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Samenvatting
Slimme textielsystemen die discreet geı̈ntegreerd zijn in kleding bieden interessante
mogelijkheden. Ze maken ondermeer gebruikers beter bewustvan hun omgevings- en
fysieke toestand. Deze systemen integreren sensoren, actuatoren alsook rekenkracht
in alledaagse kledij. Door de integratie van draadloze communicatie in de kleding,
worden de mogelijkheden verder uitgebreid, zoals bewakingin ware tijd van de ac-
tiviteiten van de gebruiker alsmede het controleren van zijn of haar fysieke toestand
en omgevingsfactoren. Deze toepassingen zijn zeer interessant, enerzijds in de ge-
zondheidszorg, voor het verbeteren van het comfort van de patiënten, en anderzijds
voor het monitoren van reddingswerkers. In het kader van deze laatste toepassing
maken slimme textielsystemen het mogelijk om de interventie door reddingswerkers
efficiënter te laten verlopen zonder dat zij specifieke aandacht moeten besteden aan
het opvolgen van de sensordata betreffende hun fysieke toestand en de omgevings-
factoren. Op deze manier kunnen ze hun belangrijkste taak tijdens reddingsoperaties
verbeteren en dit is uiteraard het redden van mensenlevens.

De integratie van intelligente textielsystemen moet voldoen aan bepaalde voor-
waarden. Deze systemen moeten discreet geı̈ntegreerd worden in kleding zonder de
gebruiker te hinderen in het uitvoeren van zijn/haar taken.Dit houdt in dat het systeem
licht, luchtdoorlatend en flexibel dient te zijn om de integratie in kleding toe te laten.
Deze slimme textielsystemen worden ook blootgesteld aan zware omstandigheden,
zoals hoge temperaturen, vochtigheid en extreme mechanische belastingen. Deze ex-
treme omstandigheden verbieden het gebruik van rigide en niet-robuuste materialen.

Slimme textielsystemen worden opgesplitst in verschillende onderdelen, verspreid
over het totale oppervlak van de kleding onderling en verbonden door middel van
breekbare draadverbindingen. Deze fragiele verbindingenkunnen de werking van het
systeem verstoren. Dit is absoluut niet verantwoord in toepassingen waarvan het leven
van mensen afhankelijk is. Het vermijden van deze kwetsbareonderdelen verbetert de
robuustheid van het systeem en creëert slimme textielsystemen die een toegevoegde
waarde bieden voor reddingswerkers.

In Hoofdstuk 1 wordt een overzicht gegeven van slimme textielsystemen en hun
toepassingen, alsmede het verband van dit doctoraatsonderzoek met deze slimme tex-
tielsystemen.

Hoofdstuk 2, gaat in op het gebruik van antennes in draagbaretoepassingen. Het
gebruik van efficïente textiel patchantennes in kledij voor reddingswerkerswerd ex-
perimenteel gëevalueerd om het zendvermogen in een draadloos sensor netwerk te
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verminderen. Er werd aangetoond dat het gebruik van textielpatchantennes op het
lichaam ervoor kan zorgen dat het ontvangen signaalvermogen stijgt op de verschil-
lende nodes van het draadloos sensor netwerk en dat hierdooreveneens het pakket-
verlies vermindert in vergelijking met niet-flexibele printplaat antennes met eenzelfde
zendvermogen. Het energieverbruik van de verschillende nodes kan verminderd wor-
den door het extra ontvangen signaalvermogen te benutten omhet zendvermogen te
verminderen.

In Hoofdstuk 3, wordt een nieuwe flexibele draadloze textielsensornode voor-
gesteld. Deze node bestaat uit een draagbare textielantenne met een gëıntegreerde
zendontvanger en een sensor circuit. Op het voedingsvlak van deze antenne is een
zendontvanger met ontvangstdiversiteit geı̈ntegreerd samen met een microcontroller,
geheugen en een sensor. De antenne is opgebouwd uit textielmateriaal dat voorname-
lijk gebruikt wordt in kledij voor reddingswerkers. Dit laat de naadloze integratie van
het systeem toe in deze kleding. De draadloze node is zodanigopgebouwd dat breek-
bare en verlieshebbende verbindingen vermeden worden doordeze te vervangen door
zeer korte RF signaalpaden in het voedingsvlak van de antenne. Hierbij vermindert
de kans op mogelijke problemen op het vlak van elektromagnetische compatibiliteit
en signaalintegriteit. De toepassing van deze flexibele draadloze node is tweeledig.
Ten eerste is de node ontworpen voor de integratie in kledij voor brandweerlieden met
als doel om het gevaar dat gekoppeld is aan hun werk te verminderen. Ten tweede
wordt de draadloze node gebruikt als een on-body en off-bodypersoonsgericht meet-
instrument. Conventionele persoonsgerichte metingen worden vaak uitgevoerd met
complexe en dure meetinstrumenten, welke verbonden zijn met op het lichaam ge-
dragen antennes door middel van breekbare coaxiale kabels,die dan op hun beurt het
gebruik verhinderen om vrij te bewegen. Deze draadloze nodeis gevalideerd in de
anechöısche kamer, zowel in een vlakke als gebogen toestand om de kenmerken van
het systeem te karakteriseren in de vrij ruimte. De performantie van het systeem is
eveneens gevalideerd in verschillende werkelijke situaties, met name geı̈ntegreerd in
brandweerkledij als een autonoom persoonsgericht meetinstrument.

Dankzij de comfortabele draagbare integratie in textiel kan deze module gebruikt
worden voor valdetectie bij de bewaking van zowel patiënten als reddingswerkers mo-
nitoring. Een dergelijk systeem werd geı̈mplementeerd in Hoofdstuk 4. Daarom wer-
den er vier nodes geı̈ntegreerd in de beschermende kledij als een draadloos sensor net-
werk. Hierbij voert elke node samenwerkende synchrone acquisitie en gedistribueerde
gebeurtenisdetectie uit. Efficiënte automatische detectie-algoritmes zijn rechtstreeks
gëımplementeerd op de microcontroller zelf. Zowel de gedetecteerde gebeurtenissen
als de sensorgegevens worden betrouwbaar draadloos verzonden naar een basissta-
tion, rechtstreeks of doorgestuurd via andere nodes op het lichaam. Het basisstation
laat toe om de ontvangen sensorgegevens te visualiseren en voorziet de interventie
coördinatoren van de reddingsoperatie van levensreddende informatie. De experimen-
ten in werkelijke omstandigheden demonstreren dat dit autonoom draadloos sensor-
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netwerk de verschillende situaties correct detecteert. Verder is het draadloze sensor
netwerk gebruikt als autonoom ”body-centric”meetinstrument, welke statistische ana-
lyse toelaat van zowel de gemeten on-body node-naar-node als de off-body persoon-
naar-persoon kanalen. De metingen bevestigen de kwaliteitvan het draadloze kanaal.

In Hoofdstuk 5 wordt een compacte draagbare persoonlijke gedistribueerde ex-
posimeter voorgesteld. De persoonlijke gedistribueerde exposimeter is opgebouwd
uit verschillende nieuwe afzonderlijke RF exposimeter modules. Iedere exposime-
ter module is afzonderlijk geı̈ntegreerd op het voedingsvlak van een draagbare textiel
antenne, wat de comfortabele integratie in kledij toelaat.De persoonlijke gedistri-
bueerde exposimeter is specifiek ontworpen voor epidemiologische studies naar de
invloed van elektromagnetische golven op het lichaam, doormiddel van het meten
van de invallende vermogensdichtheid. Iedere exposimetermodule werd gevalideerd
en gekalibreerd in de anechoı̈sche kamer en eveneens vergeleken met een commer-
cieel verkrijgbare exposimeter. Bovendien werden realistische metingen uitgevoerd
in het centrum van Gent voor de GSM-900 downlink band. Dezelfde metingen wer-
den terzelfdertijd eveneens uitgevoerd met een commerciële exposimeter. Daaruit
blijkt duidelijk dat de persoonlijke gedistribueerde exposimeter een meer nauwkeuri-
gere schatting geeft van de vermogensdichtheid rondom het menselijk lichaam. De
commercïele niet-gekalibreerde exposimeter wordt beı̈nvloed door het schaduweffect
veroorzaakt door het lichaam, wat aanleiding geeft tot het onderschatten van de ver-
mogensdichtheid op dit lichaam.





Summary
Smart textile systems, which are unobtrusively integratedinto clothing, offer exciting
new possibilities for improving the user’s awareness of hisenvironmental or physical
conditions. These systems integrate sensing, actuating aswell as computing power
into everyday garments. By integrating wireless communication into clothing, the
possibilities are even more extended, by including real-time monitoring of the user’s
activities, physical and environmental conditions. Theseapplications are very inter-
esting in health-care for improving the comfort of patientsand for monitoring rescue
workers. In the context of the latter, smart textile systemsallow the rescue workers to
optimize their interventions without having to pay specialattention to sensor data to
be aware of their personal health and the status of their environment. In this way, they
can improve their main task during rescue operations, beingsaving human lives.

The integration of smart textiles must comply with certain requirements. These
systems need to be unobtrusively integrated into clothing,not hindering the user per-
forming his or her tasks, which also implies that the system needs to be light-weight,
breathable and flexible to allow wearable garment integration. In rescue-worker appli-
cations, these smart textile systems are exposed to harsh environments, such as high
temperatures, humidity and extreme mechanical stresses. These extreme conditions,
prohibit the use of non-robust materials.

Smart textile systems are currently split into several parts, distributed over the
total area of the garment, using fragile wired interconnections in between them. These
interconnections may cause malfunctions of the system, which are not tolerated in life-
threatening applications. Avoiding these fragile components, improves the robustness
of the system, creating Smart textile systems which provideadded value and life-
saving functionality for rescue workers.

In Chapter 1, an overview is given of smart textile systems and their applications,
as well as the relation of this work to the reseach domain of smart textile systems.

Chapter 2, focuses on the use of antennas in wearable applications. The deploy-
ment of efficient textile patch antennas in fire fighter garments is experimentally eval-
uated, in order to reduce the transmit power in a wireless sensor node network. The
ability of on-body textile patch antennas to increase the power received at the nodes of
a wireless sensor network and reduce the packet loss in the network is demonstrated,
compared to rigid integrated PCB antennas with the same transmit power. Energy
consumption can be reduced by exploiting the additional received power, while main-
taining the same link quality.
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In Chapter 3, an novel flexible wireless textile sensor node is presented. This node
is composed of a wearable textile antenna with an integratedtransceiver and sensor
circuit. Onto the feed plane of this antenna, a transceiver with receive diversity is
integrated together with a microcontroller, memory and sensor. The textile antenna is
composed of textile material generally used in rescue worker garments, which allows
unobtrusive integration of the wireless sensor node into the garment. The wireless
node is designed in such a way that fragile and lossy interconnections are eliminated,
by replacing them by very short radio-frequency signal paths in the antenna feed plane,
reducing electromagnetic compatibility as well as signal integrity problems. The ap-
plication of the flexible wireless sensor node is twofold. First, the node is designed
for integration into fire fighter garments, with the aim to reduce the risk associated
to firefighting operations. Second, the wireless node is usedas an on- and off-body
body-centric measurement device. Conventional body-centric channel measurements
are generally performed with complex and expensive measurement devices, which are
connected to body-worn external antennas by means of fragile coaxial cables, hin-
dering the test person to move freely. This textile wirelessnode was validated in the
anechoic chamber, in several states such as under a bent conditions, assessing the
characteristics of the integrated system in free-space. The performance is also verified
in various real-world conditions, integrated into a firefighter garment, and used as an
autonomous body-centric measurement device.

Thanks to its functionality integrated in a textile node that is comfortable to wear,
the unit can serve for fall detection as well as for patient orrescue-worker monitoring,
an application which is implemented in Chapter 4. Therefore, four nodes are inte-
grated into the protective garment, deployed in a wireless sensor network, where each
flexible textile node performs cooperative synchronous acquisition and distributed
event detection. Computationally efficient situational-awareness algorithms are im-
plemented directly on the microcontroller. The detected events as well as the sensor
data are reliably wireless transferred to a base station, bymaking use of both a direct
wireless connection and forwarding by other on-body nodes.The base station al-
lows to visualize the received sensor data in a more detailedand comprehensive way.
This information provides intervention coordinators and commanders with life-saving
situational awareness of the entire rescue operation. The experiments in realistic con-
ditions demonstrated that this autonomous, body-centric,wireless sensor network is
able to correctly detect different operating conditions ofa firefighter during an in-
tervention. Furthermore, the wireless sensor network is deployed as an autonomous
body-centric measurement device, providing statistical analysis of measured on-body
node-to-node, and off-body person-to-person channels. These channel measurements
confirm the reliability of the communication system.

In Chapter 5, a compact wearable Personal Distributed Exposimeter is proposed.
The Personal Distributed Exposimeter is composed of several newly designed compact
personal wearable RF exposimeter modules. Each exposimeter module is individually
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integrated onto the feedplane of a wearable textile patch antenna, allowing unobtru-
sive garment integration, leading to user-friendly operation. The Personal Distributed
Exposimeter is specifically designed to enable epidemiological studies, by measuring
the incident power density on the person wearing the Personal Distributed Exposime-
ter. The system is validated and calibrated in the anechoic chamber, and compared to
a commercially available single-unit exposimeter. Furthermore, a real world exposure
measurement was carried out for the GSM-900 downlink band, performed in the city
center of Ghent. The measurement was also carried out employing a commercial ex-
posimeter, clearly illustrating that the PDE provides a more accurate estimation of the
power density levels on the human body. The commercial, non-calibrated exposime-
ter deployed on the body, influences the measurement resultsdue to shadowing by
proximity of the body, leading to an underestimation of the power density levels on
the human body.
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MSK minimum-shift keying
NLoS Non-Line-of-sight
PC Personal computer
PCB Printed Circuit Board
PDE Personal Distributed Exposimeter
PPS Personal Protective System
PS Power Supply
RF Radio Frequency
RSSI Received signal strength indication
SAR Specific Absorption Rate
SC Selection Combining
SFIT Smart Fabric Interactive Textile
SNR Signal-to-Noise Ratio
TPU Thermoplastic PolyUrethane
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I NTEGRATION OF ELECTRONIC SYSTEMS ON

WEARABLE TEXTILE ANTENNA PLATFORMS





CHAPTER1

Introduction

1.1 Wearable textile systems and its applications

Today, wearable electronics are developed for consumer as well as professional pur-
poses. These systems need to be easy to use, unobtrusively integrated into clothing and
must provide the required connectivity with other devices.Such products are called
wearable textile systems. This is one of the fastest developing interdisciplinary re-
search fields, where information technology and micro-systems meet textile sciences,
with the ultimate goal of embedding electronics into clothing, creating intelligent sys-
tems which are seamlessly integrated into garment.

The first research prototypes were calledSmart Textiles, which are special textiles
that are woven into clothing. Besides the traditional use ofpersonal protective cloth-
ing, being a layer to protect the body from the elements of nature as well as from
hazardous situations, these textiles are used for adding sensing and/or actuating func-
tionalities into clothing. The sensing functionality is realized by integrating sensors
into the clothing, measuring vital signs such as heart rate,body temperature, blood
pressure, humidity, etc. The actuator functionality is enabled by integrating actua-
tors into the clothing, such as alarms, notifying the wearerin case of an emergency
situation regarding his/her vital signs or environment.

One of the first wearable textile systems is described in [1],”The Wearable Moth-
erboard: The first generation of adaptive and responsive textile structures (ARTS) for
medical applications”. In this project, a smart shirt is presented, developed by the
Georgia Institute of Technology for medical as well as battlefield management. The
nameWearable Motherboardis chosen, because just like a regular Personal Computer
(PC) motherboard, the various components are plugged into thewearableboard.

These wearable systems can be deployed in numerous applications in various mar-
ket segments, where monitoring of persons is important. In the health-care segment,
for example, various monitoring situations can readily be envisaged, starting from
monitoring vital signs of patients after surgery to monitoring geriatric patients and
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Texile antenna Transceiver Flexible battery Inner fire fighter garment

Outer fire fighter garmentData Processing UnitGPS antennaInterconnections

Figure 1.1: Prototype of the wearable textile system for firefighters, developed by thepartners
of the European ProeTex project

small children, preventing Sudden Infant Death Syndrome (SIDS). By continuously
monitoring patients, health-care workers are capable of improving the quality of their
service. Furthermore, wearable textile systems can be usedby athletes for monitoring
vital signs, such as breathing rate and heart,beat. In scientific environments, such as
space applications, unobtrusively monitoring the astronauts medical status will gain
insight in understanding the influence of space onto the human body. In critical and
dangerous environments, such as mining excavations, nuclear plants, etc, special sens-
ing devices can be applied to the wearable textile systems, detecting the presence of
hazardous gasses, materials, radiation or other life-threatening conditions for the peo-
ple working in those environments. In military applications, the wearable textile sys-
tems enable monitoring of the soldiers medical conditions during combat and alert the
military staff. Together with this alert, the condition of the soldier can be transmitted
to the medical unit, providing the necessary information toprovide first aid. For public
safety, wearable textile systems can be employed on fire fighters and law enforcement.
Monitoring the health-, physical conditions and/or location of public regulatory ser-
vices, will enhance their ability of performing operationsin dangerous conditions or
in remote areas. In this manuscript, we will discus this segment in particular, where
the wearable system is employed onto fire fighters. Earlier, Ghent University partic-
ipated in the European FP6ProeTexIntegrated Project, in which a wearable textile
system was developed for fire fighters. A picture showing the prototype developed by
the partners is shown in Fig. 1.1

A overview of these applications was summarized in Table. 1.1
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Segment Application type Target audience

Military Combat casualty care Soldiers and support personnel
in battlefield

Civilian Medical monitoring Patients: surgical recovery,
psychiatric care

Senior citizens: geriatric care,
nursing homes

Infants: SIDS prevention
Teaching in hospitals and medical

research institutions
Sports Athletes, individuals, scuba diving
Performance monitoring Mountaineering, hiking

Space Space experiments Astronauts

Specialized Missions critical Mining, Mass transportation
Hazardous applications

Public safety Fire fighting Firefighters
Law enforcement Police

Universal Wearable mobile information All information processing
infrastructure applications

Table 1.1: Potential applications of wearable textile systems (From [1])
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Figure 1.2: Wearable system integrated on-body

1.1.1 Typical Smart Textile system building blocks

Smart textile systems consist of a wearable garment, composed of several building
blocks. These blocks extend the functionalities of the classic garment to enhance the
quality of life of the person wearing the garment. A schematic drawing of a typical
Smart Textile system is shown in Fig. 1.2, with its six fundamental building blocks.
These blocks are the sensors, the Data Processing Unit (DPU), actuators, Power Sup-
ply (PS), communication device and interconnections.

