84 research outputs found

    SMART FABRICS-WEARABLE TECHNOLOGY

    Get PDF
    Smart fabrics, generally regarded as smart Textiles are fabrics that have embedded electronics and interconnections woven into them, resulting in physical flexibility that is not achievable with other known electronic manufacturing techniques. Interconnections and components are intrinsic to the fabric therefore are not visible and less susceptible of getting tangled by surrounding objects. Smart fabrics can also more easily adapt to quick changes in the sensing and computational requirements of any specific application, this feature being useful for power management and context awareness. For electronic systems to be part of our day-to-day outfits such electronic devices need to conform to requirements as regards wear-ability, this is the vision of wearable technology. Wearable systems are characterized by their capability to automatically identify the activity and the behavioral status of their wearer as well as of the situation around them, and to use this information to adjust the systems' configuration and functionality. This write-up focused on recent developments in the field of Smart Fabrics and pays particular attention to the materials and their manufacturing techniques

    Smart Textiles for Soldier of the Future

    Get PDF
    The textile-based materials, equipped with nanotechnology and electronics, have a majorrole in the development of high-tech milltary uniforms and materials. Active intelligent textilesystems, integrated to electronics, have the capacity of improving the combat soldiers performanceby sensing, adopting themselves and responding to a situational combat need allowing thecombat soldiers to continue their mission. Meantime, smart technologies aim to help soldiersdo everyth~ngth ey need to do with a less number of equipment and a lighter load. In this study,recent developments on smart garments, especially designed for military usage owing to theirelectronic functions, and intelligent textlle-based materials that can be used in battlefield, areintroduced

    SMART CLOTHING IN HEALTHCARE AND CAREGIVING

    Get PDF
    Pametna odjeća je, uz e- odjeću i inteligentnu odjeću, vrsta odjeće koja ima ugrađene električke i elektroničke komponente te uređaje poput mikroračunala i zaslona čime se omogućava dvosmjerna komunikacija između odjevnog predmeta okoliša ili nositelja takve vrste odjeće. Integrirane elektroničke komponente omogućavaju, između ostalog, praćenje i motrenje vitalnih funkcija nositelja pametne odjeće. Realizacija pametne odjeće zahtjeva interdisciplinarna znanja, te se stoga u timovima koji razvijaju takvu vrstu odjeće nalaze stručnjaci iz područja tekstilnog i odjevnog inženjerstva, ali i iz područja automatizacije odnosno strojarstva, elektronike i informatike, te kemije i biologije. U ovom radu je prikazan razvoj pametne odjeće, opisani su senzori koji se mogu integrirati u odjeću u svrhu motrenja vitalnih funkcija bolesnika i rekonvalescenata. Dat je pregled postojećih primjera pametne odjeće namijenjene navedenoj ciljnoj skupini. Također su opisani i načini dobave električne energije potrebne za rad svih elektroničkih komponenata ugrađenih u odjeću. U konačnici, prikazan je studentski projekt projektiranja pametne odjeće za praćenje i motrenje signala srčanog pulsa na tzv. open sorce platformi Arduino. Projektiranje prototipa pametna kape koja je u stanju motriti stanje otkucaja srčanog pulsa načinjeno je na Tekstilnotehnološkom fakultetu u Zavodu za odjevnu tehnologiju. Temeljna ideja je bila izraditi prototip odjevnog predmeta koji će, u skladu s brzim razvojem tehnologije kojom se svakodnevno susrećemo, omogućiti jednostavan i interaktivan način praćenja rada srca svakog individualnog nositelja pametne kape. Podaci otkucaja srca se mjere pomoću adekvatnog senzora, a na pametnom telefonu, putem Bluetooth-a i prikladne mobilne aplikacije, se prikazuju izmjerene vrijednosti.Smart clothing, also known as electronic textiles, smart garments or smart textiles, are wearables that have built-in electronic and electrical components and devices. The digital components, such as screens and microcomputers, embedded in clothing enable a two-way communication system between the wearer’s environment and the wearer himself. The integrated components track and monitor the wearer’s vital functions which ultimately provides added value to the wearer. The implementation of wearable technology is interdisciplinary; therefore, teams developing such clothing are made up of textile and clothing engineers, engineers in the field of automation, electronic and information technology, chemists and biologists.This paper presents a review of smart clothing used for healthcare. There is a given description of the sensors that are integrated for the purpose of monitoring vital functions in healthcare and caregiving. There is a given overview of existing examples of wearables used for monitoring vital functions and a description of how to supply components with electrical energy. As a student project, this paper shows the design of a prototype wearable for tracking and monitoring heart rate with the help of Arduino, an open-source platform that enables creating interactive electronic objects. The project is designed in the Clothing Technology department of the Faculty of Textile Technology. The underlying idea was to create a prototype that will, in accordance with the rapid development of technology, monitor the heart rate performance of each smart cap wearer. The heart rate data is measured and displayed on a smartphone via Bluetooth technology and mobile application

