1,341 research outputs found

    Study of video quality assessment for telesurgery

    Get PDF
    elemedicine provides a transformative practice for access to and delivery of timely and high quality healthcare in resource-poor settings. In a typical scenario of telesurgery, surgical tasks are performed with one surgeon situated at the patient’s side and one expert surgeon from a remote site. In order to make telesurgery practice realistic and secure, reliable transmission of medical videos over large distances is essential. However, telesurgery videos that are communicated remotely in real time are vulnerable to distortions in signals due to data compression and transmission. Depending on the system and its applications, visual content received by the surgeons differs in perceived quality, which may incur implications for the performance of telesurgery tasks. To rigorously study the assessment of the quality of telesurgery videos, we performed both qualitative and quantitative research, consisting of semi-structured interviews and video quality scoring with human subjects. Statistical analyses are conducted and results show that compression artifacts and transmission errors significantly affect the perceived quality; and the effects tend to depend on the specific surgical procedure, visual content, frame rate, and the degree of distortion. The findings of the study are readily applicable to improving telesurgery systems

    A New Design of a CPW-Fed Dual-Band Monopole Antenna for RFID Readers

    Get PDF
    This paper comes with a new dual-band planar monopole antenna fed by Coplanar Waveguide (CPW) line designed for RFID readers and it operates at 2.45 GHz, 5.80 GHz. This antenna is designed with reasonable gain, low profile and low cost production. The designed antenna based on theoretical equations is simulated and validated by using ADS from Agilent technologies and CST Microwave Studio electromagnetic solvers. A parametric study of the proposed antenna has been carried out by optimizing some critical parameters. The antenna has a total area of 35Ă—38 mm2 and mounted on an FR4 substrate with dielectric permittivity constant 4.4 and thickness of 1.6 mm and loss tangent 0.025. The comparison between simulation and measurement results permits to validate the final achieved antenna structure in the desired RFID frequencies bands. Details of the proposed antenna design and both simulated and experimental results are described and discusse

    A New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID Applications

    Get PDF
    In this paper a new dual-band uniplanar monopole antenna fed by Coplanar Waveguide (CPW) line is proposed for Radio Frequency Identification (RFID) applications. The antenna structure includes a CPW fed line and the dual-band operation is achieved from the G-shaped folded antenna. The antenna parameters have been investigated and optimized by using CST Microwave Studio. To validate the CST Microwave Studio results before the antenna achievement, we have conducted another study by using ADS. The final circuit was achieved, measured and validated. Experimental results show that the proposed antenna with compact size of 30*45 mm2 is simple in design and compact in size. It exhibits broadband impedance matching, consistent omnidirectional radiation patterns and appropriate gain characteristics suitable for the microwave RFID applicartions

    Web Service Standards Taxonomy

    Get PDF
    The objective of this tutorial is to survey major Web service standards (WSS) in order to develop a taxonomy that will assist adapting organization in identifying individual standards as well as the interrelationships among these standards, and the relevancy of these standards to a particular WS implementation. Since multiple standards exist, a generic taxonomy is constructed first that shows basic functions supported by different standards basically XML and J2EE-based standards. Standards are then mapped into these basic functions which cover single WS or composite WS. Furthermore, the tutorial delineates standards related to internet and intranet based applications, such as e-business, virtual organizations, supply chain, and enterprise computing. Related standards, such as grid and portal are also described. Finally, a WS maturity model is mapped into this taxonomy to assist adapting organizations in charting a direction towards proper progression for optimal and successful deployment of WS projects. This tutorial should assist organizations first to develop an overview of standards associated with WS before embarking on a major WS project

    Broadband planar 90 degrees loaded-stub phase shifter

    Get PDF
    The differential phase shifter is an interesting four-port passive microwave network composed of two separate lines, the main line and the reference line, and providing stable phase difference between the two output signals over the specified bandwidth of interest. The most common differential phase shifter is the coupled-line Schiffman phase shifter. In this paper, a novel 90 degrees differential microstrip phase shifter configuration employing a half wavelength transmission line loaded with three open stubs is presented, the proposed design could achieve excellent performance with low phase variation over a wide bandwidth compared to the standard Schiffman phase shifter. The simulated results accomplished with the use of CST Microwave Studio and advanced design system (ADS), were found to be in good agreement and have shown that the proposed loaded-stub phase shifter achieved less than 1.1 dB insertion loss, greater than 13 dB return loss and constant 90±5 degrees phase shift over an 89 percent bandwidth