Here, a brief overview of these fundamental building blocksis listed.

• The first building blocks of the smart textile systems are thesensors. Sensors
can be integrated into garment, allowing to assess the vitalfunctions of the
person wearing the system, such as heart rate, blood pressure, respiration rate
and body temperature. Besides monitoring the vital functions, the sensors can
measure the environmental conditions of the person wearingthe Smart Textile
system, such as outside temperature, the presence of explosive or hazardous
gasses, oxygen level, and many other parameters

• The second building block is theData Processing Unit (DPU), which is re-
sponsible for the management of the full Smart Textile system. Theintelligence
that is introduced by the data processing unit, allows the smart textile system
to take autonomous decisions, such as detecting dangerous sensors levels and
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alarming the user.

• Furthermore, the third building block of the system are theactuators. These
devices generate a mechanical action, based on an electrical input signal. This
allows the user to be alarmed when a dangerous condition occurs, such as a high
level of toxic gas in the environment, high external temperature or a low oxygen
levels and so on.

• ThePower Supply (PS) of the system is the fourth essential building block of
the smart textile system. The power supply is facing some concerns regarding
implementation in a Smart Textile system. Integration of bulky batteries is not
an ideal solution for providing the necessary power to the electronic system, as
this limits the user in his/her movements. Small, light weight and flexible bat-
teries are proposed in [2], to resolve the problem of rigid batteries. Furthermore,
researchers are working on other methods of powering electronic devices, such
as energy scavenging from human body sources, such as respiration, movements
(walking, vibrations, ...) and body heat. The mechanical energy generated by
the body can be converted into electrical energy by means of piezoelectric sys-
tems. Besides energy scavenging from the human body, the energy needed for
powering the system can be extracted from the user’s environment. A proven
example of such a system is solar energy [3, 4]. A small solar panel can provide
sufficient energy for powering the Smart textile System. Besides directly power-
ing the system, several scavenging systems can be combined to provide charge
to flexible light-weight batteries, buffering energy and providing the necessary
power when no energy can be scavenged (for example, no sunlight or movement
of the user).

• The fifth building block of the smart textile system is thecommunication unit.
This unit will provide the necessary wireless connection between the smart tex-
tile system and the external devices. By making the system capable of com-
municating with the outside world, valuable services are added to enhance the
performance of the smart textile system, such as the capability of establishing
an wireless network. This allows the system to communicate,for example, with
a base-station, allowing real-time monitoring of the sensor data provided by
the smart-textile system. The unit is composed of an antennaconnected to a
transceiver unit, mostly integrated onto the data processing unit. The commu-
nication unit has the same design requirements as the other building blocks. It
needs to be light weight and flexible for unobtrusive integration in the garment,
resulting in a system that is comfortable to wear. Numerous textile antenna
designs have proven to fulfill this requirements.

• Finally, the last building block, consists of theinterconnections. All other crit-
ical building blocks of the smart textile system mentioned above, are obviously
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Figure 1.3: Prototype of stretchable interconnections for integration into clothing, fromcmst.be

distributed over the body of the users. The distribution of the different blocks
is chosen for optimal flexibility and on-body performance ofthe Smart Tex-
tile system. Therefore, the different units need to be connected to each other,
by means of reliable and robust electrical connections, which still maintain the
overall flexibility and performance of the system. To achieve these intercon-
nections, different technologies are available. A first approach of connecting
the different blocks, is by making use of conductive yarn, woven into the gar-
ment [5, 6]. Another solution for connecting electronic components, developed
at Ghent University, is by making use of stretchable interconnections. By us-
ing a meandered structure for these interconnections, flexible properties are ob-
tained [7]. This technique is also available for high frequency interconnections,
as described in [8]. This high frequency interconnection makes use of a coplanar
waveguide topology, also in a meandered structure. A picture of these stretch-
able interconnections is shown in Fig. 1.3 Furthermore, a wireless connection
can be provided, avoiding fragile interconnections which are woven into the
garments. This technique of connection is calledwireless on-body communica-
tion [9–11]. Several independent nodes mounted onto the body have there own
communication unit, communication to each other, sharing data. This approach
is further studies in this work.
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1.2 From wearable antenna to smart textile system

1.2.1 Wearable antennas

Conventional antennas are made of rigid materials such as copper. For wireless appli-
cations, these antennas can be integrated onto the system bymeans of Printed Circuit
Board (PCB) antennas. When these systems are worn onto the body, the antennas
are influenced by the body, making the antennas less performant. A way to improve
the antenna performance is by replacing it by an antenna thatis less affected by the
nearby body. Excellent performance is obtained deploying patch antennas. The patch
antenna is consists of a metallic ”patch”, mounted on top of larger metallic sheet or
”ground plane”. Both patch and groundplane are separated bya non-conductive mate-
rial, called the ”substrate”. The Patch and ground plane form a resonator with a length
of approximately half a wavelength of the radio signal. These patch antennas are typ-
ically constructed using rigid materials, such as DuroidR©, as a substrate material and
copper for the ground plane and patch of the antenna.

In [12], a quarter-wavelength wearable planar inverted F-antenna is proposed for
operation in the GSM-900 band, suitable for off-body communication thanks to the
radiation which is directed away from the body. Furthermore, thanks to this antenna
topology, a higher antenna gain is obtained.

Today, these wearable antennas are commercial available. For example FlextennaR©

flexible antenna technology1 patented by Pharad, provides wearable textile antennas
for military purposes as well as for law enforcement applications. As stated by the
manufacturer, these antennas are waterproof, flexible, lightweight and unobtrusively
integrable in garments.

From the research on textile electronics, the research expanded into the research
into the field of textile patch antennas. These textile patchantennas are partially or
completely constructed based on textile materials, for thesubstrate as well as the con-
ductive parts of the antenna. The need for textile antennas arises from the need of
wearable applications, in which antennas need to be integrated into clothing as a part
of a Smart Textile system. These textile antennas are thoroughly developed and inves-
tigated by our research group [3, 4, 13–23] as well as by otherresearch groups [24, 25].

In this work, one of the proposed antennas, is a dual-polarized textile antenna
[13]. The substrate material of the textile antenna being a flexible, closed-cell, water-
repellent, expanded-rubber protective foam (permittivity ǫr = 1.53 and tanδ = 0.0012,
density = 187.3 kg/m3, thickness =5 mm) is commonly used in protective garments
for rescue workers. The antenna ground plane and radiating patch are constructed us-
ing a low-cost, conductive, electro-textile material called FlecTron, with a thickness
less than 0.25 mm and a surface resistivity less than0.1 Ω/sq. The patch of the tex-
tile antenna consists of a rectangular patch with a slot, andtwo antenna feed points

1http://www.pharad.com/wearable-antennas.html
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Figure 1.4: Detailed geometry of the dual-polarized antenna

symmetrical along the y-axis, each point corresponding to an antenna port. The topol-
ogy of this antenna allows to excite two orthogonal linearly-polarized waves, enabling
2nd-order diversity on a single antenna. The antenna has an antenna gain of6 dBi
along the boresight at a centerfrequency of f =2.45 GHz, and an isolation between the
two feed-ports, better than15 dB. Fig. 1.4 and Fig. 1.5 show the detailed geometry
with the antenna dimensions and a picture of the antenna, respectively.

Deploying of these wearable textile antennas, the total flexibility of the smart tex-
tile system and its overall performance should be taken intoconsideration. These
wearable textile antennas cannot operate on their own, theyalways need to be con-
nected to a wireless transceiver system. To connect the transceiver unit of the wear-
able textile system to the textile antenna, an RF-coaxial cable is needed. These cables
will limit the movements of the person wearing the textile system, due to the non-
flexibility of the coaxial cables and total size of the system. Moreover, the use of long
coaxial cables that connect the transceiver unit to the antenna introduces RF losses, re-
ducing, the sensitivity of the receiver unit. Besides the losses when receiving a signal,
the power of the transmitted signal generated by the transmitter will be reduced at the
antenna feed, reducing the total power transmitted by the antenna. The use of coaxial
cables requires interconnections between the antenna portand the cable, these fragile
interconnections need to be avoided in wearable applications where severe operative
conditions occur.
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Figure 1.5: The dual-polarized antenna, with two antenna feeds

In order to solve some of the problems mentioned above, researchers have pro-
posed some solutions. In current literature, the number of wearable systems that in-
tegrateflexibleelectronic circuits with textile antennas is very limited.In [14], the
first wearable active receive textile antenna for use in personal area networks in the
2.45 GHz ISM band is proposed. The integrated Low-Noise Amplifier(LNA), which
is realized on a hybrid textile substrate is integrated on the backside of the wearable
patch antenna. Thanks to the integration process, this antenna has an active gain of
about12 dB, added to the passive antenna gain of approximately5 dBi. After de-
ploying the newly designed active antenna into a fire fighter garment, the on-body
performance was evaluated. Experiments show that only the gain performance of the
antenna is mainly affected by the body, in contrast to the active circuitry, which is
less influenced by the nearby human body. In [15], an active circularly polarized tex-
tile antenna is developed for use in the Global Positioning System (GPS) and Iridium
satellite phone applications. On the feed substrate, a compact LNA chip is directly
integrated underneath the antenna patch, with a gain higherthan28 dBi and a3 dB
axial ratio bandwidth in free-space of183 MHz. Furthermore, in [16, 26] an active
textile receive antenna is deployed in a wearable through-wall Doppler radar system
and integrated into clothing.

By integrating an LNA, its noise characteristic can be optimized, eliminating the
influence of the coaxial cables that connect the antenna withthe receiving unit of the
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wearable textile system. Furthermore, other active components can be integrated onto
the textile patch antenna. In [3], a wearable aperture-coupled shorted patch antenna
combined with flexible solar cells covering the902−928 MHz ISM band, is presented.
The antennas are constructed using textile materials and flexible foam, allowing con-
venient integration into garments.

The antennas proposed above, only integrate a Low Noise Amplifier, forming an
active antenna which is highly useable in low noise applications, however still requir-
ing a coaxial cable to be connected to transceiver or receiver units. Due to the size and
rigidity of coaxial cables, the total system is bulky and vulnerable to defects. Elimi-
nating these problems is the next step in the development of wearable textile systems.

1.2.2 Body-centric communication

Three main communication classes can be distinguished, depending on the applica-
tion. Together, these communication classes implement body-centric communica-
tion [9, 27].

• On-body communication[28–32] focuses on the communication between dif-
ferent components on the body. This communication class is typically used
in Wireless Body Area Networks (WBAN), where the goal is to eliminate the
wired connections between the different components of the network. The most
common example of on-body communication is the wearable Wireless Sensor
Network (WSN), where several wireless sensors communicate and work to-
gether.

• Off-body communication identifies the communication between the human
body and any external device, such as a wireless command postor satellite. In a
Wireless Personal Area network (WPAN), this includes short-wave radio com-
munication, such as BluetoothR©, ZigBeeR©, WiMax, WiFi and Ultra-Wideband
(UWB) protocols. This category also includes in long range communication,
such as Global Positioning Systems (GPS) and the Global System for Mobile
Communications (GSM).

• In-body communication focuses on the communication between different de-
vices, which are implanted into or placed onto the body. Antennas for these
applications need to be constructed using bio-compatible materials. [27, 33–37]

In the context of rescue-worker applications, two communication classes are com-
monly used, being on-body as well as off-body communication.

Today, measurement campaigns on body-centric communications are generally
performed by means of complex or expensive measurement devices [38–40], con-
nected to antennas mounted onto the body of the human test person by means of
fragile coaxial cables. The connections hinder the test person to move freely.
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During the last years, several measurement campaigns on body-centric communi-
cations for rescue workers were performed at our research group [41–53].

The human body provides a large area for deploying off-body communication plat-
forms with multi-antenna systems. When these antennas are sufficiently distributed
over the available body area, they provide spatial diversity. By implementing these
antennas by means of flexible textile fabrics into a garment,a convenient integrated
system is obtained.

Off-body communication

Typical off-body communication systems for rescue workersare commonly deployed
in indoor environments. In these environments, the radio signal is influenced by vary-
ing path loss, shadowing and fading as well as a variable Doppler shift for a walking
person according to his or her walking speed.

In general, these effects are described separately in radiowave propagation theory.
However, these three effects are difficult to distinguish, as they appear superimposed.
Fading causes fast signal fluctuations that occur over sub-wavelengths, due to destruc-
tive and constructive interference of the signals following different paths, arriving
at the receiver with different phases and amplitudes. The multiple signals paths are
caused by multiple reflections and scattering at different objects such as the ground,
large buildings and objects in the near environment of the receiver. Shadowing or
large-scale fading is observed when displacements of the wireless system exceeds
several wavelengths. This effect is present in the signal when the signal paths are
blocked by different obstacles. The last effect, path loss is dependent on the distance
between the receiver and transmitter as well as the propagation environment.

The influence of the fading and shadowing on the signal in the indoor environment
is hard to predict. Hence, these effects are mostly treated in a statistical way, due to
unknown details of the indoor environment influencing the radio propagation. The
distribution of the measured signals are commonly fitted to known statistical distribu-
tions, allowing further analysis of the propagation environment.

On-body communication

Together with off-body communication systems for rescue workers, on-body com-
munication links are also commonly deployed in indoor environments. The on-body
communication channel can include different propagation mechanisms. Direct com-
munication between the different wireless nodes onto the body is sometimes possible,
but often the link is realized by scattering of the RF signal in the environment, caus-
ing significant fading [9, 10]. Even in static positions of the body, the propagation
is not constant, because the body is still subjected to various small movements. The
on-body communication channel can be statistically characterized according to the
wireless link between the different positions of the wireless nodes onto the body.
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Diversity

The signal impinging on the antenna of the receiver exhibitsfast fluctuations and deep
fades in signal level, where the signal powers drop down overorders of magnitude
compared to the median signal level. This effect is caused bythe multipath environ-
ment and is very dependent on the position of the receiving antenna as well as on the
particular time instant. These effects cannot be changed bythe design of the system,
as the multipath effect is entirely caused by the propagation environment. Therefore
the system needs to be able to deal with these fluctuations. A powerful technique
to improve the quality of the signals is diversity. A summaryof some of diversity
techniques is listed below

• Space diversityuses multiple antennas, which are deployed such that the di-
versity branches experience uncorrelated fading. Separation of the antennas by
about a half-wavelength will be sufficient.

• Pattern diversity is obtained by deploying a number of directional antennas,
pointing in different directions, each receiving uncorrelated signals.

• Polarization diversity exploits the scattering property of the environment, which
tends to depolarize a signal. To obtain diversity, the receive antenna must have
antenna ports with different polarizations, or the diversity system can be con-
structed using multiple antennas with different polarizations. In this work, a
dual-polarized antenna is used, to construct a wireless node with polarization
diversity.

By using several antennas, receive diversity is obtained. The uncorrelated signals
received by the antenna system need to be further processed in order to enable the
system to deal with the effects of the multipath environment. Two of these techniques
are listed below.

• Selection Combining(SC) is the simplest technique to implement receive di-
versity, by selecting the received signals that have the strongest signal level in
comparison to the signals received by the other antennas. Only the selected sig-
nal is processed by the receiver unit. Practically, the signal can be selected by a
low-cost logarithmic detector, generating an output voltage that is linear to the
input signal strength in dBm. As only one receiving unit is required, a low-cost
diversity solution is obtained.

• Maximum Ratio Combining (MRC) is a diversity technique that achieves a
signal with a highest possible signal-to-noise ratio (SNR). In theory, the SNR of
the resulting signal, is the sum of the SNRs of each of the signals of the receiving
channels. This technique has a better performance than SC. Yet, this diversity
technique requires full receiving chain for each separate channel. Furthermore,
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accurate channel estimation is needed to combine of the signals with a correct
phase relationship and correct gain, making it a less cost-efficient solution.

Typical measurement setup for body-centric measurements

Measurement campaigns that evaluate off-body communication are generally per-
formed by means of complex or expensive measurement devices. The antennas, which
are integrated into the garment, are connected by means of fragile coaxial cables to
these measurement devices. The RF connections can be integrated into the garment,
minimizing the installation time onto the body. However, coaxial cables and their
connectors are fragile, and stress and strain can damage theantenna system.

1.2.3 Body sensor networks

In the last decade, a rapidly increasing interest in sensingand monitoring devices was
observed, evolving in the research on Body Sensor Networks (BSN) [54–57], which
are networks of wearable computing and sensing devices. These BSNs are deployed
in different domains, from healthcare to law enforcement aswell as daily use for
individuals.

Body Sensor Networks perform monitoring, of vital signs such as being respiration
rate, body temperature, heart rate, etc. As well as monitoring of motion of the user,
enabling to identify the position of the user, being the absolute location (for example
by means of GPS localization) as well as his/her posture determined by means of
accelerometers, compass or gyroscope. Moreover, sensing the environment is enabled
by adding sensors for sensing gas, temperature, etc. Furthermore, the BSN is equipped
with a communication unit, to transmit the sensor data to thestaff monitoring the user.