    Full-fashioned Garment In A Fabric And Optionally Having Intelligence Capability

    Get PDF
    The present invention is directed to a process for the production of a single-piece woven garment which can be converted into a full-body garment, similar to an overall or a hospital gown, using a minimum number of seams and a minimum amount of cutting. The garment is made a two-dimensional fabric, with the various parts produced as a single piece. Additionally, the garment can include an integrated infrastructure component for collecting, processing, transmitting and receiving information, giving it intelligence capability.Georgia Tech Research Corp

    Bluetooth wireless communication for MEMSwear

    Get PDF
    Master'sMASTER OF ENGINEERIN

    A health-shirt using e-textile materials for the continuous monitoring of arterial blood pressure.

    Get PDF
    Chan, Chun Hung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (leaves 77-84).Abstracts in Chinese and English.Acknowledgment: --- p.i摘要 --- p.iiAbstract --- p.ivList of Figure --- p.viList of Table --- p.viiiContent Page --- p.ixChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- The Difficulties --- p.1Chapter 1.2 --- The Solution --- p.2Chapter 1.3 --- Goal of the Present Work --- p.2Chapter Chapter 2 --- Background and Methodology --- p.3Chapter 2.1 --- Hypertension Situation and Problems Around the World --- p.3Chapter 2.1.1 --- Blood Pressure Variability (BPV) --- p.4Chapter 2.2 --- Blood Pressure Measuring Methods --- p.5Chapter 2.2.1 --- Traditional Blood Pressure Meters --- p.6Chapter 2.2.2 --- Limitation of Commercial Blood Pressure Meters --- p.7Chapter 2.2.3 --- Pulse-Transit-Time (PTT) Based Blood Pressure Measuring Watch --- p.7Chapter 2.3 --- Wearable Body Sensors Network / System --- p.8Chapter 2.4 --- Current Status of e-Textile Garment --- p.9Chapter 2.4.1 --- Blood Pressure Measurement in e-Textile Garment --- p.13Chapter 2.5 --- Wearable Intelligent Sensors and System for e-Health (WISSH) --- p.15Chapter 2.5.1 --- "Monitoring, Connection and Display" --- p.15Chapter 2.5.2 --- Treatment --- p.16Chapter 2.5.3 --- Alarming --- p.17Chapter Chapter 3 --- "A h-Shirt to Non-invasive, Continuous Monitoring of Arterial Blood Pressure" --- p.18Chapter 3.1 --- Design and Inner Structure of h-Shirt --- p.18Chapter 3.1.1 --- Choose of e-Textile Material --- p.21Chapter 3.1.2 --- Design of ECG Circuit --- p.23Chapter 3.1.3 --- Design of PPG Circuit --- p.26Chapter 3.2 --- Blood Pressure Estimation Using Pulse-Transit-Time Algorithm --- p.28Chapter 3.2.1 --- Principal --- p.28Chapter 3.2.2 --- Equations --- p.29Chapter 3.2.3 --- Calibration --- p.29Chapter 3.3 --- Performance Tests on h-Shirt --- p.30Chapter 3.3.1 --- Test I: BP Measurement Accuracy --- p.30Chapter 3.3.2 --- Test I: Procedure and Protocol --- p.30Chapter 3.3.3 --- Test I-Results --- p.31Chapter 3.3.4 --- Test II: Continuality BP Estimation Performance --- p.31Chapter 3.3.5 --- Test II - Experiment Procedure and Protocol --- p.32Chapter 3.3.6 --- Test II - Experiment Result --- p.33Chapter 3.3.7 --- Test II 一 Discussion --- p.43Chapter 3.4 --- Follow-up Tests on ECG Circuit --- p.47Chapter 3.4.1 --- Problems --- p.47Chapter 3.4.2 --- Assumptions --- p.48Chapter 3.4.3 --- Experiment Protocol and Setup --- p.48Chapter 3.4.4 --- Experiment Results --- p.53Chapter 3.4.5 --- Discussion --- p.56Chapter Chapter 4: --- Hybrid Body Sensor Network in h-Shirt --- p.59Chapter 4.1 --- A Hybrid Body Sensor Network --- p.59Chapter 4.2 --- Biological Channel Used in h-Shirt --- p.60Chapter 4.3 --- Tests of Bio-channel Performance --- p.62Chapter 4.3.1 --- Experiment Protocol --- p.62Chapter 4.3.2 --- Results --- p.62Chapter 4.4 --- Discussion and Conclusion --- p.63Chapter Chapter 5: --- Conclusion and Suggestions for Future Works --- p.66Chapter 5.1 --- Conclusion --- p.66Chapter 5.1.1 --- Structure of h-Shirt --- p.66Chapter 5.1.2 --- Blood Pressure Estimating Ability of h-Shirt --- p.67Chapter 5.1.3 --- Tests and Amendments on h-Shirt ECG Circuit --- p.67Chapter 5.1.4 --- Hybrid Body Sensor Network in h-Shirt --- p.67Chapter 5.2 --- Suggestions for Future Work --- p.68Chapter 5.2.1 --- Further Development of Bio-channel Biological Model --- p.68Chapter 5.2.2 --- Positioning and Motion Sensing with h-Shirt --- p.69Chapter 5.2.3 --- Implementation of Updated Advance Technology into h-Shirt --- p.69Appendix: Non-invasive BP Measuring Device - Finometer --- p.71Reference: --- p.7

