209 research outputs found

    D-Tags Design by Combining Bluetooth Router, IoT, and Mobile Phone to Track Personal Items

    Get PDF
    Losing personal items such as a wallet or room keys is disturbing. Problems arise when clues to find the item are lacking or even non-existent. Of one hundred-two people who filled out the questionnaire about how often losing their belongings, 76% had experienced it. Because of that, it must be hard to remember where the last they put the stuff. Therefore people need tools that can help them easily find their item with a transmitter and connect to a mobile phone. Previous research showed that the transmitter with a frequency system had a detection distance of only 5 meters. From this weakness, the authors propose the development of a tracking items device that combines an Internet of Things-based Bluetooth transmitter and receiver system approach called D-Tags by combining Bluetooth routers, IoT, and mobile phones. The system is designed for both indoor and outdoor areas. Bluetooth testing allows the device to detect items up to 7.43 meters without wall obstacles. The system provided location information such as Living Room or Bedroom and the coordinates when outside the room. Regarding time, a single detection item is faster in the range of 15.13 seconds to 15.60 seconds than searching for two things simultaneously. From the tracking radius of the outdoor area, the device can track items up to 31.8 meters from the last item's position. All information tracking history can be seen on the web application. The experiment results prove that D-Tags can be used to track items by indicating their location and with a relatively short search duration

    Interference Analysis Between 5G System and Fixed Satellite Service in the 28 GHz Band

    Get PDF
    One of the most favorable frequency bands for 5G technology is the 27.5 - 28.5 GHz band which has been used by Fixed Satellite System (FSS) service in the uplink direction. This potentially causes interference between the two systems. This study aims to analyze the interference that occurs between satellite earth stations and 5G access points (AP), and between 5G AP and satellite sky stations. The analysis is carried out based on simulations using the Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) software, with two scenarios. The first scenario is to analyze interference between the 5G AP and the FSS sky station. With the C/I interference criterion of 40.2 dB, the simulation results show that the 5G AP will not interfere with the FSS sky station. The second scenario is the interference simulation between FSS earth station and 5G AP. The simulation is carried out by varying the distance between the earth station and the 5G AP, the height of the earth station, and the height of the 5G AP. Based on the simulations, it is shown that the FSS earth station can interfere with 5G AP with a probability of up to 60%, so it is necessary to adjust the distance between systems and the height of the antenna to minimize the interference. The shortest distance needed to minimize interference is 36 km with an earth station height of 5 meters

    Multi-oscillations Detection for Process Variables Based on K-Nearest Neighbor

    Get PDF
    In the process industry, a control system is important to ensure the process runs smoothly and keeps the product under predetermined specifications.Β  Oscillations in process variables can affect the decreasing profitability of the plant.Β  It is important to detect the oscillation before it becomes a problem for profitability.Β  Various methods have been developed; however, the methods still need to improve when implemented online for multi-oscillation. Therefore, this research uses a machine learning-based method with the K-Nearest Neighbour (KNN) algorithm to detect multi-oscillation in the control loop, and the detection methods are made to carry out online detection from real plants.Β  The developed method simulated the Tennessee Eastman Process (TEP), and it used Python programming to create a KNN model and extract time series data into the frequency domain.Β  The Message Queuing Telemetry Transport (MQTT) communication protocol has been used to implement as an online system.Β  The result of the implementation showed that two KNN models were made with different window size variations to get the best performance model.Β  The best model for multi-oscillation detection was obtained with an F1 score of 76% for detection

    The Industrial IoT Control Design of Three Phase Induction Motor using Conventional V/F Method

