30,080 research outputs found

    A Method for Authentication Services in Wireless Networks

    Get PDF
    With the widespread use of wireless network services and applications, security is a major concern. From wireless network security aspects, authentication for services is very important especially in Internet banking. In this paper, an authentication method for wireless networks using dynamic key theory is presented. The dynamic key theory is used to produce “one time keys” for authentication. These one time keys will improve the efficiency and security of wireless authentication. It can be applied for Internet banking and services in wireless networks

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation

    Generalized Neuron Based Secure Media Access Control Protocol for Wireless Sensor Networks

    Get PDF
    Security plays a pivotal role in most applications of wireless sensor networks. It is common to find inadequately secure networks confined only to controlled environments. The issue of security in wireless sensor networks is a hot research topic for over a decade. This paper presents a compact generalized neuron (GN) based medium access protocol that renders a CSMA/CD network secure against denial-of-service attacks launched by adversaries. The GN enhances the security by constantly monitoring multiple parameters that reflect the possibility that an attack is launched by an adversary. Particle swarm optimization, a popular bio-inspired evolutionary-like optimization algorithm is used for training the GN. The wireless sensor network is simulated using Vanderbilt Prowler, a probabilistic wireless network simulator. Simulation results show that the choice of threshold suspicion parameter impacts on the tradeoff between network effectiveness and lifetime

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Securing Internet of Things with Lightweight IPsec

    Get PDF
    Real-world deployments of wireless sensor networks (WSNs) require secure communication. It is important that a receiver is able to verify that sensor data was generated by trusted nodes. In some cases it may also be necessary to encrypt sensor data in transit. Recently, WSNs and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this paper we provide End-to-End (E2E) secure communication between an IP enabled sensor nodes and a device on traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of 6LoWPAN extension for IPsec on Contiki. Our extension supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, communication endpoints are able to authenticate, encrypt and check the integrity of messages using standardized and established IPv6 mechanisms

    MAC-layer approaches for security and performance enhancement in IEEE 802.11

    Get PDF
    Over the past few years, wireless networks are becoming increasingly popular. The dominant question facing the wireless network today is: how can the network meet the needs of various users and applications? Two basic and primary needs for users are efficiency and security. To deal with these two concerns, this dissertation investigates the two areas and proposes four MAC-level approaches for security and performance enhancement in IEEE 802.11.;In the first part, we propose three MAC-level approaches to improve the throughput performance in wireless LANs, i.e., the Freeze Counter scheme (FC), the Dynamically Adaptive Retransmission (DAR), and the Quick Acknowledgement (QA) scheme. The Freeze Counter scheme is an adaptive error recovery mechanism in 802.11, which can perform different actions according to the reasons for frame losses. Dynamically Adaptive Retransmission scheme is an enhanced feedback scheme in 802.11. We propose a Quick Acknowledgement (QA) scheme as a replacement for positive acknowledgement in IEEE 802.11. By using similar concepts as selective ACK and negative ACK, the proposed protocol solves the inefficiency problem of positive ACK in 802.11.;In the second part, we propose a lightweight statistical authentication protocol for wireless networks. With more and more applications on wireless networks, new concerns are raised when it comes to security issues. Authentication service particularly becomes one of the basic but necessary security measures for wireless applications. However, traditional authentication protocols for wired networks do not work well in a wireless environment due to unique characteristics. To meet this target, we propose a lightweight statistical authentication protocol for wireless networks, namely Shepherd. To solve the inherent out-of-sync problem with Shepherd protocol, we develop three synchronization schemes with their statistical methods. In Shepherd, the legitimacy of a mobile node is determined by continuously checking a series of random authentication bits where each bit in this stream is piggybacked by a packet. Such an authentication bit stream is generated by both mobile node and access point using the same random number generator under the same shared seed as a key. The complete evaluation and analysis of all proposed approaches have been discussed
    • …
    corecore