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    Towards the internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles

    Get PDF
    [Abstract] Technology has become ubiquitous, it is all around us and is becoming part of us. Togetherwith the rise of the Internet of Things (IoT) paradigm and enabling technologies (e.g., Augmented Reality (AR), Cyber-Physical Systems, Artificial Intelligence (AI), blockchain or edge computing), smart wearables and IoT-based garments can potentially have a lot of influence by harmonizing functionality and the delight created by fashion. Thus, smart clothes look for a balance among fashion, engineering, interaction, user experience, cybersecurity, design and science to reinvent technologies that can anticipate needs and desires. Nowadays, the rapid convergence of textile and electronics is enabling the seamless and massive integration of sensors into textiles and the development of conductive yarn. The potential of smart fabrics, which can communicate with smartphones to process biometric information such as heart rate, temperature, breathing, stress, movement, acceleration, or even hormone levels, promises a new era for retail. This article reviews the main requirements for developing smart IoT-enabled garments and shows smart clothing potential impact on business models in the medium-term. Specifically, a global IoT architecture is proposed, the main types and components of smart IoT wearables and garments are presented, their main requirements are analyzed and some of the most recent smart clothing applications are studied. In this way, this article reviews the past and present of smart garments in order to provide guidelines for the future developers of a network where garments will be connected like other IoT objects: the Internet of Smart Clothing.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED341D R2016/012Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2013-47141-C4-1-RAgencia Estatal de Investigación de España; TEC2016-75067-C4-1-RAgencia Estatal de Investigación de España; TEC2015-69648-RED

    A Novel Electrocardiogram Segmentation Algorithm Using a Multiple Model Adaptive Estimator

    Get PDF
    This thesis presents a novel electrocardiogram (ECG) processing algorithm design based on a Multiple Model Adaptive Estimator (MMAE) for a physiological monitoring system. Twenty ECG signals from the MIT ECG database were used to develop system models for the MMAE. The P-wave, QRS complex, and T-wave segments from the characteristic ECG waveform were used to develop hypothesis filter banks. By adding a threshold filter-switching algorithm to the conventional MMAE implementation, the device mimics the way a human analyzer searches the complex ECG signal for a useable temporal landmark and then branches out to find the other key wave components and their timing. The twenty signals and an additional signal from an animal exsanuinaiton experiment were then used to test the algorithm. Using a conditional hypothesis-testing algorithm, the MMAE correctly identified the ECG signal segments corresponding to the hypothesis models with a 96.8% accuracy-rate for the 11539 possible segments tested. The robust MMAE algorithm also detected any misalignments in the filter hypotheses and automatically restarted filters within the MMAE to synchronize the hypotheses with the incoming signal. Finally, the MMAE selects the optimal filter bank based on incoming ECG measurements. The algorithm also provides critical heart-related information such as heart rate, QT, and PR intervals from the ECG signal. This analyzer could be easily added as a software update to the standard physiological monitors universally used in emergency vehicles and treatment facilities and potentially saving thousands of lives and reducing the pain and suffering of the injured

    Integration of electronic systems on wearable textile antenna platforms

    Get PDF
    corecore