2,228 research outputs found

    Field test of multi-hop image sensing network prototype on a city-wide scale

    Get PDF
    Open Access funded by Chongqing University of Posts and Telecommuniocations Under a Creative Commons license, https://creativecommons.org/licenses/by-nc-nd/4.0/Wireless multimedia sensor network drastically stretches the horizon of traditional monitoring and surveillance systems, of which most existing research have utilised Zigbee or WiFi as the communication technology. Both technologies use ultra high frequencies (mainly 2.4 GHz) and suffer from relatively short transmission range (i.e. 100 m line-of-sight). The objective of this paper is to assess the feasibility and potential of transmitting image information using RF modules with lower frequencies (e.g. 433 MHz) in order to achieve a larger scale deployment such as a city scenario. Arduino platform is used for its low cost and simplicity. The details of hardware properties are elaborated in the article, followed by an investigation of optimum configurations for the system. Upon an initial range testing outcome of over 2000 m line-of-sight transmission distance, the prototype network has been installed in a real life city plot for further examination of performance. A range of suitable applications has been proposed along with suggestions for future research.Peer reviewe

    Open-source digital technologies for low-cost monitoring of historical constructions

    Get PDF
    This paper shows new possibilities of using novel, open-source, low-cost platforms for the structural health monitoring of heritage structures. The objective of the study is to present an assessment of increasingly available open-source digital modeling and fabrication technologies in order to identify the suitable counterparts of the typical components of a continuous static monitoring system for a historical construction. The results of the research include a simple case-study, which is presented with low-cost, open-source, calibrated components, as well as an assessment of different alternatives for deploying basic structural health monitoring arrangements. The results of the research show the great potential of these existing technologies that may help to promote a widespread and cost-efficient monitoring of the built cultural heritage. Such scenario may contribute to the onset of commonplace digital records of historical constructions in an open-source, versatile and reliable fashion.Peer ReviewedPostprint (author's final draft

    Smart cities air pollution monitoring system - Developing a potential data collecting platform based on Raspberry Pi

    Get PDF
    >Magister Scientiae - MScAir pollution is becoming a challenging issue in our daily lives due to advanced industrialization. This thesis presents a solution to collection and dissemination of pollution data. Most of the devices that monitor air quality are costly and have limited features. The aim of this study is to revisit the issue of pollution in cities with the aim of providing a cheaper and scalable solution to the challenge of pollution data collection and dissemination. The solution proposed in this paper uses Raspberry Pi and Arduino micro-controller boards as the foundation, combined with specific sensors to facilitate the collection and transfer of pollution data reliably and effectively. While most traditional air pollution monitoring equipment and similar projects use memory cards as a medium for data storage, the system proposed in this research is built around a new network selection model that transfers data to the server by using either Bluetooth, Wi-Fi, GSM, or the LoRa protocol. The connectivity protocol is selected automatically and opportunistically by the network selection algorithm defined in the micro-controller board. The final data will be presented to the user through a mobile application and website interface effectively and intuitively after being processed in the server. This data transfer system can effectively reduce the cost and input of human resources. It is a viable solution. For other environmental research, this system can provide an air quality data support for analysis and reference. Modularity and cost-effectiveness are fully considered when designing the system. It is a viable solution. We can generalize the system by slightly changing the data transmission modules. In other case, it can be used as a platform for similar data transmission and offer help for other research directions

    Remote Sensor Network Application For Monitoring System and Air Quality Classificatio

    Get PDF
    Indonesia is one of the nations putting resources into the modern area. Businesses influence the climate, outstandingly air quality. On the off chance that the air contamination ousted by modern fireplaces couldn't be handled appropriately, it would unfavorably influence human wellbeing. As of now, checking the air quality in certain zones just uses one apparatus. This is esteemed insufficient to depict the state of air quality in a given region. Then again, introducing more than one device would be extravagant. This exploration applied the idea of remote sensor organization (WSN) for air quality checking by introducing more than one sensor hubs in a specific area and one sink that demonstrations to gather information from the sensor hubs at that point sends them to the worker. Air quality information acquired by the sensor hubs were then ordered utilizing the grouping technique in information mining that is k-closest neighbor (K-NN). Preceding grouping utilizing K-NN, information standardization was performed, which creates a decimal scaling with great execution for air quality information. The k esteems utilized for the K-NN characterization are 5. The exactness of the framework is 94.28%, the accuracy is 85.16% and the review is 93.35%

