28 research outputs found

    A Cost-Effective Haptic Device for Assistive and Rehabilitation Purposes

    Get PDF
    With the growing population of elderly, the need for assistance has also increased considerably especially for the tasks such as cleaning, reaching and grasping objects among others. There are numerous assistive devices in the market for this group of people. However, they are either too expensive or require overwhelming user effort for manipulation. Therefore, the presented research is primarily concerned with developing a low-cost, easy to use assistive device for elderly to reach and grasp objects through intuitive interface for the control of a slave anthropomorphic robotic arm (tele operator). The system also implements haptic feedback technology that enables the user to maneuver the grasping task in a realistic manner. A bilateral master-slave robotic system combined with the haptic feedback technology has been designed, built and tested to determine the suitability of this device for the chosen application. The final prototype consists of primarily off the shelf components programmed in such a way as to provide accurate teleoperation and haptic feedback to the user. While the nature of the project as a prototype precluded any patient trials, testing of the final system has shown that a fairly low cost device can be capable of providing the user an ability to remotely control a robotic arm for reaching and grasping objects with accurate force feedback

    ROBOVANTRI

    Get PDF
    In todayā€™s society, robots have become an indispensible part of human life. With more than 12000 hospitals, curing the health of billion plus Indian population, the problem of medical wastage disposal is a growing concern. To overcome shortcomings/inconsistency of assistance in medication, problem of medical wastage disposal and humans getting affected, we have attempted to build our project "Robovantri , a medical robotic assistant, specially designed to aid the Indian hospital conditions. We aim for overcoming shortage of nursing staff, segregation, recycling, disposal of medical waste, a floor-wise robotic control system that can operate multiple controllable robots, for storing the patients' medical history and also to overcome nursing problems in unreachable rural areas. The robot uses signboards placed at various critical points in the hospital for deciding the best possible pathway to reach its destination. We are implementing this using image processing in MATLAB

    Position / force control of systems subjected to communicaton delays and interruptions in bilateral teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 65-68)Text in English; Abstract: Turkish and Englishix, 76 leavesTeleoperation technology allows to remotely operate robotic (slave) systems located in hazardous, risky and distant environments. The human operator sends commands through the controller (master) system to execute the tasks from a distance. The operator is provided with necessary (visual, audio or haptic) feedback to accomplish the mission remotely. In bilateral teleoperation, continuous feedback from the remote environment is generated. Thus, the operator can handle the task as if the operator is in the remote environment relying on the relevant feedback. Since teleoperation deals with systems controlled from a distance, time delays and package losses in transmission of information are present. These communication failures affect the human perception and system stability, and thus, the ability of operator to handle the task successfully. The objective of this thesis is to investigate and develop a control algorithm, which utilizes model mediated teleoperation integrating parallel position/force controllers, to compensate for the instability issues and excessive forcing applied to the environment arising from communication failures. Model mediation technique is extended for three-degrees-of-freedom teleoperation and a parallel position/force controller, impedance controller, is integrated in the control algorithm. The proposed control method is experimentally tested by using Matlab Simulink blocksets for real-time experimentation in which haptic desktop devices, Novint Falcon and Phantom Desktop are configured as master and slave subsystems of the bilateral teleoperation. The results of these tests indicate that the stability and passivity of proposed bilateral teleoperation systems are preserved during constant and variable time delays and data losses while the position and force tracking test results provide acceptable performance with bounded errors

    VISION-INTEGRATED PHYSIOTHERAPY SERVICE ROBOT USING COOPERATING TWO ARMS

    Full text link

    Anthropomorphic surgical system for soft tissue robot-assisted surgery

    Get PDF
    Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods such as laparoscopy and robot-assisted minimally invasive surgery (R-A MIS). These procedures have significantly decreased blood loss, postoperative morbidity and length of hospital stay in comparison with open surgery. R-A MIS has offered refined accuracy and more ergonomic instruments for surgeons, further minimising trauma to the patient.This thesis aims to investigate, design and prototype a novel system for R-A MIS that will provide more natural and intuitive manipulation of soft tissues and, at the same time, increase the surgeon's dexterity. The thesis reviews related work on surgical systems and discusses the requirements for designing surgical instrumentation. From the background research conducted in this thesis, it is clear that training surgeons in MIS procedures is becoming increasingly long and arduous. Furthermore, most available systems adopt a design similar to conventional laparoscopic instruments or focus on different techniques with debatable benefits. The system proposed in this thesis not only aims to reduce the training time for surgeons but also to improve the ergonomics of the procedure.In order to achieve this, a survey was conducted among surgeons, regarding their opinions on surgical training, surgical systems, how satisfied they are with them and how easy they are to use. A concept for MIS robotic instrumentation was then developed and a series of focus group meetings with surgeons were run to discuss it. The proposed system, named microAngelo, is an anthropomorphic master-slave system that comprises a three-digit miniature hand that can be controlled using the master, a three-digit sensory exoskeleton. While multi-fingered robotic hands have been developed for decades, none have been used for surgical operations. As the system has a human centred design, its relation to the human hand is discussed. Prototypes of both the master and the slave have been developed and their design and mechanisms is demonstrated. The accuracy and repeatability of the master as well as the accuracy and force capabilities of the slave are tested and discussed