The BSN is can be deployed on different ways. First, the BSN can be deployed by
integrating the sensor into clothing as well as surface-mounted onto the body of the
user. Second, the BSN can be deployed by means of sensors nodes, that are implanted
into the body or swallowed by the user, these network nodes need to be constructed
using bio-compatible materials.

Rescue-worker applications

One of the most important fields to deploy wearable systems, is in rescue workers
interventions. During major disasters, rescue workers areexposed to hostile and harsh
environments. At our research group, research has been carried out on the integration
of wearable textile systems into garments of rescue workers, in the context of the
European project ProeTex. The work at Ghent University was mainly focused on the
development and prototyping of textile antennas for integration into rescue worker
garments. This project was the first step into the current project, the Smart@Fire
Seventh Framework Programme (FP7) project (2012-2015) [58].
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As stated on the website of the Smart@Fire FP7, every year, more than100 fire-
fighters of the European union lose their lives whilst savingothers. They lose their way
in smoke, become surrounded by a sea of flames, get cut off by suddenly rising water,
and continually find themselves in perilous situations. Theaim of the Smart@Fire
FP7 [58] project is to reduce the risk associated with firefighting, by the development
of innovative ICT-solutions, which need to be integrated ina smart Personal Protec-
tive System (PPS). Current ICT-solutions available on the market do not provide full
satisfaction. Based on large scale survey of961 fire brigades, the main needs have
been identified. To increase the safety of the fire fighters, three main innovative tech-
nologies need to be studied. First,sensorsto measure vital body functions of the fire
fighters and environmental parameters. Second,localizationsystems to determine the
position of the fire fighters. Third,data transferand visualization systems to better
assess situations. These innovative technologies need to be integrated in the PPS of
fire fighters

RF signal level sensing

Besides deploying Body sensor networks for rescue worker applications or health care
applications, these networks can be deployed in research related domains. For exam-
ple epidemiological studies on the influence of the absorption of Radio Frequency
(RF) electromagnetic fields by the human body.

In the last three decades, the number of devices emitting RF radiation is dramati-
cally increased. These devices such as microwave ovens, smart-phones, military and
civilian radar systems, radio transmitters, base stationsfor the Global System for Mo-
bile Communications (GSM), satellite communications systems (Global Positioning
System or GPS, Iridium, etc.) and other are widely used in daily environment of the
general public [59]. The increasing development of devices, increased the concerns
about the influence on the human body, which is still an important research topic to-
day.

The absorption of radio frequency (RF) radiation is presented in terms of the spe-
cific absorption rate (SAR) in watts per kilogram. The SAR wassuggested by the
National Council on Radiation Protection and Measurement,and generally accepted
by engineers and scientists. The most commonly studied SAR is the whole-body
averaged SAR (SARwb) [60], which only can be evaluated usingnumerical simula-
tions. To accommodate this, reference levels have been defined on the incident power
density, which can be measured. The measured level can be compared to the interna-
tional guidelines issued by organizations such as INCIRP [65]. Personal exposimeters
or dosimeters are developed to measure exposure levels of a subject [60–64]. These
devices are used to measure the electromagnetic fields incident on the human body.
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1.3 Goal of the thesis

The research in this work focuses on theintegration of electronic systems onto tex-
tile antenna platforms. By integrating the electronic systems onto the textile anten-
nas, several improvements are achieved in comparison with previous non-integrated
designs. The design requires to be integratable into clothing. By integrating electronic
systems onto the antennas, fragile and lossy coaxial RF interconnections are avoided,
making it convenient to integrate. Several specific applications are developed to vali-
date the potential of the integrated textile antenna systems.

First, A wireless sensor node is developed, which is integratable in rescue work-
ers garments. The wireless node enables the potential to be deployed as an Personal
Protective System for fire fighters, as requested by the Smart@Fire project. Wireless
systems that integrate several sensors can be used to monitor the fire fighters condi-
tions and environment. Furthermore, the wireless node needs to be deployed in the
research domain of body-centric communication, which requires to evaluate body-
centric wireless communication in terms of signal levels and data packet loss. This
enables convenient measurement procedures in comparison with the traditional tech-
niques, that use separate antennas onto the body which are connected by means of
long RF coaxial cables to large and expensive measurement equipment, which is very
difficult to handle and requires lost of time to deploy the system.

The second integrated textile antenna system that is designed, is a wireless senor
node network for RF exposure measurements. Current RF exposure measurements
are compromised by large measurement uncertainties, caused by the influence of the
nearby body. Moreover, the uncertainties are also caused byout-of-band detection
as well as the dependence of the polarization of the detectedRF signals. Besides
the required improvement on the measurement results, the flexibility of the system is
crucial, to enable unobtrusive garment integration. Therefore, textile antennas with in-
tegrated electronic systems are an excellent solution in comparison with the traditional
exposure measurements on the human body.

1.4 Overview of the manuscript and
own contributions

1.4.1 Reducing Power Consumption by means of
Textile Antennas

Employing textile antennas has several advantages in comparison with regular PCB
antennas on electronics systems. By replacing the integrated PCB antenna by a textile
patch antenna, the quality of the off-body wireless communication link is improved
both in receive and transmit mode. In Chapter 2 the advantageof making use of textile
antennas instead of regular PCB antennas is experimentallyvalidated. Furthermore,
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this may be be exploited in reducing transmit power at the mobile nodes while guar-
anteeing the same link quality. enabling to reduce the to further reduce the power
consumption.

1.4.2 Flexible Dual-Diversity Wearable Wireless Node Design

In Chapter 3 the first autonomous textile wireless sensor node, fully integrated onto the
feedplane of a flexible dual-polarized textile patch antenna, is presented. The wireless
node is particularity designed for two purposes. First, as an autonomous body-centric
channel measurement device with all the equipment integrated into clothing. Second,
as an wireless network node for rescue worker applications.The wearable node is
equipped with a dual-polarized textile patch antenna with integrated microcontroller,
sensor, memory, and transceiver with receive diversity. The performance of the wear-
able wireless node is enhanced by implementing 2nd-order receive diversity, by means
of selection combining. By integrating the node onto a flexible substrate directly be-
low the antenna patch and the ground plane, fragile and lossyinterconnections are
avoided, allowing to be unobtrusively integrated into rescue worker garments, which
was not possible earlier for body-centric communication measurements The compact
and flexible module combines sensing and wireless channel monitoring functional-
ity with reliable and energy-efficient off-body wireless communication capability, by
fully exploiting dual polarization diversity. This novel textile wireless node is vali-
dated, both in flat and bent state, in the anechoic chamber, assessing the characteristics
of the integrated system in free-space conditions. Moreover, the wireless performance
is verified in various real-world conditions, integrated into a firefighter garment, used
as an autonomous body-centric measurement device.

1.4.3 Wearable Wireless Body Sensor Network for Fire Fighters

In Chapter 4 a fully-autonomous, wearable, wireless sensornetwork is presented,
where each flexible textile node, which is presented in Chapter 3 performs cooperative
synchronous acquisition and distributed event detection.Onto each microcontroller of
the wireless nodes, a computationally efficient situational-awareness algorithm is im-
plemented, performing event detecting at the user. The detected events are wirelessly
transmitted to a base station, directly, as well as forwarded by other on-body nodes.
Thanks to the integrated polarization diversity, the reliability and energy-efficiency
of the wireless transmission is improved. The body centric communication is further
statistically analyzed for on-body node-to-node, as well as off-body person-to-person
communication. On-body node-to-node communication is exploited to synchronize
measurements on multiple autonomous nodes, at different body locations, and to
share sensor data between these nodes. Nth order transmit diversity performance is
approached, by repeating the sensor data from the other on-body nodes, drastically
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enhancing communication reliability by eliminating packet loss. The signal levels re-
ceived at the receiver are at least15 dB above the transceiver’s specified receiving
threshold of−95 dBm for 98% of the received packets. Off-body person-to-person
communication has the same functional purpose as the on-body node-to-node com-
munication, synchronizing measurements and sharing/forwarding sensor data. The
signal levels received at the receiver for off-body person-to-person communication is
at least20 dB above the transceiver’s specified receiving threshold of−95 dBm for
98% of the received packets. The development of the integratable sensor network for
rescue workers is a first step in the development of a smart PPSfor the Smart@Fire
project.

1.4.4 Compact Personal Distributed Wearable Exposimeter

Integrating electronic systems onto textile antennas is anideal solution for body sensor
networks. Exposure measurements currently performed withcommercially available
personal exposimeters, are compromised by large measurement uncertainties, due to
the influence of the body of the test person, as well as dependence on polarization and
out-of-band detection. Moreover, conventional personal exposimeters do not allow
unobtrusive integration onto the human body, making them uncomfortable to wear.
In Chapter 5 the hardware to construct a compact wearable Personal Distributed Ex-
posimeter (PDE) is proposed for measuring the power densityon the human body. A
fully integrated wearable on-body personal exposimeter enables continuously mon-
itoring of the long-term RF exposure, without hindering theusers daily activities.
The on-body PDE, is composed out of several newly designed RFexposimeter sensor
modules, increasing the measurement accuracy. Each exposimeter sensor module is
integrated onto the feedplane of a wearable textile patch antenna, enabling unobtru-
sive garment integration. The sensor modules are employed with an RF detector and
necessary memory for data logging. The proposed system is validated and calibrated
in the anechoic chamber, as well as compared to a commercially available single-unit
exposimeter. Further validation of the PDE is performed in areal-environment, deter-
mining the average power density on a human during a walk in anurban city.

1.4.5 Conclusions and further work

The conclusions and further work in Chapter 6 evaluate the benefits of integrating
electronic systems onto textile antenna platforms. Further research that needs to be
performed in the near further for developing the wearable technology on a large scale
is outlined.
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1.4.6 Schematics of the wearable integrated electronic designs

In the appendix of this work, the schematics of the developedsystems are included,
together with the composite drawing of the top- and bottom- layer of PCB layout.
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87–96, 2008.

[63] Wout Joseph, G̈unter Vermeeren, Leen Verloock, Mauricio Masache Heredia,
and Luc Martens, “Characterization of personal RF electromagnetic field ex-
posure and actual absorption for the general public”,HEALTH PHYSICS, vol.
95, no. 3, pp. 317–330, 2008.

[64] Arno Thielens, Sam Agneessens, Leen Verloock, EmmericTanghe, Hendrik
Rogier, Luc Martens, and Wout Joseph, “On-body calibrationand processing
for a combination of two radio-frequency personal exposimeters”, Radiation
Protection Dosimetry, 2014.

[65] International Commission on Non-Ionizing Radiation Protection, “Guidelines
for limiting exposure to time-varying electric, magnetic,and eletromagnetic
fields (up to 300GHz)”,Health Physics, vol. 74, pp. 494–552, 1998.





CHAPTER2

Reducing Power
Consumption in

Body-centric Zigbee
Communication Links by

means of Wearable Textile
Antennas

Peter Vanveerdeghem, Bart Jooris, Pieter Becue, Patrick Van Torre,
Hendrik Rogier, Ingrid Moerman, Jos Knockaert

based on “Reducing power consumption in body-centric ZigBee communication
links by means of wearable textile antennas”, presented in2 nd International

Workshop on Measurement-based Experimental Research, Methodology and Tools,
2013.

⋆ ⋆ ⋆



28 REDUCING POWER CONSUMPTION BY MEANS OF TEXTILE ANTENNAS

Smart-fabric interactive textile systems have been studied intensively during
the last decades and are ready to penetrate the market. Such systems are be-
ing tested in different application domains, such as healthmonitoring, coor-
dination of military and emergency operations monitoring,sports and gam-
ing. To make such systems attractive to consumers, they needto be low cost,
low weight, flexible and primarily energy-efficient. We experimentally evalu-
ate the deployment of efficient textile patch antennas in firefighter garments to
reduce the transmit power in a wireless sensor node network.The measure-
ments performed in an advanced testbed setup, demonstrate the potential of
on-body textile patch antennas to increase the power received at the nodes of
a wireless sensor network and reduce the packet loss in the network, compared
to using a rigid integrated PCB antenna with the same transmit power. The
additional margin in received power may be exploited to reduce the transmit
power while maintaining the same packet, resulting in a reduced energy con-
sumption, paving the way towards smaller, lower-weight andless expensive
consumer products.

2.1 Introduction

Wireless body-centric sensor networks received increasing interest in the last decade.
At first, these systems were very complex, high-cost and dedicated to professional ap-
plications such as monitoring of military, law enforcementofficers and rescue workers
by means of, for example, the intelligent fire fighter suit developed in the FP6 Proe-
tex Integrated Project. Nowadays, such systems are ready topenetrate the market for
all kinds of consumer applications, given their potential in personal communications,
gaming, sports and healthcare. In order to be successful andto achieve high market
penetration, besides offering the required performance, these systems must be low-
cost, light-weight, comfortable to wear and highly energy-efficient, as, especially in
wearable applications, heavy batteries and frequent recharging should be avoided.

In this chapter, we demonstrate how the power required for off-body wireless com-
munication may be reduced by making use of more efficient antennas. The key idea
consists of exploiting the large area available in a garmentto deploy a flexible tex-
tile antenna that provides high gain and large radiation efficiency while being seam-
lessly integrated in the garment. In particular, we make useof the RM090 transceiver
module [1] to study the potential reduction in transmit power while maintaining the
wireless link quality by replacing a simple printed PCB antenna by a wearable textile
antenna. In addition, we study the effect of antenna polarization on link quality.

In current literature, the experimental characterizationof textile patch antennas
for different applications is mainly performed in terms of Signal-to-noise ratio (SNR)
and bit error rate (BER) for uncoded data transmission relying on basic modulation
schemes [2–5]. In this chapter, measurements are performedfollowing the IEEE
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Figure 2.1: The w-ilab.t testbed, 3th floor

802.15.4 standard. In particular, we experimentally evaluate a wireless cooperative
network, where a mobile node deployed on the human body serves as a hop, relaying
data between the fixed nodes of the sensor network.

The chapter is organized as follows: Section 2.2 provides a complete description
of the measurement setup, whereas Section 2.3 discusses themeasurement results.

2.2 Measurement setup

2.2.1 w-iLab.t testbed setup

To assess the potential in terms of transmit power reductionwhen deploying textile
patch antennas, instead of simply using small printed PCB monopole antennas for
off-body communication, we integrated different types of textile antennas into a pro-
fessional fire fighter jacket and connected them to the RM090 transceiver modules.
We then compare link quality obtained when using these wearable antennas con-
nected as external antenna to the transceiver with the link quality provided by the
internal transceiver antenna. Therefore, a fire fighter equipped with the wireless mod-
ules walks at normal walking speed along a fixed path, shown ingreen (walked from
right to left) on Fig. 2.1, in the w-iLab.t testbed [6] indooroffice environment. The
testbed is deployed in an office building of18 x 90 m and spreads out over three floors.
It consists of200 node locations at fixed locations at the iMinds office premises, in-
cluding meeting rooms, classrooms, offices and corridors. For this setup, only the
nodes on the third floor are used, as shown in Fig. 2.1.

While the fire fighter is walking along the fixed path, in the firsttime slot of the
frame, one fixed node (marked by the red circle Fig. 2.1) broadcasts to all fixed nodes
as well as to the two RM090 mobile nodes. The two latter nodes are mounted together
with their antennas in the shoulder sections of a professional fire fighter jacket, as
shown in Fig. 2.2. In the two subsequent time slots of the frame, the two mobile nodes
modify the packet received at time slot 1 by inserting their own specific node ID and
RSSI-value into the packet, while maintaining the packet length. The two mobile
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Figure 2.2: Mobile node setup on the fire fighter jacket

Table 2.1: Textile patch antenna parameters

Antenna dimensions [mm]

W 44.46
Ls 14.88
Ws 1
Fx 5.7
Fy 11.4
Substrate Height h 3.94

Substrate parameters
Permittivityµr 1.53
tanδ 0.0012

nodes alternately broadcast their adapted packets to all fixed nodes in the w-iLab.t
testbed. Both mobile nodes apply the same transmit power.

2.2.2 Textile patch antenna

By means of the experiment described above, textile antennas exhibiting different
kinds of polarization are studied. One of these textile antennas is a dual polarized tex-
tile patch antenna [7], as shown in Fig. 2.3. The two ports of this antenna transmit and
receive two signals along orthogonal linear polarizations. The antenna is implemented
on a flexible protective foam substrate commonly found in protective garments for res-
cue workers. The foam protects vulnerable body parts such aselbows, shoulders and
knees. The flexible closed-cell foam is fire-resistant, water-repellent, and regains its
original form after deformation. The patch and ground planewere realized in the low-
cost e-textiles FlecTron and ShieldIt, respectively. The rectangular slot in the antenna
patch ensures impedance matching and provides the bandwidth required to cover the
2.45 GHz ISM band.
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L
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Figure 2.3: Dual polarized patch antenna

In the experiments we also consider circularly polarized textile patch antennas
implemented on an Aramid substrate. These textile antennaswere developed within
the FP6 Proetex Integrated Project [8, 9].

2.3 Measurement results

Table 2.2 presents the total packet loss on each of the51 receive nodes, when the fire
fighter walks along the fixed path shown in Fig. 2.1. In this measurement, node5, indi-
cated by the red circle in Fig. 2.1, is the fixed transmitter node. The first row shows the
packet loss of the complete dual-hop link (transmit node-mobile node-receive node),
where the packets are forwarded by the mobile node with a wearable circularly polar-
ized textile antenna. The second row of the table shows the total packet loss from the
transmit node5 to all receive nodes, along the dual-hop link (transmit node-mobile
node-receive node), where packets are forwarded by the mobile node with the small
printed PCB antenna. The last row shows the packet loss for the direct link from the
transmit node to the receive nodes, without forwarding the packets by a mobile node
on the fire fighter jacket. The small distance between some of the fixed receive nodes
in the testbed and the fixed transmitter node5, explains the low values of the packet
loss for these fixed nodes.