    The use of Sensor Networks to create smart environments

    Get PDF
    Internet of Things is taking the world in order to be the next big thing since the Internet, with almost every object being connected to gather data and allow control through mobile and web devices. But this revolution has some barriers with the lack of standardization in communications or sensors. In this dissertation we present a proposal of a system dedicated to creating smart environments using sensor networks, with a practical application developed to achieve automation, efficiency and versatility, allowing real-time monitoring and remote control of any object or environment improving user experience, tasks efficiency and leading to costs reduction. The developed system, that includes software and hardware, is based on adaptive and Artificial Intelligence algorithms and low cost IoT devices, taking advantage of the best communication protocols, allowing the developed system to be suited and easily adapted to any specification by any person. We evaluate the best communication and devices for the desired implementa tion and demonstrate how to create all the network nodes, including the build of a custom IoT Gateway and Sensor Node. We also demonstrate the efficiency of the developed system in real case scenarios. The main contributions of our study are the design and implementation of a novel architecture for adaptive IoT projects focus on environment efficiency, with practical demonstration, as well as comparison study for the best suited communication protocols for low cost IoT devices.A Internet of Things está a atingir o mundo de modo a tornar-se a próxima grande revolução depois da Internet, com quase todos os objectos a estarem ligados para recolher dados e permitir o controlo através de dispositivos móveis. Mas esta revolução depara-se com vários desafios devido à falta de standards no que toca a comunicações ou sensores. Nesta dissertação apresentamos uma proposta para um sistema dedicado a criar ambientes inteligentes usando redes de sensores, com uma aplicação prática desenvolvida para oferecer automação, eficiência e versatilidade, permitindo uma monitorização e controlo remoto seguro em tempo real de qualquer objecto ou ambiente, melhorando assim a experiência do utilizador e a eficiência das tarefas evando a redução de custos. O sistema desenvolvido, que inclui software e hard ware, usa algoritmos adaptáveis com Inteligência Artificial e dispositivos IoT de baixo custo, utilizando os melhores protocolos de comunicação, permitindo que o mesmo seja apropriado e facilmente adaptado para qualquer especificação por qualquer pessoa. Avaliamos os melhores métodos de comunicação e dispositivos necessários para a implementação e demonstramos como criar todos os nós da rede, incluindo a construção de IoT Gateway e Sensor Node personalizados. Demonstramos também a eficácia do sistema desenvolvido através da aplicação do mesmo em casos reais. As principais contribuições do nosso estudo passam pelo desenho e implemen tação de uma nova arquitectura para projectos adaptáveis de IoT com foco na eficiência do objecto, incluindo a demonstração pratica, tal como um estudo com parativo sobre os melhores protocolos de comunicação para dispositivos IoT de baixo custo

    Portable Fog Gateways for Resilient Sensors Data Aggregation in Internet-less Environment

    Get PDF
    Fog computing is gaining attention due to the potential of aggregating and processing time-sensitive data at the nearby intelligent gateways. It reduces the latency of sensors data aggregation and response time therefore, improve real-time action which is beneficial in environmental monitoring and early warning systems. However, deploying edge computing in Internet-less environment seems unpractical and the mobility of gateways is less focused in current literature. In this paper, we present a practical design of a portable gateways scheme for sensors data aggregation and processing in Internet-less environment. The proposed gateways can locate their geographical locations which can be automatically converted into location names at the central gateway. The proposed portable Fog Gateways are developed by using open-source hardware and integrated with Cloud database for data storage. Data processing techniques such as data parsing and Reverse Geocoding are conducted for reliable data transmission by using GSM/GPRS technology and geographical location name detection respectively. Finally, a case study has been conducted to evaluate the feasibility of our proposed Fog Gateways scheme in real-time application

    Proposal of architecture for IoT solution for monitoring and management of plantations