    Development and evaluation of mixed reality-enhanced robotic systems for intuitive tele-manipulation and telemanufacturing tasks in hazardous conditions

    Get PDF
    In recent years, with the rapid development of space exploration, deep-sea discovery, nuclear rehabilitation and management, and robotic-assisted medical devices, there is an urgent need for humans to interactively control robotic systems to perform increasingly precise remote operations. The value of medical telerobotic applications during the recent coronavirus pandemic has also been demonstrated and will grow in the future. This thesis investigates novel approaches to the development and evaluation of a mixed reality-enhanced telerobotic platform for intuitive remote teleoperation applications in dangerous and difficult working conditions, such as contaminated sites and undersea or extreme welding scenarios. This research aims to remove human workers from the harmful working environments by equipping complex robotic systems with human intelligence and command/control via intuitive and natural human-robot- interaction, including the implementation of MR techniques to improve the user's situational awareness, depth perception, and spatial cognition, which are fundamental to effective and efficient teleoperation. The proposed robotic mobile manipulation platform consists of a UR5 industrial manipulator, 3D-printed parallel gripper, and customized mobile base, which is envisaged to be controlled by non-skilled operators who are physically separated from the robot working space through an MR-based vision/motion mapping approach. The platform development process involved CAD/CAE/CAM and rapid prototyping techniques, such as 3D printing and laser cutting. Robot Operating System (ROS) and Unity 3D are employed in the developing process to enable the embedded system to intuitively control the robotic system and ensure the implementation of immersive and natural human-robot interactive teleoperation. This research presents an integrated motion/vision retargeting scheme based on a mixed reality subspace approach for intuitive and immersive telemanipulation. An imitation-based velocity- centric motion mapping is implemented via the MR subspace to accurately track operator hand movements for robot motion control, and enables spatial velocity-based control of the robot tool center point (TCP). The proposed system allows precise manipulation of end-effector position and orientation to readily adjust the corresponding velocity of maneuvering. A mixed reality-based multi-view merging framework for immersive and intuitive telemanipulation of a complex mobile manipulator with integrated 3D/2D vision is presented. The proposed 3D immersive telerobotic schemes provide the users with depth perception through the merging of multiple 3D/2D views of the remote environment via MR subspace. The mobile manipulator platform can be effectively controlled by non-skilled operators who are physically separated from the robot working space through a velocity-based imitative motion mapping approach. Finally, this thesis presents an integrated mixed reality and haptic feedback scheme for intuitive and immersive teleoperation of robotic welding systems. By incorporating MR technology, the user is fully immersed in a virtual operating space augmented by real-time visual feedback from the robot working space. The proposed mixed reality virtual fixture integration approach implements hybrid haptic constraints to guide the operatorā€™s hand movements following the conical guidance to effectively align the welding torch for welding and constrain the welding operation within a collision-free area. Overall, this thesis presents a complete tele-robotic application space technology using mixed reality and immersive elements to effectively translate the operator into the robotā€™s space in an intuitive and natural manner. The results are thus a step forward in cost-effective and computationally effective human-robot interaction research and technologies. The system presented is readily extensible to a range of potential applications beyond the robotic tele- welding and tele-manipulation tasks used to demonstrate, optimise, and prove the concepts

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    The Development of a Brain Controlled Robotic Prosthetic Hand

    Get PDF
    An anthropomorphic, brain controlled, under actuated, Prosthetic hand has been designed and developed for upper extremity amputees. The hands function is based on micro servo actuation and the use of coupling links between parts of the finger. The control of a prosthetic hand is what differentiates this project from the others. It is the intent of this project to increase the sense of belonging between prosthesis and amputee by controlling the designed device by the brain of the amputee. The platform has been designed to use multiple force sensors to improve control. The project is a feasibility study and will be used to test whether a multi-functional and intuitive prosthetic hand is attainable. The control of the hand will be driven through a neural interface and controlled by a micro-board. This paper focuses on the mechanical design of the hand and the processes used to control the hand using signals emitted from the brain, to increase the sense of belonging between the amputee and prosthetic device. The hand has been developed as a foundation for future research into brain controlled prosthetics at the University of Waikato

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces
    corecore