Table 2.2 demonstrates that relaying data by means of the mobile node with the
textile patch antenna reduces the total packet loss observed at the majority of the
receive nodes, compared to the rigid PCB antenna. This result is consistent with
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Table 2.2: Packet loss measurement 1

Node: 1 4 5 6 7

Patch 20.27% 20.27% 16.28% 29.24% 16.94%
PCB 25.91% 24.92% 24.92% 34.88% 21.59%
TX 0.66% 20.60% 0.33% 13.95%

8 9 10 11 12 13

17.28% 23.92% 26.58% 18.60% 17.61% 23.59%
25.25% 29.90% 36.54% 23.26% 24.58% 29.24%
1.33% 1.33% 15.95% 3.65% 1.99% 0.33%

14 15 16 17 19 20

17.94% 17.94% 17.61% 17.28% 21.93% 15.61%
21.59% 21.59% 26.58% 22.59% 28.24% 21.93%
0.33% 0.33% 0.33% 1.33% 0.33% 0.33%

21 22 23 25 26 27

15.61% 18.60% 15.28% 19.27% 20.60% 16.61%
21.26% 19.60% 20.60% 21.26% 20.60% 22.26%
10.30% 0.66% 1.33% 1.66% 12.29% 0.33%

28 29 30 31 33 34

21.93% 22.59% 25.58% 23.26% 58.47% 40.86%
22.92% 24.92% 24.92% 24.58% 48.17% 38.87%
2.66% 9.97% 13.29% 10.63% 98.67% 25.25%

35 36 37 39 40 41

49.17% 51.50% 35.22% 58.14% 45.18% 37.87%
40.20% 42.19% 31.56% 46.51% 39.53% 37.87%
54.15% 99.67% 22.59% 28.24% 54.82% 46.84%

43 44 45 46 47 48

57.81% 50.17% 35.22% 28.57% 62.13% 35.55%
45.85% 42.52% 34.55% 27.24% 46.84% 36.88%
87.04% 95.68% 57.48% 23.92% 100.0% 63.12%

49 50 51 52 53 54

34.22% 47.84% 27.91% 32.89% 26.25% 23.26%
37.21% 36.88% 30.56% 35.22% 27.24% 37.87%
51.50% 25.58% 7.97% 19.27% 30.56% 29.24%

55 56 199 200

59.14% 59.47% 32.89% 46.84%
46.84% 46.18% 30.90% 37.21%
55.48% 100.0% 17.28% 62.79%
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Figure 2.4: RSSI levels at fixed node 8

Fig. 2.4 - 2.4, showing the RSSI levels at fixed nodes8 and9. For most of the packets,
the mobile node with the textile patch antenna provides a larger RSSI value compared
to the mobile node with the printed PCB antenna.

The received power on the mobile nodes was also recorded. Thenode equipped
with the textile patch antenna exhibits significantly larger RSSI levels than the node
with the printed PCB antenna, as shown in Fig. 2.6.

The same results are obtained when using thedual polarized textile patch antenna.
During the experiment with this antenna, one of the two portsis terminated with a
load impedance, to ensure impedance matching over the required bandwidth at the
port connected to the transceiver node.

Although the straightforward experimental approach of attaching textile antennas
to the RM090 transceiver modules external antenna input by means of a small flexible
coaxial cable provides some indication about the potentialbenefits of textile antennas
over integrated PCB antennas, this measurement setup does not provide an entirely
fair comparison between both types of antennas, as the integrated PCB antennas is
attached directly to the transceiver’s RF port, thereby avoiding the cable losses en-
countered by the external textile patch antenna. Therefore, the straightforward mea-
surement protocol was refined to ensure that both antennas encounter the same amount
of losses in the RF patch between the antenna and transceiver. This new measurement
protocols corrects for the additional insertion loss introduced by the coaxial cable,
which was measured to be1.57 dB. In addition, it also includes the extra losses in the
lossy RF signal path on the transceiver PCB, connecting the RF pin of the transceiver
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Figure 2.5: RSSI levels at fixed node 9
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Figure 2.6: RSSI levels at mobile nodes
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Figure 2.7: RSSI levels at fixed node 8

to the connection point for the external antenna.

To calibrate out these losses, a printed PCB antenna, identical to the one found
on the RM090 wireless sensor node, is isolated on a separate printed circuit board,
having the same size and shape of the mobile node, including the same ground plane
size. This printed PCB antenna is then connected to the external antenna output of the
wireless sensor node by means of the same type of coaxial cable as used for the textile
patch antenna.

Applying this new measurement protocol, Table 2.3 represents the total packet
loss on each of the51 fixed receive nodes, when the fire fighter walks along the same
fixed path as the previous measurement setup. Node 5 again serves as the fixed trans-
mitter node. The figures of merit shown in Table 2.3 are the same as in the previous
measurement (Table 2.2).

The results in Table 2.3 demonstrate clearly an additional improvement in terms
of total packet loss for the textile patch antenna, comparedto the PCB antenna. Now,
the total packet loss for the link where the node with the textile patch antenna acts as
relay is less than the packet loss along the link where the node with the PCB antenna
acts as relay, for almost all fixed nodes. This result is consistent with Fig. 2.7 - 2.8,
showing the RSSI levels at fixed nodes8 and9.

The power received by the mobile nodes is shown in Fig. 2.9. Inthis graph, it
is clearly visible that the received power is larger for the node with the textile patch
antenna. Even when the node with the printed PCB antenna is unable to decode the
packets, the wireless node with the textile patch antenna still receives the packets at a
reasonable RSSI level.
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Table 2.3: Packet loss measurement 2

Node: 1 4 5 6 7

Patch 40.20% 17.94% 28.57% 23.92% 32.56%
PCB 47.51% 47.84% 43.19% 48.84% 47.84%
TX 19.60% 0.33% 0.33% 0.66%

8 9 10 11 12 13

13.29% 19.27% 37.87% 60.47% 12.62% 53.49%
48.84% 44.85% 56.15% 45.18% 43.85% 46.18%
0.33% 3.99% 0.66% 2.33% 0.33% 12.62%

14 15 16 17 19 20

17.94% 28.90% 14.29% 13.95% 24.25% 14.29%
44.85% 44.52% 44.52% 44.85% 51.16% 42.86%
3.65% 1.00% 0.66% 1.33% 29.90% 0.33%

21 22 23 25 26 27

53.82% 49.83% 13.62% 15.95% 19.27% 13.95%
42.86% 47.18% 42.19% 43.19% 47.18% 42.52%
0.33% 3.32% 6.98% 0.33% 11.96% 2.99%

28 29 30 31 33 34

17.94% 16.94% 25.58% 22.26% 56.15% 23.92%
44.52% 44.19% 48.17% 45.51% 78.07% 47.51%
12.29% 1.00% 11.96% 11.30% 80.07% 13.62%

35 36 37 39 40 41

43.52% 57.14% 23.26% 58.47% 47.51% 37.21%
58.14% 71.76% 48.50% 52.49% 71.76% 57.14%
41.53% 46.18% 9.97% 46.51% 63.12% 49.50%

43 44 45 46 47 48

46.51% 44.19% 32.89% 19.27% 57.48% 27.24%
56.81% 62.46% 58.14% 45.51% 60.47% 51.50%
26.25% 46.51% 70.76% 1.66% 95.68% 64.45%

49 50 51 52 53 54

27.24% 61.46% 16.94% 21.59% 21.26% 18.27%
54.15% 57.14% 45.85% 56.15% 48.84% 46.51%
14.62% 11.63% 2.33% 22.92% 16.61% 7.31%

55 56 199 200

57.48% 59.80% 30.56% 40.53%
75.75% 69.10% 54.49% 58.47%
100% 88,04% 12.96% 16.94%
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Figure 2.8: RSSI levels at fixed node 9
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Figure 2.9: RSSI levels at mobile nodes
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Table 2.4: Packet loss overview

Circ. Pol. Patch antenna Dual Pol. Patch antenna
Avg. loss Patch Avg. loss PCB Avg. loss Patch Avg. loss PCB

Meas. 1
30.8% 31.2% 27.4% 31.4%
26.2% 28.4% 27.2% 31.4%

Meas. 2
31.0% 52.0% 24.5% 31.8%
29.1% 33.6% 34.9% 51.0%

Table 2.5: Packet loss improvement

Circ. Pol. Patch antenna
Circ. Pol. Patch antenna Dual Pol. Patch antenna

Meas. 1
31 (60%) 27 (53%)
36 (71%) 40 (78%)

Meas. 2
45 (88%) 48 (94%)
41 (80%) 44 (86%)

Next, the new measurement protocol was repeated with all other textile patch an-
tennas, leading to similar results. A small overview of the packet loss obtained during
these measurements is given in Table 2.4 and Table 2.5.

2.4 Conclusion

A way to reduce the power required for off-body wireless communication by making
use of more efficient antennas is experimentally validated.By replacing the integrated
PCB antenna by a textile patch antenna, the quality of the wireless link may be im-
proved both in receive and transmit mode. This may be exploited to reduce transmit
power at the mobile nodes while guaranteeing the same amountpacket loss. To fur-
ther reduce the power consumption, we need to improve the transceiver design such
that cable and interconnect losses are avoided in the RF circuitry. This may be imple-
mented by directly integrating the transceiver onto the textile patch antenna, following
the design methodology outlined in [10]. A second path for future research consists in
integrating two or more textile patch antennas into the professional fire fighter jacket
and combining their signals by means of a power combiner. An optimal position for
two antennas could be on opposite sides of the fire fighter jacket (for example, one
antenna integrated in the back-section and one in the front-section of the jacket). This
setup may be further extended to one or more dual polarized textile patch antennas,
where each of the antenna ports is connected to two wireless nodes. This allows two
wireless nodes to transmit and receive along orthogonal linear polarizations on a single
antenna.
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A new textile wearable wireless node, for operation in the 2.45GHz industrial,
scientific and medical band, is proposed. It consists of a dual-polarized textile
patch antenna with integrated microcontroller, sensor, memory, and transceiver
with receive diversity. Integrated into a garment, the flexible unit may serve
for fall detection, as well as for patient or rescue-worker monitoring. Frag-
ile and lossy interconnections are eliminated. They are replaced by very short
radio-frequency signal paths in the antenna feed plane, reducing electromag-
netic compatibility and signal integrity problems. The compact and flexible
module combines sensing and wireless channel monitoring functionality with
reliable and energy-efficient off-body wireless communication capability, by
fully exploiting dual polarization diversity. By integrating a battery, a fully
autonomous and flexible system is obtained. This novel textile wireless node
was validated, both in flat and bent state, in the anechoic chamber, assessing
the characteristics of the integrated system in free-spaceconditions. Moreover,
its performance was verified in various real-world conditions, integrated into
a firefighter garment, and used as an autonomous body-centricmeasurement
device.

3.1 Introduction

Smart Fabric Interactive Textile (SFIT) systems add life-saving functionality to profes-
sional garments, as they monitor rescue workers during interventions [1], sense their
environment and movements during an operation, and also establish critical commu-
nication links with other firefighters and a command post. However, further improve-
ments, in terms of efficiency, autonomy, reliability and safety, are still needed to guar-
antee their market penetration and to develop the next generation of Smart Personal
Protective Systems [2]. Indeed, conventional wearable body-centric wireless sensing
and communication systems, for real-time tracking and monitoring of persons, rely on
sensor, processor, transceiver and antenna hardware components that are often very
complicated, non-flexible or bulky [3]. This makes these systems generally costly and
difficult to unobtrusively integrate into garments for firefighters. Also for other appli-
cations, such as in patient and elderly monitoring [4, 5], comfort and washability may
still be improved.

The indoor environments, in which these systems typically operate, suffer from
severe multipath radio propagation, resulting in decreased data throughput caused by
fading. In addition, body shadowing plays an important rolein wearable communica-
tion systems [6]. Reducing the effects of multipath fading is achieved on a single node
by exploiting antenna polarization diversity [7]. The cooperation of multiple nodes
provides higher-order combined polarization, spatial andpattern diversity, allowing
to effectively counter fading as well as body shadowing [8].Reliable body-centric
communication requires accurate knowledge of the wirelesschannel characteristics
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in proximity of the human body [9]. This results in complex transceiver hardware
that was until recently only implemented onrigid planar circuit boards and, therefore,
difficult to comfortably integrate into SFIT systems.

In this chapter, a novel, fully-flexible, low-cost, compact, and autonomous wear-
able2.45 GHz wireless sensor node is introduced, with all its functionality fully in-
tegrated onto a dual-polarized textile patch antenna [7, 10]. The electronic circuitry,
implemented on a compact, very thin, and flexible polyimide substrate, includes a
microcontroller, an ADF7242 diversity transceiver, a non-volatile memory, battery
and power management unit, combined with sensors. All RF interconnects are in-
tegrated onto the feed plane of the textile antenna, fully eliminating coaxial cables.
Such atextilewireless node, realized as one compactflexibleunit, enabling true non-
obtrusive and comfortable integration into garments, was not documented in literature
before. The efficient textile patch antenna, which serves asa platform for the ac-
tive electronics, provides high antenna gain, reduces the required transmit power [11]
and contributes to an energy-efficient wireless system. Thetextile ground plane of
the wearable antenna limits the interaction with the human body, providing a wire-
less platform with stable characteristics and very limitedradiation exposure for the
user. Embedded software on the microcontroller provides wireless ad-hoc network
functionality, allowing the nodes to actively forward datapackets, to cooperate, share
data, and synchronize over the wireless links. These properties enable the nodes to
operate in a wide range of practical applications, including patient, rescue-worker or
law-enforcement officer monitoring networks. The compact,autonomous, and wear-
able wireless node may be applied as a key building block for the construction of
a modular, low-power, body-worn system with receive diversity, by means of multi-
ple cooperating nodes. The network topology of multiple wirelessly interconnected
nodes, unobtrusively integrated in a single garment, allows us to add or remove nodes,
depending on the required functionality. In addition, eachnode can be made wash-
able by encapsulating the textile antenna together with theintegrated electronics by a
breathable Thermoplastic PolyUrethane coating (TPU) [12].

For research purposes, this autonomous unit can also be deployed as a channel
measurement device, synchronously logging signal levels received on different au-
tonomous nodes that are not interconnected by any wires. Conventional off-body
channel measurements are generally performed with complexor expensive measure-
ment devices [13–15], connected to body-worn external antennas by means of fragile
coaxial cables, which hinder the test person to move freely.Truly wireless measure-
ment nodes open new opportunities for more realistic multi-node body-centric mea-
surement campaigns. Existingrigid wireless wearable nodes [3–5], used as a channel
measurement device or as people-monitoring systems, are non-flexible and do not im-
plement receive diversity.

In current literature, the number of wearable systems that integrateflexibleelec-
tronic circuits with textile antennas is very limited. In [16], only a Low-Noise Ampli-
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fier (LNA) is integrated, forming an active antenna that still requires a coaxial cable to
be connected to transceiver units. Although in [17], the antenna and electronic system
of the sensor node are integrated on the flexible substrate, the system only operates in
Gaussian frequency-shift keying (GFSK) modulation without diversity.

The chapter is organized as follows. Section 3.2 provides a complete description of
the wearable node. In section 3.3, the measurement results validating the performance
of the system are presented, ending with the conclusions presented in section 3.4.

3.2 Wearable node design

3.2.1 Requirements/specifications

During rescue operations and hazardous interventions, reliable wireless communica-
tion is critical for the safe operation of firefighters. Therefore, a textile wireless node,
specifically designed for comfortable integration into firefighter garments, must imple-
ment reliable and energy-efficient wireless communication. Hence, the performance
of the antenna, with the system integrated onto the antenna feedplane, should not be
significantly affected by the presence of the human body. The2.45 GHz license-
exempt industrial, scientific and medical (ISM) band is selected to set up highly
energy-efficient wireless links, via one of the many standards that operate in this band.
Moreover, for wearable applications or for integration into a firefighter garment, the
textile wireless node needs to be flexible and resistant against extreme conditions, such
as high temperatures, moisture, and bending. Besides the technical specifications, the
wireless node must be non-obtrusive for the user, as well as light-weight, low-cost, and
energy efficient. To be useful in emergency situations, the intelligent textile system
is required to be user friendly, by allowing fast and easy activation and deployment.
Finally, easy replacement of certain textile nodes in the system is preferred, without
the need of making wired connections between separate sub-systems.

Besides being suitable for wireless off-body communication, the wearable node
should provide functionality that enables the wearable system to operate as an au-
tonomous channel-measurement device, monitoring parameters such as Bit-Error-
Rate (BER) and signal strength. For the node to be useful as a measurement device
for body-centric channel characterization, sufficient memory is required to store large
sets of data, obtained during the measurements. Depending on the selected modula-
tion scheme and data rate, the node should be able to store at least a few minutes of
data obtained by channel measurements. The sample period for these measurements
needs to be shorter than21.2 ms [18], the coherence time of the2.45 GHz indoor
channel for a walking person. Therefore, the sampling frequency is at least50 Hz
on each polarization of the antenna system. Assuming2 bytes for each data sample,
providing signal strength and packet-number information,4 MB of memory can store
more than5 hours of continuous measurements.
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3.2.2 Topology/system overview

The key components of the newly designed wearable node are presented in the block
diagram shown in Fig. 3.1. A top view of the circuit is given inFig. 3.2. The selection
of these components is motivated as follows.
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Figure 3.1: Simplified block diagram of the system.

The dual-polarized textile antenna, described in detail in[7], is fully integrable into
protective garments and was designed to operate in the2.4− 2.4835 GHz ISM band,
with a high (being better than 10 dB) return loss, as well as excellent isolation be-
tween the antenna ports. The textile antenna, which receives two orthogonal linearly-
polarized signals, is an excellent solution to reduce the undesired effect of multipath
fading in wireless communications, by exploiting polarization diversity. The human
body behind the ground plane of the antenna only slightly affects the performance of
the antenna [7].