    Get PDF
    The world population growth is increasing the demand for food production. Furthermore, the reduction of the workforce in rural areas and the increase in production costs are challenges for food production nowadays. Smart farming is a farm management concept that may use Internet of Things (IoT) to overcome the current challenges of food production This work presents a systematic review of the existing literature on smart farming with IoT. The systematic review reveals an evolution in the way data are processed by IoT solutions in recent years. Traditional approaches mostly used data in a reactive manner. In contrast, recent approaches allowed the use of data to prevent crop problems and to improve the accuracy of crop diagnosis. Based on the finds of the systematic review, this work proposes an architecture of an IoT solution that enables monitoring and management of crops in real time. The proposed architecture allows the usage of big data and machine learning to process the collected data. A prototype is implemented to validate the operation of the proposed architecture and a security risk assessment of the implemented prototype is carried out. The implemented prototype successfully validates the proposed architecture. The architecture presented in this work allows the implementation of IoT solutions in different scenarios of farming, such as indoor and outdoor

    Design and Manufacture of Wireless Monitoring system of Photovoltaic Generation Employing Raspberry PI 3

    Get PDF
    This paper recounts design and development the realtime and wireless monitoring systems to observed the characteristics and performanced of the solar photovoltaic (pv) energy generation. The monitoring systems designed used the Raspberry Pi 3 as the data processing center, the voltage divider as the voltage sensor, ACS712 as the current sensor, DHT as the temperature sensor, and BH1750 as the solar irradiation sensor. The measurements of the pv generation characteristics are carried out all the time in real time. The monitoring systems developed has calibrated with standard measuring instruments. The measurement data has processed, sent and stored in the database via the internet. The MySQL database with single user interface using the Web-based programming language has employed. This research has proven that the system designed to functioning properly and correctly to achieve the objectived. The novelty of these project are the pv wireless monitoring systems techniques with the simple device resources, capable of showing maximum performanced

    A fuzzy logic micro-controller enabled system for the monitoring of micro climatic parameters of a greenhouse

    Get PDF
    Motivation behind this master dissertation is to introduce a novel study called " A fuzzy logic micro-controller enabled system for the monitoring of micro-climatic parameters of a greenhouse" which is capable of intelligently monitoring and controlling the greenhouse climate conditions in a preprogrammed manner. The proposed system consists of three stations: Sensor Station, Coordinator Station, and Central Station. To allow for better monitoring of the climate condition in the greenhouse, fuzzy logic controller is embedded in the system as the system becomes more intelligent with fuzzy decision making. The sensor station is equipped with several sensor elements such as MQ-7 (Carbon monoxide sensor), DHT11 (Temperature and humidity sensor), LDR (light sensor), grove moisture sensor (soil moisture sensor). The communication between the sensor station and the coordinator station is achieved through XBee wireless modules connected to the Arduino Mega and the communication between coordinator station and the central station is also achieved via XBee wireless modules connected to the Arduino Mega. The experiments and tests of the system were carried out at one of IKHALA TVET COLLEGE’s greenhouses that is used for learning purposes by students studying agriculture at the college. The purpose of conducting the experiments at the college’s green house was to determine the functionality and reliability of the designed wireless sensor network using ZigBee wireless technology. The experiment result indicated that XBee modules could be used as one solution to lower the installation cost, increase flexibility and reliability and create a greenhouse management system that is only based on wireless nodes. The experiment result also showed that the system became more intelligent if fuzzy logic was used by the system for decision making. The overall system design showed advantages in cost, size, power, flexibility and intelligence. It is trusted that the results of the project will give the chance for further research and development of a low cost greenhouse monitoring system for commercial use.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    Environment Control with Low-Cost Microcontrollers and Microprocessors: Application for GreenWalls

    Get PDF
    Green wall irrigation procedures are a particularly important and hard task, given that the quality of the green wall depends on them. There is currently a wide variety of irrigation programmers available, with a range of functions and prices, thereby replacing manual activities and making it easier to maintain green walls. This paper proposes the use of low-cost automated irrigation programmers via a freeware called Arduino. The system is based on air and substrate measurements to ensure optimal plant growth and high water-use efficiency. At certain thresholds, the irrigation system is activated. This not only makes irrigation more convenient but also helps to reduce energy consumption, increases irrigation efficiency and saves time. The data is then sent via Transmission Control Protocol using Internet of Things technology, in this case ThingSpeak. The platform compiles the data and presents them in simple graphical format, thus enabling real-time monitoring from wherever there is Internet access. Together with Arduino, the project incorporates the Raspberry pi system that operates like a database via Hypertext Transfer Protocol Wi-Fi received by a Structured Query Language (MySQL) server using Hypertext Preprocessor. These data are used for the subsequent analysis of green wall performance
    corecore