    Get PDF
    Nowadays, the Internet of Things (IoT) is inseparable from the industrial revolution 4.0 and society 5.0. IoT allows all aspects to be connected at the same time. In industrial processes, the IoT controls the actuator and monitors the behavior system. Industrial IoT (IIoT) connected the Human Machine Interface (HMI) Haiwell C7S with the actuator (Schneider Altivar 12) and the controller (OMRON CP1E-NA20DRA). The communication between the variable speed drive and Haiwell C7S using Modbus protocol is connected with RS485. Schneider Altivar 12 is a variable-speed drive that controls the Induction Motor (IM) rotor speed using the conventional V/F method. The scalar control of IM controls supply frequency and voltage simultaneously. The success parameter of the proposed systems is a rotor speed response and voltage in various supply frequencies. The results show that the 5 Hz supply frequency makes the absolute error of rotor speed response 11.43% for tachometer measurement, 0.67% from VSD data, and 12.67% for rotary encoder measurement. This absolute error will decrease significantly when the supply frequency exceeds 20 Hz, or the rotor speed response exceeds 1200 rpm. The changes in the supply frequency change the voltage's magnitude. The voltage will increase proportionally, along with the increase in supply frequency

    Reliability Analysis of pH Measurement on TLC4502 with E201C Electrodes based on ATmega328P Microcontroller: Approach to Analysis of Variation with ANOVA

    Get PDF
    The development of the water management system has so far reached the stage of utilizing IoT technology in the monitoring and operation process. An essential factor in water that affects the quality of a substance is pH. The research aims to analyze and ensure that the devices have a small pH measurement error rate with TLC4502 & E201C. The calibration process was carried out using linear regression, and Β value of 0.99 was obtained. Analysis was carried out using one-way ANOVA and Tukey HSD methods, and it was found that all data pairs rejected the null hypothesis (H0) and accepted the alternate hypothesis (H1). This hypothesis indicated a significant difference in the relative measurement error of pH in each condition. The standard error value of each measurement after filtration was 0.00, with an uncertainty value ranging from 0.07 to 0.02. If the sensor can provide measurement results with low error and high accuracy, then the sensor can be widely circulated and used. Through this research, the feasibility of a measuring instrument was developed based on the perspective of errors and high accuracy. A quality measuring instrument certainly helpful in various fields from the fisheries, hydroponics, and environmental sectors

    Cabin Assembly Balancing Line on Welding Using Ranked Positional Weight Method

    Get PDF
    The Indonesian automotive industry has become an essential pillar in the country's manufacturing sector. As production capacity increases, problems will also increase, including disparities in the level of efficiency and productivity of each sub-sector of the manufacturing industry in Indonesia. This problem occurs due to the need for a good process path, such as the uneven distribution of work tasks machines in the work process so that it is possible to harm the company, so a solution is needed to increase the efficiency of the production line. This research aims to improve production efficiency, particularly concerning the use of electricity costs and operator wages on the cabin type S L assembly line, by applying the Ranked Positional Weight (RPW) method. The research phases include data collection, analysis, processing, and evaluation. Based on the SL-type cabin calculations using the RPW method, the track efficiency improved by 4.69% from the initial conditions, while the track effectiveness increased by 75.02% to 79.71%. Increased the production line efficiency has impacted on the decrease in production costs Rp. 13,827,249/month

    Designing a Monitoring and Controlling System on IOT-Based Sockets

    Get PDF
    The government's program to promote energy conservation efforts by reducing the occurrence of vampire power in the surrounding environment, particularly in the household sector. For this reason, modifications are made to the socket so that it can be controlled and monitored remotely through an application on a smartphone. The hardware design uses the NodeMCU ESP8266 V3 as a microcontroller. Combined with the PZEM-004T sensor module to read current, voltage, and power values. Relay module to secure the circuit in case of higher loads. So that in the system, the socket can be monitored 3 sockets simultaneously. While the software design uses the MIT app inventor as the user interface, and the Thingspeak platform as a server. The data is saved in.csv format, which can be opened in Microsoft Excel.Β  The data stored is in the form of the name of the electronic equipment, the time of use, as well as the voltage, current, and power of the device. So that users can manage the use of electrical appliances at home and reduce the occurrence of electric vampires. The test results showed an average voltage error rate of 0.24% with a voltage range of 226 V–230 V, an average current error rate of 22.18%, and an error rate on power of 15.39%. This is caused by the measured load being too small, resulting in higher errors in current and power.

