBG wearable antenna and the human 

body is important. When the antenna is placed in very close proximity to the body, it 

requires investigations and finding methods to reduce the loading effects of human body. 

On body measurements are of interest and they are potentially important in order to further 

validate the antenna design for wearable antenna application. 
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