2,032 research outputs found

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    Design and Development of an Inspection Robotic System for Indoor Applications

    Get PDF
    The inspection and monitoring of industrial sites, structures, and infrastructure are important issues for their sustainability and further maintenance. Although these tasks are repetitive and time consuming, and some of these environments may be characterized by dust, humidity, or absence of natural light, classical approach relies on large human activities. Automatic or robotic solutions can be considered useful tools for inspection because they can be effective in exploring dangerous or inaccessible sites, at relatively low-cost and reducing the time required for the relief. The development of a paradigmatic system called Inspection Robotic System (IRS) is the main objective of this paper to demonstrate the feasibility of mechatronic solutions for inspection of industrial sites. The development of such systems will be exploited in the form of a tool kit to be flexible and installed on a mobile system, in order to be used for inspection and monitoring, possibly introducing high efficiency, quality and repetitiveness in the related sector. The interoperability of sensors with wireless communication may form a smart sensors tool kit and a smart sensor network with powerful functions to be effectively used for inspection purposes. Moreover, it may constitute a solution for a broad range of scenarios spacing from industrial sites, brownfields, historical sites or sites dangerous or difficult to access by operators. First experimental tests are reported to show the engineering feasibility of the system and interoperability of the mobile hybrid robot equipped with sensors that allow real-time multiple acquisition and storage

    Fundamentals of Wireless Communication Link Design for Networked Robotics

    Get PDF
    This chapter aims to present the fundamentals of the design of wireless communication links for networked robotics applications. First, we provide an overview of networked robotics applications, motivating the importance of the wireless communication link as an enabler of these applications. Next, we review the wireless communication technologies available today, discussing the existent tradeoffs between range, power, and data rate, and introducing the main concepts regarding the design of wireless communication links. Finally, we present a design example of a wireless communication link and the results obtained. We conclude the chapter with a discussion of the results and the challenges faced in the design of wireless communication links for networked robotics

    INSPIRE Newsletter Spring 2018

    Get PDF
    https://scholarsmine.mst.edu/inspire-newsletters/1002/thumbnail.jp

    Reconfiguration of a climbing robot in an all-terrain hexapod robot

    Get PDF
    This work presents the reconfiguration from a previous climbing robot to an all-terrain robot for applications in outdoor environments. The original robot is a six-legged climbing robot for high payloads. This robot has used special electromagnetic feet in order to support itself on vertical ferromagnetic walls to carry out specific tasks. The reconfigured all-terrain hexapod robot will be able to perform different applications on the ground, for example, as inspection platform for humanitarian demining tasks. In this case, the reconfigured hexapod robot will load a scanning manipulator arm with a specific metal detector as end-effector. With the implementation of the scanning manipulator on the hexapod robot, several tasks about search and localisation of antipersonnel mines would be carried out. The robot legs have a SCARA configuration, which allows low energy consumption when the robot performs trajectories on a quasi-flat terrain.Peer reviewe

    INSPIRE Newsletter Fall 2022

    Get PDF
    https://scholarsmine.mst.edu/inspire-newsletters/1011/thumbnail.jp

    A Climbing-Flying Robot for Power Line Inspection

    Get PDF
    • …
    corecore