The heart of the transceiver system is formed by the ADF7242 integrated cir-
cuit from Analog Devices. The transceiver supports the IEEE802.15.4-20062.4 GHz
PHY requirements, as well as proprietary Gaussian frequency-shift keying / frequency-
shift keying / Gaussian minimum-shift keying / minimum-shift keying (GFSK / FSK
/ GMSK / MSK) modulation schemes. Depending on the desired application and/or
data rate, one of these transmission schemes will be selected. The IEEE 802.15.4-2006
standard provides reliable data packet communication for low data-rate, wireless sen-
sor networks. Moreover, channel measurements can also be performed with the pro-
prietary modulation schemes, at data rates up to2 Mbps, by measuring Bit-Error-Rate
and Signal strength. The device features a dual-port radio-frequency (RF) interface,
directly connected to the textile antenna’s orthogonally-polarized feeds that generate
quasi-linearly polarized signals along the±45◦ diagonals of the patch [7]. This ar-
chitecture enables second-order receive polarization diversity by means of selection
combining, improving the reliability of the wireless communication. A compact low-
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power C8051F921 microcontroller (MCU), by Silicon Laboratories, is used to process
the received data and to characterize the wireless links. After processing, the signal
parameters are stored in a4 MB flash memory, integrated into the system, providing
sufficient non-volatile storage space for several hours of channel measurement data.
The actions of the fire-fighter are monitored by an on-board3-axis accelerometer. A
serial port provides system access to retrieve the measurement data, or real-time data
transmission to the PC at the base-station node.

Memory

MCU TRX

Accelerometer

53mm

Figure 3.2: Top view of the flexible wireless node circuit.

The energy-efficient, wearable node is powered by a small battery (3.6V, 660mAh),
ensuring the autonomy of the textile wireless node, when integrated into the garment
during the course of a full rescue operation without recharging. With a power con-
sumption lower than 90mW, the system can be used continuously for many hours.

3.2.3 Material/fabrication

The dual-polarized textile patch antenna [7], which servesas the node’s platform,
is constructed using FlecTron, a low-cost, conductive, electro-textile material with a
thickness less than0.25 mm and surface resistivity less than0.1 Ω/sq. This mate-
rial implements the antenna patch and ground plane. Flexible, closed-cell, expanded-
rubber protective foam (density187.3 kg/m3, permittivity ǫr=1.53 and tanδ=0.0012),
commonly used in protective garments for rescue workers, isapplied as substrate ma-
terial. The flexible foam helps to protect the electronic circuitry against external fac-
tors, such as high temperatures and humidity.

The integrated electronic system is implemented in a9 µm copper layer on a
copper-on-polyimide film, UPISELR©-N by UBE, of25 µm thickness. The production
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of the flexible substrate is performed by making use of an in-house photolithographic
process [19] and by soldering the various components by means of reflow.

3.2.4 Flexible circuit and antenna design

For maximal user convenience, the flexible transceiver circuit is integrated with the
textile antenna. The circuit is etched on a compact and very flexible polyimide sub-
strate. To keep production costs low, this circuit topologyis designed such that vias
are avoided, as much as possible, and that only one side is used for component place-
ment. Thereby, the bottom layer of the circuit substrate consists almost entirely of a
copper ground plane, which is connected to the back side of the antenna patch, using
a conductive adhesive.

Figure 3.3: Antenna cross section (dimensions in mm).
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The antenna is shown in Fig. 3.3, together with a cross section of the electronic
system, integrated on the feed plane of the textile antenna.A dual-polarized antenna
topology, with coaxial feeds implemented by means of vias, is adopted, since it only
requires very short direct via connections between antennapatch and the transceiver’s
RF ports. This results in the shortest RF paths, compared to other potential feeding
techniques, such as aperture-coupled feeds. Moreover, theapertures in an aperture-
coupled feed topology may lead to significant radiation towards the human body.
Conjugate matching is applied to connect both RF output ports of the ADF7242
transceiver to Johansson Technology 2450BM14E0007 baluns, specifically designed
for this chip. Each balun is followed by a400 MHz wide bandpass-filter (Murata
LFL182G50TC1B905), to protect the input from out-of-band signals. The outputs of
the bandpass-filters are directly connected to the antenna feeds, ensuring the shortest
possible length of the RF paths and reducing losses. The maximum output power of
the transceiver, specified by Analog Devices, is +4.8 dBm. Taking into account the
antenna gain and the insertion loss of the filter and balun, the maximum output power
of the system is8.9 dBm effective isotopic radiated power (EIRP), which complies
with the standard (20 dBm, ETSI EN 300 328 for wide band transmissions, such as
in IEEE 802.15.4-2006 mode). To retain the required flexibility of the circuit, small
integrated-circuit components are chosen. They are separated by a sufficiently large
distance, to allow for a small bending radius. The largest rigid chip of the circuit has
a footprint of5 × 6 mm, thereby retaining a very flexible unit. To confirm its desired
flexibility, the node is bent along a plastic tube with a curvature radius of7.5 cm, as
shown on Fig. 3.4. This construction also allows the designer to perform reproducible
measurements to evaluate the performance of the wireless nodes in bent condition.

Bending radius 

7.5cm

Figure 3.4: The integrated system, bent around a plastic tube with a radius of7.5 cm.
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3.3 Measurements

The indoor environment, in which the body-worn system will be deployed, exhibits
multipath signal propagation. A signal transmitted along asingle polarization then
results in multiple reflected signals that impinge onto the receive antenna at vary-
ing polarization angles. Reception of these signals, by an antenna system with dual
orthogonal polarizations, yields significant diversity gain, when combining the out-
puts from the two decorrelated antenna feeds. Hence, the capability of the system
to receive orthogonally polarized signals in a free-space setup, leading to sufficiently
decorrelated signals in a multipath environment, is an important figure of merit for the
diversity performance. Therefore, the operation of the newly designed wearable node
in free-space conditions is validated, focusing on the discrimination of orthogonally
polarized received signals, by measuring the Cross-Polar Discrimination (XPD).

Second, the polarization of signals, transmitted or received by a wearable antenna,
is sensitive to bending of the antenna and to proximity of thehuman body. These
effects render the polarization more elliptical, instead of linear [7]. For a multipath
environment, this results in higher received signal correlation and reduced diversity
gain. Hence, to carefully assess the performance under different conditions, the or-
thogonality of the two received signals in a free-space propagation environment is
tested in planar, on-body, and bent conditions.

Third, measurements are performed in an indoor scenario, with a mobile user
wearing the node integrated in his firefighter jacket. These experiments evaluate the
node’s diversity gain realized by polarization diversity using Selection Combining
(SC) or Maximum Ratio Combining (MRC). Our previous measurements [8, 10] of
the body-centric channel relied on a bulky wireless testbed, placed on a cart and con-
nected by means of coaxial cables to the antennas worn by the mobile user. During
the measurement campaign, the cart with the testbed was in close proximity of the
mobile user, following his/her movements. Hence, cart, testbed, and coaxial cable
connections may have an impact on the wireless channel. Withthe proposed system,
body-centric channel characterization is performed in a more realistic way. Moreover,
the channel measurements will be less time consuming and more accurate, thanks to
the larger data throughput, being at least100 measurement points per second.

3.3.1 Free-space propagation:
orthogonality of the antenna ports

To evaluate the orthogonality of the polarizations, the wearable node is first validated
in the anechoic chamber. The measurements are performed forthe stand-alone node,
as well as for the node integrated into a firefighter jacket, worn by a person of size
1.85 m and weight80 kg. A transmitter, connected to a Scientific Atlanta Model
12-1.7 Standard Gain Horn antenna, continuously broadcasts data packets, which are
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received by the flexible node, at a distance of4.436 m from the transmitter. While
the horn antenna is slowly rotating at a constant rotation speed of2◦/s, as shown in
Fig. 3.5, the received signal power of every packet on both polarizations is logged.
The variation of the received power, as a function of the polarization angle, is shown
in Fig. 3.6. The result illustrates the complementarity of both polarizations, for both
the stand-alone antenna and the on-body setup, in anechoic propagation conditions.

Figure 3.5: Measurement setup.

From this measurement, the XPD is calculated [20, 21], defined by

XPDY (dB) = 10 log10

(

|hY Y |
2

|hXY |
2

)

with |h
••
|
2 the squared channel amplitude factor for X=+45◦, being the co-polar po-

larization, and Y=-45◦, being the cross-polar polarization. The X and Y directionsare
tangential to the surface of the body torso, with the zero degrees reference correspond-
ing to a vector pointing up towards the head. The average XPD of the integrated sys-
tem equals29.1 dB for the stand-alone antenna and27.1 dB for the on-body measure-
ment. This confirms that the system performance is not problematically degraded by
the presence of the body and that sufficiently high RF isolation is maintained between
the two polarizations of the dual-polarized textile patch antenna with both terminals
connected to the transceiver. These are excellent values, illustrating the suitability
of the patch antenna for polarization-diversity reception. Next, the measurement was
repeated with the system bent, using the setup shown in Fig. 3.4. A bending radius
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Figure 3.6: Received signals power [dBm] on both feeds, as a function of polarization angle of
the TX antenna, for the patch antenna mounted as in Fig. 3.3, front view,for a stand-alone node
and for the node integrated into a firefighter jacket, worn by a test person.

of 7.5 cm is realistic when deploying the textile node inside the sleeve of a garment,
such that is positioned on the firefighter’s arm. The variation of the received power,
as a function of the radiation angle, is shown in Fig. 3.7. Thecurves now also il-
lustrate the complementarity of both polarizations, when the wearable node is bent.
Although bending slightly affects antenna impedance, portisolation, and resonance
frequency [7], the average XPD is still12.7 dB. This guarantees satisfactory system
performance in bent conditions as well.

3.3.2 Multipath environment: channel measurement

To evaluate the node’s performance in a multipath environment, a fire-fighter, walk-
ing in an indoor environment with the system integrated intohis fire-fighter jacket, is
considered. Fig. 3.8 shows part of the floor plan of the building with brick walls and
reinforced concrete floors at Ghent University, where the measurements were carried
out. The same transmitter as in the previous measurement is located in an office at
position TX1 in Fig. 3.8, while the test person, wearing the garment, walks along the
path A-B at about 1 m/s in the neighboring offices and corridors. While data packets
are continuously being transmitted, the autonomous flexible system constantly mon-
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Figure 3.7: Received signals power [dBm] on both feeds as a function of polarization angle,
for the bent patch antenna mounted as in Fig. 3.3, front view.

itors the signal strength on both polarizations. As the instantaneous time-varying re-
ceived power varies partially independently at both ports,2nd-order receive diversity,
by means of SC, improves the performance of the wearable node, by selecting the po-
larization with the strongest signal for each received datapacket, as shown in Fig. 3.9

3.3.3 Statistical analysis

The statistical distribution of the signal levels is determined, measured within region
C of the floor plan, shown in Fig. 3.8, at a distance of 10m from the transmitter TX2.
The analysis is performed on32768 recorded samples per polarization, at a sample
rate of 50 samples/sec on each polarization.

The graph in Fig. 3.10 compares the Cumulative DistributionFunction (CDF)
curves obtained during the measurements with and without diversity to the theoretical
Rayleigh fading CDF as well as to simulated characteristicsfor uncorrelated Rayleigh
fading channels with SC and MRC.

Only the Non-Line-of-sight (NLoS) scenario was consideredhere, since this sce-
nario is the most likely to occur in the rescue worker application under study. More-
over, similar conditions were also investigated in previous measurement campaigns,
serving as a reference for the current results. NLoS propagation represents a worst-
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office
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AB
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C
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Figure 3.8: Floor plan of the indoor environment, in which the channel sounding experiment
was performed.

case scenario, providing the most demanding conditions forthe wireless off-body link.
The 10 % outage probability of the dual polarized system with SC is then com-

pared to a single-polarized system. These power levels define the10th percentile in
the CDF, meaning that the power will be higher than these values90 % of the time.
SC improves the10 % outage probability by5.5 dB, in comparison to a single po-
larization. Although MRC is not implemented in this transceiver, the MRC gain is
calculated and drawn in Fig. 3.10. MRC increases the10 % outage probability by
7.5 dB, compared to a single polarization. Considering the1 % outage probability,
SC and MRC produce a gain of9.5 dB and11.5 dB, respectively, in comparison to a
single polarization. The observed deviation from the Rayleigh characteristics below
the1 % level is due to the limited number of recorded signals.

3.3.4 Power consumption

The power consumption is highly dependent on the operating mode of the node. In
sleep mode, the total power consumption is less than10 µW. The measured power con-
sumption for the wearable system, in full operation, equals90 mW (27 mA, 3.3 V).
Hence, even in continuous full operation, the system can be used during many hours,
without recharging the battery. For the experiments, a low drop voltage regulator is
mounted on top of the battery, causing an additional power dissipation of approxi-
mately 9mW. In addition, at the power input connector, an inversely polarized diode
is placed for polarity protection.
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a fire-fighter jacket.
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3.4 Conclusions

The first autonomous textile wireless node, fully integrated onto a flexible dual-polarized
textile patch antenna, was presented. This design is particularly suited to perform
body-centric channel measurements with all the equipment integrated into clothing.
The wearable node enables 2th-order receive diversity, by means of selection combin-
ing. Thanks to the integration of all the circuit componentson the antenna feed plane,
directly below the antenna patch and the ground plane, fragile and lossy interconnec-
tions are avoided. Moreover, the small size of the wearable node eliminates electro-
magnetic compatibility and signal integrity issues. This ultra-flexible and compact
wireless transceiver/sensor node can be unobtrusively integrated into rescue worker
garments, making it useful for a plethora of wearable applications. The flexible node
exhibits a modular topology and is easily expandable to create a customizable textile
module. Therefore, this new low-cost system is a step forward in designing comfort-
able commercial firefighter protective systems.
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A novel, fully-autonomous, wearable, wireless sensor network is presented,
where each flexible textile node performs cooperative synchronous acquisi-
tion and distributed event detection. Computationally efficient situational-
awareness algorithms are implemented on the low-power microcontroller
present on each flexible node. The detected events are wirelessly transmitted to
a base station, directly, as well as forwarded by other on-body nodes. For each
node, a dual-polarized textile patch antenna serves as a platform for the flexi-
ble electronic circuitry. Therefore, the system is particularly suitable for com-
fortable and unobtrusive integration into garments. In themeantime, polariza-
tion diversity can be exploited to improve the reliability and energy-efficiency
of the wireless transmission. Extensive experiments in realistic conditions have
demonstrated that this new autonomous, body-centric, textile-antenna, wire-
less sensor network is able to correctly detect different operating conditions
of a firefighter during an intervention. By relying on four network nodes in-
tegrated into the protective garment, this functionality is implemented locally,
on the body, and in real time. In addition, the received sensor data are reliably
transferred to a central access point at the command post, for more detailed
and more comprehensive real-time visualization. This information provides
coordinators and commanders with situational awareness ofthe entire rescue
operation. A statistical analysis of measured on-body node-to-node, as well
as off-body person-to-person channels is included, confirming the reliability of
the communication system.

4.1 Introduction

Every year, more than100 European firefighters lose their lives whilst saving others,
as stated on the website of the Smart@Fire Seventh FrameworkProgramme (FP7)
project (2012–2015) [1]. Wireless sensor networks with on-and off-body wireless
communication capabilities, detecting events by means of computationally efficient
situational awareness algorithms, are very important to remotely monitor rescue work-
ers and their environment. This functionality improves their safety and security, as
well as the coordination of rescue operations, in general.

For critical applications, such as intervention by emergency services, novel fully-
flexible and networked wearable systems must be developed, which can be unobtru-
sively and comfortably integrated into protective garments. A proof-of-concept of a
smart textiles-based monitoring and coordinating system was developed earlier, with
a special focus on firefighters, within the context of the ProeTEX FP7 project [2],
whereas the ongoing Smart@Fire FP7 [1] project targets the further development of
a realistic system. Electronic system integration on a flexible platform is essential,
in order to design fully functional autonomous wearable sensing and communication
networks, enabling automatic distributed event detectionclose to the sensors. Recent
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developments in single-chip multifunctional wireless transceivers enable the develop-
ment of very compact, versatile, low-cost and low-power sensor network nodes. The
integration of such a sensor system into professional clothing or patient garments,
by means of textile antennas, maximizes user convenience, without the need for user
interaction. However, until today, no garment-integratedfully-operational system is
available.

In this chapter, we present a novel, fully-autonomous, wearable, wireless sensor
network. The network is composed of wirelessly interconnected flexible textile nodes
that can quickly and unobtrusively be integrated inside thegarments of a team of res-
cue workers. Each node autonomously performs cooperative synchronous acquisition
and distributed event detection. Therefore, a low-power microcontroller on each flex-
ible node implements computationally efficient situational-awareness algorithms that
detect the events. In addition, sensor data and events are wirelessly transmitted to a
base station and to the other on-body nodes. To set up reliable communication links,
a dual-polarized textile patch antenna serves as a platformfor the flexible electronic
circuitry. A significant antenna gain [3, 4] and large radiation efficiency, as well as
effective shielding of the body from the radio-frequency energy is provided, thanks to
the ground-plane antenna topology.

Wireless transmission of sensor data in indoor environments is often compromised
by multi-path radio propagation, causing severe signal fading. It is well known that
antenna diversity mitigates the effects of signal fading. Spatial and pattern antenna
diversity techniques are exploited by distributing nodes over the body, separating
them physically from each other. Additionally, the nodes presented allow polariza-
tion diversity, thanks to the dual-polarized patch antennacombined with the two-port
transceiver chip.

The wearable network node is based on the physical-layer communication unit,
of which the wireless channel behavior is described in [5]. In the further research
presented here, this node is applied as a building block of a complete, highly power-
efficient wearable wireless sensor network. Therefore, dedicated embedded software
was developed, implementing a highly robust wireless on-body network protocol, per-
forming synchronous data acquisition on different sensor nodes. As each node is
equipped with an integrated three-axis accelerometer, thesystem is highly relevant for
fall-detection applications [6]. Sensor fusion can be exploited by designing additional
sensors into the node circuit in a straightforward manner.