    Assessment of Solar Energy Resource for PV Plant Development Using a Low-cost PV Monitoring System

    Get PDF
    In this work, we propose the use of a low-cost PV monitoring system for providing accurate and comprehensive data required in the development of efficient and reliable solar PV plants. The system is developed based on an open-source Arduino platform with the capability to monitor solar irradiance, and electric outputs and temperature of multiple solar panels, which should enable the accurate assessment of solar energy resource, as well as electrical energy produced by PV plant under real operating conditions. To demonstrate its applicability, the system has been installed at the campus of Politeknik Negeri Pontianak in Pontianak City, and the data collected by the system is used to assess solar energy resource at the location. Data collected by the system from August 2020 to September 2021 shows that the values of solar irradiation are in the range of 2.9–4.1 kWh/m2 per day, and electric energy produced by commercial solar panels are in the range of 0.30–0.46 kWh/m2 per day, correspond to the monthly averaged efficiencies of 8–13%. The values of solar irradiation are 15–40 % lower than those obtained from the space-averaged satellite data which are in the range of 4.1–5.8 kWh/m2 per day. This shows the significant effects of local conditions, and confirms the advantage of assessment using the low-cost monitoring system that directly accounts for the effects of local conditions without the need of simulation using complex model and sophisticated software that required in the assessment using satellite-derived data

    Design and Implementation of 12-Bit Arithmetic Logic Unit with 8 Operation Codes to Field Programmable Gate Array

    Get PDF
    Digital system has been a part of human life since the invention of the computer with a microprocessor as the central brain. At the heart of a processor is an Arithmetic Logic Unit (ALU) that handles arithmetic and logic operations. The need for high-speed computation to handle complex computations demands microprocessors with higher performance. The existing 4-opcode 8-bit ALU cannot handle multiplication operations, so a solution is needed. In this research, while raising the appeal of beginners, a 12-bit ALU with eight operation codes (opcode) was designed and implemented in Xilinx’s Field Programmable Gate Array using a schematic diagram approach through logic gates. The designed and implemented ALU provides addition, subtraction, multiplication, square, AND, OR, NAND, and XOR operations. The multiplication operation was tested by performing the computation to provided datasets to obtain the distance travelled by ten military aircraft based on their maximum speed and air travel duration to ensure its performance. The computation performance comparison with an 8-bit ALU with four opcodes was also done. The computation was done for air travel between 10 to 60 minutes with a 10-minute difference. It was found that the 12-bit ALU with eight opcodes outperformed its contender with computation differences between 130.815 ns and 1,468.214 ns. This high performance is supported by the multiply operation that does repeated addition at one time. Based on this finding, the 8-opcode 12-bit ALU is more efficient in the context of computation time, with consistent accuracy. Moreover, the computation time required to calculate military aircraft data with different maximum speeds and air travel duration is only 119.501 ns

    Differential Drive Mobile Robot Motion Accuracy Improvement with Odometry-Compass Sensor Fusion Implementation

    Get PDF
    The Implementation of wheeled robot technology in the development of transportation vehicles makes them capable for operating automatically. In order to operate automatically, a vehicle requires stable control system which including motion kinematic algorithm where is developed in a robotic system. With the aim of being able to build an Unmanned Grounded Vehicle (UGV), in this study an UGV prototype was made in the form of a wheeled robot with Differential Drive Mobile Robot (DDMR) system. The robot is controlled by motion kinematic control algorithm and a trajectory tracking system that is used to get an estimate of the position caused by the robot’s movement, beside it made the robot can operate automatically. To support the performance of the control system, the robot prototype is added with a compass sensor which used as the wheel odometry sensor’s support. The process of combining wheel odometry and compass sensor data is carried out by using the sensor fusion algorithm, where the limit value for the RMS error for the position accuracy is not more than 0.15 meters. As the result of the trials, by adding a compass sensor and implementing sensor fusion algorithm is able to reduce the average RMS (Root Mean Square) error value of the motion accuracy into below 0.15 meters which previously worth 0.392 meters decreased into 0.075 meters

    194

    full texts

    209

    metadata records
    Updated in lastΒ 30Β days.
    ELKHA
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! πŸ‘‡