    A Miniature L-slot Microstrip Printed Antenna for RFID

    Get PDF
    This work presents a miniature microstrip antenna at 2.45 GHz by using the slots technique. This microstrip antenna is fed by a CPW technique and designed for RFID reader system on FR4 substrate. A size reduction equal to 66.6% has been obtained compared to the conventional rectangular microstrip antenna. The total area of the final circuit is 19x31 mm2. The validated antenna has good matching input impedance with a stable radiation pattern, a loss return of -40 dB, and a gain of 1.78 dBi, a prototype of the proposed antenna has been fabricated and measured

    A Survey on Service Composition Middleware in Pervasive Environments

    Get PDF
    The development of pervasive computing has put the light on a challenging problem: how to dynamically compose services in heterogeneous and highly changing environments? We propose a survey that defines the service composition as a sequence of four steps: the translation, the generation, the evaluation, and finally the execution. With this powerful and simple model we describe the major service composition middleware. Then, a classification of these service composition middleware according to pervasive requirements - interoperability, discoverability, adaptability, context awareness, QoS management, security, spontaneous management, and autonomous management - is given. The classification highlights what has been done and what remains to do to develop the service composition in pervasive environments

    The impact of specialty settings on the perceived quality of medical ultrasound video

    Get PDF
    Health care professionals are increasingly viewing medical images and videos in a variety of environments. The perception of medical visual information across all specialties, career stages, and practice settings are critical to patient care and patient safety. Visual signal distortions, such as various types of noise and artifacts arising in medical imaging, affect the perceptual quality of visual content and potentially impact diagnoses. To optimize clinical practice, it is of fundamental importance to understand the way medical experts perceive visual quality. Psychophysical studies have been undertaken to evaluate the impact of visual distortions on the perceived quality of medical images and videos. However, very little research has been conducted on how speciality settings affect the perception of visual quality. In this paper, we investigate whether and how radiologists and sonographers differently perceive the quality of compressed ultrasound videos, via a dedicated subjective experiment. The findings can be used to develop useful solutions for improved visual experience and better image-based diagnoses

    The impact of specialty settings on the perceived quality of medical ultrasound video

    Get PDF
    Health care professionals are increasingly viewing medical images and videos in a variety of environments. The perception of medical visual information across all specialties, career stages, and practice settings are critical to patient care and patient safety. Visual signal distortions, such as various types of noise and artifacts arising in medical imaging, affect the perceptual quality of visual content and potentially impact diagnoses. To optimize clinical practice, it is of fundamental importance to understand the way medical experts perceive visual quality. Psychophysical studies have been undertaken to evaluate the impact of visual distortions on the perceived quality of medical images and videos. However, very little research has been conducted on how speciality settings affect the perception of visual quality. In this paper, we investigate whether and how radiologists and sonographers differently perceive the quality of compressed ultrasound videos, via a dedicated subjective experiment. The findings can be used to develop useful solutions for improved visual experience and better image-based diagnoses

    Optimum resource allocation in optical wireless systems with energy-efficient fog and cloud architectures

    Get PDF
    Optical wireless communication (OWC) is a promising technology that can provide high data rates while supporting multiple users. The optical wireless (OW) physical layer has been researched extensively, however, less work was devoted to multiple access and how the OW front end is connected to the network. In this paper, an OWC system which employs a wavelength division multiple access (WDMA) scheme is studied, for the purpose of supporting multiple users. In addition, a cloud/fog architecture is proposed for the first time for OWC to provide processing capabilities. The cloud/fog-integrated architecture uses visible indoor light to create high data rate connections with potential mobile nodes. These OW nodes are further clustered and used as fog mini servers to provide processing services through the OW channel for other users. Additional fog-processing units are located in the room, the building, the campus and at the metro level. Further processing capabilities are provided by remote cloud sites. Two mixed-integer linear programming (MILP) models were proposed to numerically study networking and processing in OW systems. The first MILP model was developed and used to optimize resource allocation in the indoor OWC systems, in particular, the allocation of access points (APs) and wavelengths to users, while the second MILP model was developed to optimize the placement of processing tasks in the different fog and cloud nodes available. The optimization of tasks placement in the cloud/fog-integrated architecture was analysed using the MILP models. Multiple scenarios were considered where the mobile node locations were varied in the room and the amount of processing and data rate requested by each OW node was varied. The results help to identify the optimum colour and AP to use for communication for a given mobile node location and OWC system configuration, the optimum location to place processing and the impact of the network architecture
    • …
    corecore