Every network node includes a situational awareness algorithm, to detect and clas-
sify events autonomously or in cooperation with other nodes. Measurements are pre-
processed on each node and wirelessly transmitted to a central access point. The
situational awareness algorithms are computationally optimized to be executed on a
low-cost and low-power microcontroller. More computationally expensive tasks can
be performed at the base station, if necessary. Measurements confirm efficient syn-
chronous operation for a four-node on-body system, as well as for a three-node person-
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to-person configuration. Synchronously acquired quadruple three-axis acceleration
data are measured and transmitted, enabling detailed and real-time remote analysis of
rescue-worker body orientation and movement.

In the literature, textile antenna research has mainly focused on dedicated antenna
design and body-centric channel behavior, as well as on the performance of diversity
textile antenna platforms [4, 7, 8]. In terms of complete on-body electronic systems,
many rigid wearable nodes exist, often hindering the wearer’s movements [9–12].
Many others also performed research on off-body antennas orbody area radio prop-
agation for sensor networks [13, 14]. Ongoing integrated circuit design, intended for
body area networks in the2.45 GHz industrial, scientific and medical (ISM) radio
band, is described in [15], indicating the relevance of thisband for such applications.
State-of-the-art, extremely low-power designs [16] leverage energy-harvesting sensor
units for continuous long-term monitoring. A system relying on multiple wireless
nodes, equipped with a number of sensors, fixed at several on-body locations, avoids
false positive detections [17]. Network protocols and scheduling for body networks
are discussed in [18–20]. Recent publications document wearable textile systems for
biomedical monitoring [21]. However, in [21], the system does not provide network
functionality, as no transmit function is available. On-body integration is impossi-
ble in that stage of development, as elaborate additional hardware is necessary for
processing the received signal. Sampling of the unprocessed RF signal occurs via an
external FPGA module, connected to a PC via USB. This system is suitable for lab ex-
periments in a static setup only. Although the research presented in [22] is related, our
system consists of fully wireless, flexible units, comfortably integrated into the rescue
worker’s garment. Signal-strength information is available for each data packet, pro-
viding valuable additional information for sensor localization [17] and body position
recognition [23]. Processing of the measurements enables signal classification [24],
with applications, such as gait analysis [25–27], kcal expenditure or physical rehab
assessment [28]. The microcontroller in our proposed system executes a situational
awareness algorithm on each on-body node, enabling automatic event detection and
reporting by means of the wireless radio link.

We present a fully functional wearable sensor network employing a network proto-
col specifically developed for the difficult radio propagation environment encountered
when performing indoor operations. To our knowledge, this is the first body-centric
wireless wearable textile sensor network incorporating all of these features into a fully
flexible garment-integrated system. Moreover, the system is fully tested in multiple
measurement scenarios. The sensor data and their classification, as well as the radio
propagation aspects are extensively documented in this chapter. In the literature, no
such system, documented and validated to a similar extent, was found.

Section 4.2 provides an overview of the system at the networklevel, outlining the
proposed transmission protocol for on- and off-body communication. A description
of the hardware composing each wireless node, being the dual-polarized antenna and
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key circuit components, as well as the proposed on-board computationally-efficient
activity recognition algorithm, is given in Section 4.3. InSection 4.4, a measurement
setup with a sensor-equipped test person is discussed, including a floor plan of the test
environment and a graphical representation of the unprocessed measurement results.
The relation between situational-awareness information,being the movements of the
test person and his/her position in the floor plan and the sensor data, providing times-
tamps for the acceleration and received signal power data streams, is documented in
Section 4.5. An evaluation of the on-body node-to-node linkreliability is presented in
Section 4.6, whereas an additional measurement assessing the performance of person-
to-person communication in a three-person network is described in Section 4.7. A
discussion follows in Section 4.8. The conclusions are summarized in Section 4.9.

4.2 System overview

Patients, healthcare professionals and rescue workers should be monitored by a dis-
tributed sensor network, in order to assist caregivers and intervention coordinators.
In such a network, data processed near the sensors are transmitted to a central ac-
cess point. The proposed wearable wireless body sensor network was designed, con-
structed and validated in order to fulfill these requirements.

The required functionality is provided by a dedicated network protocol embedded
in each textile node’s microprocessor, as well as in the central access point. The
protocol is specifically designed for wireless communication between members and
the coordinator of a small intervention team. In the typicalscenario of a firefighting
invention, for example, a group of two to three firefighters will penetrate a burning
building, closely followed by a coordinator/commander outside the building. The
envisaged network protocol shall ensure reliable communication and detect events
within the team. Moreover, the protocol must be able to deliver this information to
the command post, which may issue alerts, all without significant delay. We first
outline this protocol, designed for an N-node body-worn network, involving multiple
team members and the coordinator. In the next section, we proceed to a detailed
description of the hardware components that compose each textile node of the body
sensor network shown in Figure 4.1.

4.2.1 Network protocol for synchronous measurements

Synchronous sensor data acquisition, including a wirelesscommunication link to a
central access point, is implemented for an N-node body-worn network by means of
the following protocol:

• Power-on cycle and node enumeration: During subsequent manual power-on of
the nodes, the nodes detect each other’s presence in the network and are auto-
matically enumerated, acquiring their unique soft-ID’s, which determine their
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Figure 4.1: Wearable wireless body sensor network composed of four fully-autonomous and
wireless textile nodes, synchronously capturing, preprocessing and relaying sensor data to
a central access point.

time slots in the transmission cycle. Nodes have to be switched on sequentially,
respecting at least one second in between the manual switch actions. Please
note the proposed system is composed of battery-operated truly wireless sensor
units, leading to a sequential power-on cycle due to the absence of a common
power supply or any other wired connection between the nodes.

– When powered on, each node listens for packets from other nodes. If
no packets are received within a one-second time-out period, this node is
assigned soft-ID= 1 and autonomously starts transmitting sensor data,
including this soft-ID number.

– After the last transmitted packet of the transmission cycle, an extra receive
time slot is preserved to listen for other packets from new nodes that can
join the network, as displayed in Figure 4.2.

– When a next node is powered-on, the new node first listens for data packets
transmitted by other nodes, receiving data packets from allactive nodes.
The new node responds with its own sensor data and dynamically de-
termined soft-ID number (being the highest soft-ID number in the net-
work +1). This step is repeated for all N nodes in the body-centric net-
work.

– Given the successful reception rate of more than95% observed in our
measurements (as further documented in Section 4.6), the probability of
missing all packets in the time-out period is extremely low,successfully
avoiding an erroneous multiple assignment of the same soft-ID number.
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In practice, the network activity and, hence, the enumeration process are
also monitored and verified by the base station, confirming a correct ini-
tialization. The power-on cycle and enumeration process should be per-
formed by all firefighters and the coordinator operating the base station
well within each other’s range, which is a realistic scenario, as firefighters
always enter a building as a small team.

– Each node also transmits a unique and fixed hard-ID, allowingunambigu-
ous identification by the base station, as well as avoiding re-enumeration
of already active nodes in case of communication errors.

– When all nodes in the body-centric network are active, a time-slot is kept
available to receive base station transmissions, as shown in Figure 4.2
for a four-node network. Base-station transmissions are recognized by
a hard-ID>127 and do not lead to further network enumeration. In case
of an emergency, the base station transmits a data packet containing an
alert level. The alert level initiates different alarm conditions at the rescue
worker’s side. When an alert level is received by one or more ofthe wire-
less nodes, the alert level is forwarded by the wireless nodes themselves
in their own transmit time slot together with the sensor data, to ensure all
rescue workers receive the alert message. The alert level isstored on each
wearable node. The initial alert level is zero; higher alertlevels lead to
audible alarm signals on the wearable nodes via a beeper, which has to be
connected to a microcontroller output pin reserved for thispurpose.
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Figure 4.2: Power-on cycle and time-slot structure of the autonomous body-centricnetwork.

• Data forwarding and measurement synchronization are possible thanks to the
network nodes continuously monitoring each other’s transmissions. At each
time instant, the sensor data from the currently transmitting node are stored
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in the memory of each receiving node, which will forward the collected data
in its own transmit time slot. Thanks to the data forwarding,a redundancy
leading to a performance increase comparable to Nth-order transmit diversity
gain is obtained, providing a highly reliable cooperative data link towards the
base station. The nodes synchronize their clocks using the time stamps of the
received data packets from the other nodes. This enables fully-synchronous
sensor data capturing on all nodes. The flowchart of the network protocol is
shown in Figure 4.3.

• Data packet structure: The sensor data captured by the nodesare organized into
a packet, as shown in Figure 4.4, transmitted by employing the IEEE802.15.4

mode supported by the transceiver chip, automatically adding an error-detecting
code, ensuring the correctness of the received data. The node’s hard-ID corre-
sponds to a unique fixed serial number for each physical node,whereas the soft-
ID number was assigned automatically during the network enumeration process.

• Scalability: The platform is highly versatile and can also operate in larger net-
works.

– Up to12 nodes can actively forward packets from the base station or other
users in the network. These nodes can be distributed over themembers
of an intervention team; three firefighters wearing four nodes or six fire-
fighters wearing two nodes are efficient configurations. Two nodes per
body provide enough information, but four nodes provide more accuracy
and reliability thanks to the redundancy. Authorities in the firefighting
world [1] state that teams of three firefighters are the maximum to be moni-
tored by
one commander.

– Extra time slots can be provided in the transmission protocol to enable
dual-polarized diversity reception, by sending all transmitted data packets
twice and receiving odd and even packets alternatingly on different polar-
izations.

– Parallel networks can be deployed at different frequencies; their data is
then combined at the base station, using multiple low-cost receivers. In
IEEE802.15.4 mode, the2.45 GHz ISM-band provides16 channels.

4.3 Wireless sensor node implementation

4.3.1 Hardware description

Figure 4.5(a),4.5(b) shows a prototype of an autonomous wireless sensor node com-
pletely integrated into a flexible garment-integrated patch and powered by a single
battery. In Figure 4.5(a), the front side of the wireless sensor node is shown, where
the patch antenna is visible with its dimensions. Figure 4.5(b) gives an overview of
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Figure 4.3: Simplified flowchart of the network protocol.
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Figure 4.4: Data packet structure.

the backside of the wireless sensor node; this side includesall of the electronic com-
ponents mounted on the flexible substrate. We now discuss thevarious components
composing the block diagram of the node in Figure 4.6.

The basic platform for the wireless node is a dual-polarizedtextile patch antenna,
as shown in Figure 4.7. Details about this antenna and its performance can be found
in [4]. This compact wearable antenna is fully breathable, flexible and includes two
feeds, enabling the excitation of two orthogonal linearly-polarized waves, with an an-
tenna gain of6 dBi along the boresight and a better than15 dB isolation between
the feed ports. The textile material makes the unit flexible and lightweight, without
losing antenna performance, in comparison to rigid antennas. The antenna ground
plane is constructed using FlecTron, a low-cost, conductive, electro-textile material
with a thickness less than 0.25 mm and a surface resistivity less0.1Ω/sq., minimizing
the influence of the body in close proximity to the antenna. The substrate material
is closed-cell, flexible, expanded-rubber protective foam, commonly used in protec-
tive garments for rescue workers (density = 187.3 kg/m3, permittivity ǫr = 1.53 and
tan δ = 0.0012) with a thickness of5 mm. The flexible foam will help to protect
the electronic circuitry from external factors, such as humidity. As the networking-
enabled wearable node designed here presents a further development of the wireless
textile transceiver documented in [5], we refer the reader to this text for details about
its fabrication, together with a validation of its physical-layer wireless communication
performance, employing polarization diversity.

On the wireless node, a variety of analog and digital sensorscan be incorporated.
In this chapter, we discuss the integration of an Analog Devices ADXL337 three-axis
accelerometer into our prototype. This sensor is very compact and provides accurate
acceleration measurement data, which will be preprocessed, locally interpreted and
transmitted to a central access point. The wireless sensor node measures acceleration
with a specified full-scale range of±3 g. Acceleration caused by gravity allows sens-
ing of body orientation, whereas accelerations resulting from motion, shock or vibra-
tion produce information about the firefighter’s actions. The accelerometer sensor is
very robust as, according to the data sheet,10, 000 g shock survival is guaranteed [29].

The microcontroller forms the heart of the system, providing the distributed net-
work functionality. A highly compact and low-power advanced single-cycle micro-
controller, the Silicon Laboratories C8051F921, is used. This processor collects sen-
sor data and organizes it into packets for wireless transmission or storage into memory.
Embedded software for this controller is developed in the C programming language
and uploaded into the controller’s nonvolatile code memoryby the In-System Pro-
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gramming interface via a USB cable [30].
On-board flash memory is available as nonvolatile storage space for measurement

data. The memory unit is used as a buffer or as a data storage for processing and
analysis. At a rate of25 measurements per second, at least11 h of continuous three-
axis accelerometer data can be stored in the4 MB flash installed on the prototype.
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1.0 mm44.5 mm
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EEPROM ADXL337
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Figure 4.5: (a) front side of the wireless sensor node; (b) back side of the wireless sensor node
with the electronic components mounted on the flexible substrate.
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Figure 4.6: Block diagram of the wearable node, showing the MCU, flash memory, accelerom-
eter and transceiver chip connected to the textile patch antenna.
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Figure 4.7: Cross-section of the dual-polarized textile antenna with electronic circuitry
mounted onto the feed plane.

The state-of-the-art Analog Devices ADF7242 wireless2.45 GHz ISM-band
transceiver is used to set up the wireless data link. This is the first single-chip2.45GHz
transceiver incorporating diversity, as well as IEEE802.15.4 and GFSK modulation.
The maximum output power of the ADF7242 is limited to +4.8 dBm, which is well
within the limits imposed by regulations (20 dBm, ETSI standard EN 300 328 [31]
for wide band transmissions, such as in the IEEE 802.15.4-2006 mode). If desired,
the range of the nodes can be significantly extended by increasing the transmit power
up to the legal limit of+20 dBm. This option is discussed in the datasheet [32] of the
ADF7242 transceiver chip and involves designing an integrated RF amplifier into the
circuit.

4.3.2 Computationally simple classification

Each node includes a three-axis accelerometer, providing three independent sensor
data streams. The sensor data can be used, independently or in cooperation with sen-
sor data of the other nodes in the on-body network, to implement real-time activity
recognition. An algorithm is proposed to detect and classify activities performed by
firefighters during rescue operations, optimized for implementation on the microcon-
troller of each sensor node, with minimal processing power.Existing systems, as
documented in [10], do not implement signal classification and event detection on
the node itself. A flowchart of the computationally simple classification is given in
Figure 4.8.

The most important situation that needs to be monitored in the rescue-worker ap-
plication is lying down [2], as this potentially corresponds to an emergency situation
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Figure 4.8: Flowchart of the computationally simple classification.

where the rescue worker’s life is at risk. When the person is walking or standing, the
measured gravity vector value will always be approximately−1 g along the z-axis.
When lying down, the measured gravity vectors for all axes reorient, and no repetitive
accelerations are detected. Lying flat on the ground, the gravity vector for the z-axis
will be approximately0 g. By combining the measurements along the z-axis from all
nodes, averaged over one second of sensor acquisition, lying down is readily detected.
The decision rule for lying down is given by:

〈Zdetection〉 =

N
∑

n=1

M
∑

m=1

Zn,m

N ·M
> DownTh → Lying down (4.1)
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with n the node number,N the total number of nodes,m the measurement sample
number and
M = fs.∆t = Sample rate.1s the number of measurements per node during a one-
second time window. The threshold is set to DownTh = −0.5 g, which corresponds to
the firefighter lying down, with an angle of30◦ or less (straight up =90◦) with respect
to the ground.

A detection algorithm is proposed for walking or running, based on the repetitive
accelerations observed in [27, 33]. Running generates larger and higher-frequency
accelerations, resulting in a larger standard deviation ofthe accelerometer data, com-
pared to walking [25–27]. Therefore, the standard deviation σ of the accelerometer
sensor data is observed over a one-second time frame, given by:

σ =

√

√

√

√

√

M
∑

m=1

(

Z − zm
)2

M
(4.2)

with M = fs, being the sample rate, andZ the average over a one-second time
window.

The decision rules for walking and running are given by the following thresholds:

RunTh ≥ σ > WalkTh → Walking (4.3)

σ > RunTh → Running (4.4)

Whenσ exceeds a preselected threshold level, the corresponding activity is in progress.
The threshold values for the activity algorithm are empirically selected:

0.4 g ≥ σ > 0.08 g → Walking (4.5)

σ > 0.4 g → Running (4.6)

When an alarm situation occurs, the status of the activity recognition algorithm
is transported in the wireless data packet to the base station, directly or with prior-
ity, and forwarded by other nodes in the network, providing afast and very reliable
information link from the rescue worker to the base station.

4.4 Measurements for four on-body nodes

The performance of the wireless sensor network is assessed for a realistic application,
where the wearable system is deployed in a protective garment, worn by a rescue
worker performing a number of movements and postures at different locations. A
number of real-world situations are studied in an indoor office environment, as well
as in an outdoor scenario.
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4.4.1 Measurement setup

Four wireless nodes are integrated into a firefighter garment, deployed on the front,
back, left and right sides of the body. The antennas radiate away from the body in dif-
ferent directions, providing spatial, as well as pattern diversity. The setup is illustrated
in Figure 4.1. For clarity, only the front(1) and rear(2) nodes are initially taken into
consideration. Given the relative orientation of the two nodes, the vectors of the x-
and y-axes of both nodes will be opposite. The gravity vectors provide information
about the orientation of the body of the rescue worker. The central access point is
represented by a receiving node that relies on similar hardware as the mobile nodes,
but now with two omni-directional monopole antennas connected to the inputs.

In the indoor office environment, the base station node is located at a height of
2 m above the office floor (RX1) and connected to a computer performing real-time
data processing. The office at Ghent University is located onthe first floor, consisting
of solid brick floors and reinforced concrete walls. The floorplan of the office and
its surroundings is given in Figure 4.9. Next to the building, there is a inclined street
with its down-hill direction to the left, reaching the ground floor level at the right,
surrounded by other buildings. In the outdoor environment,the receive node is placed
outside the office building (RX2), along the inclined street, as illustrated on the floor
plan in Figure 4.9.
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Figure 4.9: Floor plan of the office environment at Ghent University.

4.4.2 Data reliability

In the course of an indoor measurement, where the firefighter walks in the office floor
along the path A–B–D–B–C–B–A in the floor plan, as shown in Figure 4.9, a total
of 16 packets out of the full set of 1,900 packets transmitted to RX1 was lost for
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four nodes. However, as the sensor data pertaining to the nodes from which packets
were missing at the base station were repeated by the other three on-body nodes, all
sensor data were recovered. In an indoor environment, the signals fromN different
nodes are influenced by decorrelated fading, leading to an Nth-order diversity gain.
This clearly demonstrates the vast improvement in transmitreliability of the body-
centric network. An overview of the packet loss and recoveryis shown in Table 4.1.

Table 4.1: Overview of the packet loss and recovery during the measurement campaign.

Parameter or Variable Value

Number of active nodes 4
Total transmission time 76 s
Number of packets per second 25
Total number of packets transmitted 1900
Number of packets received directly 1884
Number of packets recovered by Node 1 7
Number of packets recovered by Node 2 1
Number of packets recovered by Node 3 3
Number of packets recovered by Node 4 5
Total number of packets recovered through forwarding 16
Total number of lost packets 0

4.4.3 Synchronization of four nodes

In Figure 4.10, the sensor data, acquired along the verticalaccelerometer axes during
a jump, are illustrated, in order to demonstrate the synchronicity of the measurements
on all four nodes. Traces for the other axes are also synchronized, but have been
omitted for the sake of graph clarity.

4.4.4 Accelerometer measurement

Plots of the measurements in both indoor and outdoor environments are displayed in
Figures 4.11 and 4.12, respectively. Features visible in the graph are caused by specific
movements and postures of the rescue worker. They are linkedto his position in the
floor plan, as shown in Figure 4.9. For clarity of the graphs, the sensor data for only
two nodes are shown. The on-body network provides reliable connectivity over the
full trajectory covered by the test person. Further analysis of the sensor data follows
in Section 4.5.

4.4.5 Signal strength measurements

While the test person walks along the outdoor path E–F, the receive node RX2 at
the base station observes the signal power of the received packets from the front and
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Figure 4.10: Synchronization of the sensor data related to the vertical z-axis of the wireless
nodes, when the test-person is jumping.
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Figure 4.11: Measurement results along the indoor path A–B–C–D–B–A, followed by some
activities performed in the neighborhood of A (x,y,z-axes + signal strength).

back node. At the beginning of the path (E, marked on Figure 4.12), the front node
is in Line of Sight (LoS) with the receiver node, providing a large signal strength on
the receiving node. When the test person passes by the fixed node at Position I, the
signal strength of both nodes are equal. After this point, the back node is in LoS
with the fixed node, providing a large signal strength in comparison with the front
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Figure 4.12: Measurement results along the outdoor path, starting with random walk moving
to location E, followed by the path E–I–F–G–H, ending with some activities performed in the
neighborhood of H and random walk around location E (x,y,z-axes + signal strength).

node. Differences in signal strength up to35 dB occur between the two nodes. The
configuration of a front/back sensor node system has clear advantages compared to a
single sensor system. The total coverage area of the sensor system increases thanks to
the transmit diversity gain and the multi-hop wireless network topology.

4.4.6 Power consumption

The wireless node is powered by a small (5 mm× 25 mm× 35 mm) one-cell Lithium
polymer (Li-po) battery of400 mAh and a low-drop linear voltage regulator. From the
technical data sheet of the various integrated components of the wireless sensor, an
estimation of the power consumption can be made. The microcontroller will consume
an average current of4 mA at 3.3 V and at a clock frequency24.576 MHz. In sleep
mode, the current consumption can be lowered to600 nA. The accelerometer used
on the wireless sensor only consumes0.3 mA during operation at3.3 V. The flash
memory consumes on average12 mA at 3.3 V while operating (reading or writing);
in standby mode, the current consumption is lowered to25 µA or to 5 µA in deep
power-down mode. The most power consuming device on the wireless sensor is the
transceiver chip. At the the highest output power, a maximumcurrent of25 mA is
used at3.3 V. In receiving mode, the maximum current consumption is19 mA. While
the transceiver is not transmitting data packets, it will beconfigured in the receiving
mode. In idle mode, the power consumption is lowered to300 nA. An overview of the
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current consumption is summarized in Table 4.2.

Table 4.2: Current consumption of the wireless node.

Component Power Mode Current Consumption

Microcontroller
Idle 2.5 mA
Sleep 0.1 µA
Normal 4 mA

Transceiver

Idle 1.8 mA
Sleep 0.3 µA
Transmit, (Pout = +4 dBm) 25 mA
Receive 19 mA

Memory
Stand by 25 µA
Deep Power-down 5 µA
Read/Write 12 mA

Accelerometer Power on 300 µA

The maximum current consumption is estimated at29.4 mA at 3.3 V, taking into
account the maximum power consumption while transmitting and no operation of the
flash memory is performed. Due to the circuit topology, it is not possible to read or
write data into the flash memory while transmitting a data packet.

In full operation, the measured average power consumption of one node of the
wearable sensor network equals90 mW (27 mA current consumption, at3.3 V supply
voltage) with negligible variation when operating in transmit or receive mode. This
enables the sensor network to operate for many hours, without the need for charging
the battery. Furthermore, the power consumption can further be minimized by em-
ploying the sleep mode of the system when there is no need to operate continuously at
high speed. In this mode, the total power consumption is lessthan10 mW. The system
can be activated at regular intervals based on the hardware wake-up timer integrated in
the microcontroller, to check the activity by the base station or other on-body nodes.
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4.5 Spectrogram and classification of
accelerometer measurements

The sensor data from the four-node on-body experiment is nowanalyzed employing
classification algorithms. Activity recognition is illustrated at the base station, as well
as locally at each wearable node.

4.5.1 Classification of the accelerometer data

The following actions are clearly detectable based on the accelerometer measure-
ments. The markers refer to floorplan in Figure 4.9, for the location of the firefighter
and Figure 4.11 or 4.12 for the corresponding sensor data.

• Walking (1, 6): A firefighter walks at moderate speed. This movement intro-
duces significant repetitive accelerations measured by both wireless nodes. The
accelerations are clearly visible along all of the axes of the sensors, as shown in
Figures 4.11 and 4.12. The walking speed is determined basedon the repetition
frequency of the accelerations, allowing step counting.

• Running (2, 7) introduces stronger accelerations on both wireless nodes. These
accelerations are clearly visible in Figures 4.11 and 4.12 and are easily detected
based on the acceleration values and main frequency component.

• Bending (3) of the rescue worker introduces reorientation of the measured grav-
ity vector caused by the movement of the upper body. Thanks tothe opposite
direction of the nodes on the body, the signs of the accelerations measured on the
front and back are opposite, allowing easy detection of bending. This movement
is performed at Point A in the office and is clearly detectablein the measure-
ment data in Figure 4.11. A difference of the opposite gravity vectors (larger
than0.5 g) indicates bending.

• Jumping (4, 8) causes large accelerations along all axes of the accelerometers,
especially along the z-axis of the test person, as seen in Figures 4.11 and 4.12.
The test person climbs onto a wall and jumps down at Point H. Inthe indoor
environment, the test person jumps up and down at Point B.

• Lying down (5): When a person is lying on the ground, the accelerometer will
determine the direction of the gravity vector, providing body orientation data.
In the measurement, the test person lies face-down at Point Ain Figure 4.11,
causing both sensor nodes to provide oppositely oriented gravity vectors along
the x-axis, with a maximum difference of the opposite gravity vectors of2 g.
The gravity vectors for both nodes along the z-axis will approximate0 g. When
a position occurs in between frontal and sideways lying, thedifference of the
opposite gravity vectors is still detectable along both thex- or y-axes. A con-
tinuous difference of at least1.4 g along the x- or y-axes is observed, clearly
indicating this lying position.
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• Climbing (9) on top of objects also introduces a reorientation of the measured
gravity vector. This movement consists of lateral (along the y-axis) and forward
(along the x-axis) bending of the body, together with a reorientation of the grav-
ity vector along the z-axis. The test person climbs onto a wall of approximately
1.5 m and1 m height at Point G and Point H, respectively.

4.5.2 Spectrogram

In Figure 4.13, the rectangular windowed fast Fourier transform (FFT) of the ac-
celerometer data is plotted for Node 1, as a spectrogram witha time window of
256 samples, clearly indicating different movements of the test person. This spec-
trogram is normalized to the amplitude of the largest frequency component.

Figure 4.13: Spectrogram for the frequency components of the accelerometers in the outdoor
measurement (normalized amplitude).

At a normal walking speed, a main frequency component of2 Hz is observed,
whereas3 Hz is obtained when running. A person who is running takes larger steps,
which explains why an approximately double speed results inan increase of the main
frequency component by only a factor of1.5. However, running is easily detected, be-
cause both the frequency and amplitude of the main spectral component significantly
increase compared to walking. In a stationary position, a frequency component of
0 Hz (DC), is observed. This is clearly shown when the test person has climbed on
the wall in the outdoor measurement. Accelerations for stepcounting are easily de-
tected in the spectrogram. After the test person climbs the wall, the increasing main
frequency component in the time needed to achieve normal walking speed is indicated
by an arrow in Figure 4.13, illustrating the accuracy obtained by the sensor network.

4.5.3 Activity recognition results

In Figure 4.14, the measurement data from two nodes are displayed (for clarity rea-
sons), while several activities are performed during a timeframe of approximately
3 min. Below the acceleration data from the two sensor nodes, the status of the activ-
ity recognition algorithm is shown. The implementation of the algorithm allows easy
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recognition of the current activity of the rescue worker. Four levels are used in the
graph to indicate the status of the activity recognition algorithm.
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Figure 4.14: Activity recognition results for walking, running and lying down in different po-
sitions.

As can easily be verified in the unprocessed measurement in Figure 4.14, the clas-
sification algorithm successfully determines the user state in a computationally effi-
cient way. Although detection on one on-body node is alreadyremarkably accurate,
the combination of data from all sensors in the on-body network further increases the
reliability as a classification system for user actions.

4.6 Evaluation of on-body node-to-node
link reliability

An important aspect in the functionality of the body-worn system is that off-body
transmissions are employed for the node-to-node communication on the same body,
relying on reflections in the environment. As this issue raises questions about link
reliability, especially between front and back nodes, an experiment is performed illus-
trating the received signal levels, as well as the packet loss for the node-to-node links.

A person equipped with four nodes is performing a random walking behavior in
an indoor environment, including maneuvers, such as jumping and lying down. The
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nodes numbered1 to 4 are located in the front, back, left and right of the body, in that
order. The base station is placed within line of sight of the walking person. The total
number of 5940 received packets corresponds to4 min of walking and allows accurate
statistics of the link behavior.

The cumulative distribution function of the received signal powers for the12 node-
to-node links is displayed in Figure 4.15. These curves illustrate that the signal level
is at least15 dB above the ADF7242 transceiver’s specified receiving threshold of
−95 dBm for 98% of the received packets.
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Figure 4.15: Cumulative distribution function of the received signal levels for the12 on-body
node-to-node links in a front, back, left and right configuration.

In total, 12 node-to-node links exist in a four-node network. The nodes corre-
sponding to each link are listed in Table 4.3, including the median received power and
packet loss for each link. The maximum number of subsequently lost packets on each
link is included, as this is valuable information to acknowledge the reliability of the
network enumeration protocol explained in Section 4.2.1.

The maximum number of subsequently lost packets on any node-to-node link is
three, corresponding to a maximum link interruption of120 ms, whereas the timeout
for the enumeration process is1 s. Note that packets are always received at a25 Hz
rate, independent of the number of active nodes, as transmissions by all active nodes
are received, making the probability of an enumeration fault extremely low. In the
unlikely case that such an error does occur, this will be immediately detected by the
base station.
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Table 4.3: Median received power and packet loss for the on-body node-to-node links.
Node numbers correspond to the following locations: 1, front; 2, back;3, left; 4, right.

TX Node RX Node MedianPRX Packet Loss (%) Max # Subsequently
Lost Packets

1 2 −59 0.43541 1
1 3 −55 3.4833 1
1 4 −48 4.4993 3
2 1 −60 3.7736 1
2 3 −45 3.701 2
2 4 −54 3.7736 1
3 1 −50 3.3382 1
3 2 −47 0.21771 1
3 4 −61 3.701 2
4 1 −47.5 3.5559 1
4 2 −44 0.072569 1
4 3 −58 3.4833 1

4.7 Performance analysis for a
three-person network

As a further assessment of the reliability of the wireless network and classification in
the case of multiple persons, a measurement is performed employing three persons,
each wearing one network node on the chest. The three personsare performing in-
dependent random walks within the same area, separated by varying distances of up
to 20 m. The persons are all randomly switching between actions, such as walking,
running, standing still, laying down and jumping, clearly illustrating the presence of
separate persons. The computationally simple classification method is performed on
the sensor data of the three persons, confirming its reliability for different test per-
sons. Both the sensor data and the classification results areshown in Figure 4.16.
The markers on the graphs refer to the actions, as described in Section 4.5. Although
only one node is used for each person to measure accelerations and perform automatic
classification, the computationally simple algorithm still performs very well.

Additionally, the experiment proves the following important communication prop-
erties of the system:

• Node-to-node communication is also very reliable between nodes mounted on
different persons operating in a team.

• Thanks to the forwarding of packets, not a single measurement is lost, even
when only one unit installed on each body.

The Cumulative Distribution Function (CDF) of the receivedsignal powers for the
six node-to-node links is displayed in Figure 4.17. These curves illustrate that the sig-
nal level is at least20 dB above the ADF7242 transceiver’s specified receiving thresh-
old of −95 dBm for 98% of the received packets. In comparison, the node-to-node
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communication is even more reliable between nodes on different bodies, compared
to the link between nodes on the same body. This behavior is asexpected, as when
the nodes are mounted on different persons of a team a line-of-sight link often exists
between these nodes.

Interestingly, the median received power is in the same range for the person-to-
person links compared to on-body node-to-node links. The persons are constantly
reorienting during the random walk and located at varying distances from each other,
resulting in a constantly changing path loss. However, the spread between differ-
ent CDF curves is much more limited for the person-to-personlinks. The reason for
this behavior is that for the full measurement, the propagation conditions are similar
for each pair of nodes, with each node worn on the front of a person performing a
random walk over a4-min time span. In comparison, for the on-body node-to-node
communication, the nodes are in fixed locations on the same body, causing systematic
differences in the CDF curves due to the specific set of fixed body locations corre-
sponding to each pair of communicating nodes. The packet loss values, as shown in
Table 4.4, are also significantly lower for the person-to-person links, confirming the
results observed in the CDF characteristics.

Table 4.4: Median received power and packet loss for the person-to-person links.

TX Person RX Person MedianPRX Packet Loss (%) Max # Subsequently
Lost Packets

1 2 −51 0.55866 1
1 3 −54 0.8126 1
2 1 −52 0.76181 1
2 3 −54 0.8126 1
3 1 −51 0.71102 1
3 2 −51 0.25394 1

We conclude that distributing the nodes over several persons does not compro-
mise the wireless communication between nodes or the network functionality in any
way. Node-to-node links on the same body, as well as person-to-person links are al-
ways very reliable, thanks to the low packet loss for each link, combined with the
redundancy introduced by forwarding packets, leading to a reliability increase of the
communication system comparable to Nth-order transmit diversity for anN -node net-
work [34].

4.8 Discussion

The flexible wearable wireless network system successfullymeasured three-axis ac-
celerations and transmitted these measurements and a classification thereof to the base
station without a single missing sensor measurement in all experiments performed.
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Figure 4.16: Accelerometer data and classification results for three persons in the wireless
sensor network.

Additionally, this performance was achieved with very low delays, even when data
was received via forwarding.
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person-to-person links.

An important advantage of the node is surely the textile patch antenna, which of-
fers more antenna gain than the popular inverted-F antenna seen in many other publi-
cations. Both the circuit and the antenna are very flexible, providing a great advantage
for garment integration of the system. The dedicated network protocol and embedded
classification algorithm are important extra features increasing the reliability.

Although a minor degree of packet loss, varying between0.2% and4.5%, does
occur on the individual links between nodes, or between a node and the base station,
a dedicated network protocol improves connectivity by means of data forwarding. In
this network protocol, specifically designed for the difficult radio propagation condi-
tions experienced by moving persons in an indoor environment, all data transmitted by
each network node are forwarded by all of the other nodes. Data forwarding creates
redundancy, resulting in a very reliable data transmissiontowards the base station,
which results in a performance increase comparable to Nth-order selection combining
diversity for an N-node network, as shown earlier in [34]. This approach leads to a
very significant increase in data reliability and/or communication range.

The proposed protocol is an important feature of the system.Thanks to its sim-
plicity and the data redundancy introduced, it is very suitable for the typical scenario
of moving persons in an indoor environment, experiencing dramatically varying radio
propagation between each set of nodes or between each node and the base station.
Established network protocols, such as ZigBee, used in manypublications, are more
suitable for networks with nodes in static positions. Problems arise when channels are
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rapidly changing, for each transmitted packet, due to the higher complexity of the pro-
tocol. Additionally, the proposed protocol allows quasi delay-free operation, thanks to
the immediate forwarding of data. For a12-node network, the delay would maximally
augment to0.5 s in the worst-case propagation conditions.

The network does require a power-on sequence to initialize.Nodes should be
switched on subsequently with all persons wearing nodes well within each other’s
range and respecting a one-second interval in between switch actions. This disadvan-
tage does not cause a problem in realistic interventions where the members of a small
team start their actions together. Note that the protocol offers extreme reliability in
return, after correct initialization. Many problems occurring with more complex pro-
tocols are avoided. Suddenly missing nodes, appearing again later, rejoin the network
immediately, as if nothing happened. Of course, the proposed protocol is only suitable
for low data-rate communication and is focusing on data integrity in exchange for data
throughput. However, in realistic firefighting conditions,only low date-rate informa-
tion is available, as high data-rate sources, such as video cameras, are unusable, due
to smoke causing zero visibility.

Specific validation of on-body node-to-node links, as well as off-body person-to-
person links was performed, resulting in the very importantconclusion that either form
of communication is very reliable. More than98% of the transmitted packets were
received at a power level that was at least15 dB and20 dB higher than the specified
receiving threshold for the transceiver chip, for node-to-node and person-to-person
links, respectively.

A classification algorithm was also programmed on the microcontroller on each
node and validated in realistic conditions. The three-person measurement demon-
strated the reliable operation of this computationally simple algorithm for persons of
different body sizes. Despite the simplicity of the embedded classification, the algo-
rithm combined with the forwarding of the classification results has the potential to
provide information about the user state to the base stationin extremely bad radio
propagation conditions, where the base station is not receiving all of the raw measure-
ment data anymore.

4.9 Conclusions

A novel autonomous wearable cooperative wireless sensor node network was devel-
oped, synchronously measuring and interpreting accelerometer data on multiple nodes
and transmitting the data to a base station. Event detectionis performed close to the
sensors, by means of the on-node low-energy microcontroller, running a computationally-
efficient algorithm. The system operates very reliably in various radio-propagation
environments. The received signal strength can be used as a valuable additional pa-
rameter, providing ranging and orientation information. On-body node-to-node com-
munication is exploited to synchronize measurements on multiple autonomous nodes,
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at different body locations, and to share sensor data between these nodes. Nth-order
transmit diversity performance is approached, by repeating the sensor data from the
other on-body nodes, drastically enhancing communicationreliability by eliminating
packet loss. The system is highly valuable for rescue workers and law-enforcement
officers, as well as for a wide range of military and civilian applications. Network
functionality can readily be enhanced, by extending the software on the embedded
microcontroller. Besides increasing the number of nodes onthe body of one person,
several persons can join the sensor network, share each other’s sensor data and for-
ward each other’s data packets. Sensor fusion can be enabledby integrating multiple
sensors, such as temperature, moisture and gas sensors, on asingle wireless node. The
small-size and low-cost sensor nodes, easily and comfortably integrated into clothing,
also implement a real-time situational awareness system.
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A compact wearable Personal Distributed Exposimeter is proposed, sensing
the power density of incident radio-frequency (RF) fields onthe body of a hu-
man. In contrast to current commercial exposimeters, our Personal Distributed
Exposimeter, being composed of multiple compact personal wearable RF ex-
posimeter sensor modules, minimizes uncertainties causedby the proximity of
the body, the specific antenna used and the exact position of the exposime-
ter. For unobtrusive deployment inside a jacket, each individual exposimeter
sensor module is specifically implemented on the feedplane of a textile patch
antenna. The new wearable sensor modules high-resolution logarithmic de-
tector logs RF signal levels. Next, on-board flash memory records minimum,
maximum and average exposure data over a time span of more than two weeks,
at a one-second sample period. Sample-level synchronization of each individ-
ual exposimeter sensor module enables combining of measurements collected
by different nodes. The system is first calibrated in an anechoic chamber, and
then compared to a commercially available single-unit exposimeter. Next, the
Personal Distributed Exposimeter is validated in realistic conditions, by mea-
suring the average RF power density on a human during a walk inan urban
environment and comparing the results to spectrum analyzermeasurements
with a calibrated antenna.

5.1 Introduction

National legislation and the international Commission on Non-Ionizing Radiation Pro-
tection (ICNIRP) [1] impose limits in terms of whole-body averaged SAR (SARwb)
[2]. Since these SARwb levels can only be evaluated by numerical simulations [3],
equivalent reference levels, which can be measured and compared to the international
guidelines issued by INCIRP, have been defined on the incident power density. Such
exposure measurements are currently performed with commercially available Personal
ExposiMeters (PEMs) [2, 4–7].

These measurements are compromised by large measurement uncertainties, due
to shadowing by the test person’s body [8, 9], dependence on polarization [10] and
out-of-band detection. Furthermore, conventional PEMs cannot be unobtrusively de-
ployed on the human body, whereas a fully integrated wearable on-body PEM enables
continuous monitoring of long-term RF exposure, without hindering the test person’s
daily activities. Moreover, an on-body Personal Distributed Exposimeter (PDE), com-
posed of multiple PEMs, increases the measurement accuracy[11].

We present a fully autonomous on-body PDE, composed of multiple independent
RF-exposure modules, each integrated on a textile antenna feed plane. Thanks to their
ground plane [12], the applied patch antennas minimize capacitive antenna loading by
the body. Without loss of generality, we specifically configure the exposimeter for the
Global System for Mobile Communications (GSM) worldwide downlink [925 MHz -
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960 MHz] frequency band [13]. Each wearable exposimeter modulemakes use of a
state-of-the-art logarithmic-detector to pair accuracy with a dynamic range of 80 dB.
The on-board flash memory logs for over two weeks of measurement data, thereby
eliminating a permanent Personal Computer (PC) connection. A similar on-body de-
vice was documented in [11], yet without data logging or unobtrusive integration po-
tential. To the authors knowledge, this is the first fully tested wearable PDE.

In Section 5.2, the wearable PDE system is described, followed by its validation on
a human body in Section 5.3. The calibration procedure is explained in Section 5.4. A
real life measurement is outlined in Section 5.5. Conclusions are listed in Section 5.6.

5.2 System overview

The PDE is composed of multiple newly designed wearable exposimeter modules, of
which the construction is described below.

5.2.1 Antenna

Due to the large wavelength of the frequency of the GSM downlink band, an aperture-
coupled shorted patch antenna is selected, as displayed in Fig. 5.1. The antenna fea-
tures a compact size and excellent antenna performance in proximity of the human
body, while avoiding fragile probe feed connections [14, 15]. Therefore, this antenna
is more suitable for garment integration than conventionalantennas. Further improve-
ment of the coupling between the antenna and the exposimetermodule is obtained
by employing an H-shaped coupling slot, thereby also minimizing the backward ra-
diation into the human body [16]. The textile material is flexible and lightweight,
without sacrificing antenna performance, in comparison to rigid antennas. A flex-
ible polyurethane protective foam (thickness =11 mm permittivity ǫr = 1.16 and
tan δ = 0.010), commonly used in protective garments for rescue workers is applied
as a substrate material, protecting the electronic circuitry from external factors, such
as heat and humidity. A low-cost, conductive, electro-textile material, called Flec-
tron, is used to construct the ground plane and radiating element. The material has
a thickness less than0.25 mm and surface resistivity less than0.1 Ω/sq., minimizing
conductor losses. The influence of the body, which is in closeproximity to the an-
tenna, is limited, thanks to the ground plane structure. This feature will also make
the PDE’s performance nearly independent from the test person’s body morphology.
The feed substrate is constructed using two stacked Aramid textile layers, a material
which is frequently used as outer layer in firefighter jackets(thickness =0.95 mm,
permittivity ǫr = 1.97 and tanδ = 0.02). The feed line is realized by means of copper
foil. The antenna covers the complete GSM 935 MHz to 960 MHz downlink band.
The3 dB beam width of the antenna approximately equals110◦, with an antenna gain
of 2.9 dBi and an antenna efficiency of76.6%. The top view of the antenna and its
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Figure 5.1: Top- and bottom-view of the patch antenna. On the bottom view, the exposimeter
electonics and antenna are shown separately. In the actual implementation, the exposimeter’s
electronics are mounted onto the feed plane of the antenna.
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Figure 5.2: Bock diagram of single autonomous exposimeter module, with integrated band-
pass filter (BPF), logarithmic RF detector and temperature compensation (Temp Comp). The
PC connection is only used to configure the microcontroller (uC) and to download logged data
from the4 MB on-board flash memory.

dimensions are shown in Fig. 5.1, with the electronic circuitry integrated onto the feed
plane of the antenna.

By placing the electronics on the feed plane of the patch antenna, each very com-
pact module may be unobtrusively integrated into garments or clothing [17]. In addi-
tion, each unit can be encapsulated together with the textile antenna into a breathable
Thermoplastic PolyUrethane coating (TPU), implementing awashable system [18].

5.2.2 System design

The block diagram of the proposed exposimeter module, integrated on the antenna
feed-plane is presented in Fig. 5.2. The selection of the keycomponents is motivated
as follows.

The RF-signal received by the antenna is filtered by a SurfaceAcoustic Wave
(SAW) Bandpass filter (BPF), to remove undesired out-of-bandsignals. In this con-
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figuration for the GSM downlink, the TriQuint 856528 SAW filter is chosen, with a
bandwidth of35 MHz and passband insertion loss of2.5 dB. Outside the passband,
an attenuation of35 dB is quickly achieved. Thanks to the filter architecture, noaddi-
tional impedance matching network is required, helping to reduce the physical size of
the circuit. The filtered signal is measured by an Analog Devices ADL5513 [19] Log-
arithmic RF Detector, providing an output voltage proportional to the input RF level
in dBm over a very large dynamic range. The output voltage of the RF detector is
measured by a16 bit Analog-to-Digital Converter (ADC) and transported on the PDE
board to the C8051F921 microcontroller (µC), by Silicon Labs, through the high speed
Serial Peripheral Interface (SPI) data bus. To correct the small temperature-dependent
variation of the output level of the Logarithmic RF Detector, an automatic frequency-
dependent temperature compensation is implemented by a Digital-to-analog-converter
(DAC) connected to the on-board microcontroller and its built-in temperature sensor.
The micro controller is programmed in C. The software is uploaded to its memory
through the In-Circuit-Programming interface.

The digitized measurement data are further processed by theon-board software
at a data rate of1000 samples/sec. The minimum, maximum, as well as arithmetic-
and geometric averages of the received RF signal power, overa one-second time slot,
are stored into the on-board flash memory. The4 MB flash memory provides up to
two weeks of non-volatile storage space. To guarantee the data integrity, at each time
slot, a check sum of the measurement data is calculated and stored into the memory
together with the measured data.

Besides the storage of the averaged measurement data at a one-second rate, the
system may store raw sampled data at a full sample rate of1000 samples per second
for analysis of high-speed measurements in post processing. The maximum sample
rate of the exposimeter is250 ksps, as determined by the ADC specifications.

After the logging period, the measurement data are easily transferred to the per-
sonal computer (PC) over the USB-link for data-analysis.

Owing to the flexible and lightweight design of the system, the PDE is comfortably
wearable by the test persons without restricting their movements. A top-view of the
exposimeter circuit is shown in Fig. 5.3. Its planar circuitboard’s size of35 mm by
55 mm is smaller than the antenna, allowing easy integration onto its feed-plane. An
overview of the technical specifications is shown in Table 5.1.
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Figure 5.3: Top view of the system [57 mm× 33 mm]

Table 5.1: Specifications of the single PEM node

Specification Value

Dynamic Range 80 dB
Minimum Input Power −70 dBm
Maximum Input Power 10 dBm
Operating supply voltage 3.5 - 12 V
Size antenna 100 mm x125 mm
Size PCB 35 mm x55 mm
Frequency range 1 MHz - 4 GHz
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5.2.3 Frequency selection of the personal exposimeter

The measured frequency band is selected by the bandpass Surface Acoustic Wave
(SAW) filter. For each desired frequency band, a filter with theappropriate response
may be inserted, without needing to adjust the circuit design. In this application, the
full GSM 900 frequency band is measured, without further adjustments tothe circuit
or antenna, allowing to measure the incident power density in this particular frequency
band.

5.2.4 Calibration

The digitized output voltage of the logarithmic-detector is a function of the corre-
sponding RF input power. This function is accurately determined by means of cali-
bration.

The calibration of the RF input level of the exposimeter without antenna is per-
formed in an anechoic chamber. Calibration datasets are constructed for each unit
separately and stored into its flash memory for use during theactual exposure mea-
surements. Logarithmic detection results in an accurate measurement over a large
dynamic range, stored in a limited number of bits per measurement value. The Log-
arithmic RF Detector exhibits80 dB dynamic range, with a minimum RF input level
of −70 dBm. By employing the calibration data, a1 dB resolution is achieved. To
compensate the temperature-dependent offset, the output voltage of the DAC (Analog
Devices AD5641 [20]) is automatically adjusted [19] as a function of the operating
temperature.

5.2.5 Exposimeter synchronization

In the proposed PDE setup, where more than one exposimeter node is employed on the
human test person, synchronization of all the exposimeter nodes is required to achieve
an exposure measurement with accurate timestamps. All the exposimeter nodes are
equipped with the same24.576 MHz crystal with a frequency stability of10 PPM.
The sample period is directly derived from this main on-board clock, thereby min-
imizing the influence of frequency instability over a long time. Synchronization is
achieved by connecting each individual exposimeter node tothe PC. The PC will ini-
tialize the timing registers of the microcontroller for deriving the sample period. In
addition, a time stamp is placed into the flash memory based onthe PC clock. This en-
sures that all modules composing the exposimeter will sample at the same time instant
within the defined sample period, with only a minimal deviation. After synchroniza-
tion, each individual exposimeter immediately starts capturing exposure data. When
the measurement campaign is terminated by the user, the dataare transferred to the
PC, including the time stamps in the flash memory. Based on thetimestamps, the
processing software aligns the data samples and starts further data processing.
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Table 5.2: Current consumption of the main components of the exposimeter node

Component Power Mode Current Consumption Power @ 3V3

Microcontroller
Idle 2.5 mA 8.25 mW
Sleep 0.1 µA 0.33 µW
Normal 4 mA 13.2 mW

RF detector
Power on 31 mA 102.3 mW
Power Down < 200 µA < 660 µW

Memory
Stand by 25 µA 82.5 µW
Deep Power-down 5 µA 16.5 µW
Read/Write 12 mA 39.6 mW

ADC
Power on at100 ksps 550 µA 1.82 mW
Stand by 1 nA 3.3 nW

Temp comp.
Normal mode 60 µA 198 µW
Power down 500 nA 1.65 µW

5.2.6 Power consumption

The exposimeter is powered by a1-cell Lithium polymer (Li-po) battery and a low-
drop linear voltage regulator. From the technical data sheets of the integrated compo-
nents, an estimation of the power consumption is made. An overview of that current
consumption is given in Table 5.2.

The microcontroller will consume an average current of4 mA at 3.3 V and at a
clock frequency24.576 MHz. In sleep mode, the current consumption can be reduced
to 600 nA. The flash memory consumes on average12 mA at 3.3 V while operating
(reading or writing), whereas in standby mode, the current consumption is reduced to
25 µA, or to 5 µA in deep power-down mode.

The most current-consuming device on the exposimeter node is the RF detector,
consuming31 mA in full operation. In power down mode, its current consumption is
lowered to less than200 µA. The current consumption of the ADC and temperature
compensation circuits is550 µA and60 µA, respectively.

The average current consumption is estimated to be40 mA at 3.3 V, taking into
account that the detector is always in power on mode, while the memory is accessed
only once every second.

In full operation, the measured average power consumption of one exposimeter
node equals131 mW (39.6 mA current consumption, at3.3 V supply voltage). This
enables the sensor network to operate for many hours, without the need for charging
the battery. The power consumption can further be reduced byemploying the sleep
mode of the system when there is no need to continuously operate at high speed.
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5.3 Validation

5.3.1 Free-space performance

To measure the frequency response at the input of the exposimeter, the complete sen-
sor (including vertically polarized antenna) is placed in an anechoic chamber at4.34 m
from the radiating antenna. The TX standard gain horn (NSI-RF-SG975, with a gain
of 14 dBi at942.5 MHz), connected to a signal source with an output power of10 dBm
(cable losses =3.75 dB), swept over a frequency range from840 MHz to1040 MHz, is
radiating along both horizontal and vertical TX polarizations. The response is shown
in Fig. 5.4, indicating a large attenuation for out-of-bandsignals. Clearly, the atten-
uation is very steep on the bottom side of the GSM downlink band, resulting in a
rejection by at least35 dB of 880-915 MHz GSM-900 uplink signals. For frequen-
cies slightly above the GSM-900 downlink band, a better than23 dB attenuation is
also sufficient, considering that, according to the band planning, no strong signals are
expected adjacent to the upper end of the GSM downlink band.

Since the measured received power on the exposimeter in thisanechoic measure-
ment is significantly larger than the signals that will actually be measured during a
real-world measurement, out-of-band signals will be belowthe noise floor of the ex-
posimeter thanks to the band-pass filtering characteristics. They will not affect the
actual measurements in the desired frequency band.
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Figure 5.4: Free-space frequency response of the vertically polarized exposimeter

The clearly visible difference of approximately12 dB between both TX polariza-
tions is due to the vertically polarized receive antenna of the node. An ideal exposime-
ter has no dependence of the polarization. In order to minimize the influence of the
received polarizations, several exposimeters are placed onto the body, oriented along



104 COMPACT PERSONAL DISTRIBUTED WEARABLE EXPOSIMETER
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Figure 5.5: Positions of the four Personal ExposiMeter (PEM) modules composing the Per-
sonal Distributed Exposimeter (PDE), shown together with the position of theEME Spy 140
onto the body of the test-person

orthogonal polarizations, as further described and evaluated.
While the transmitted signal of the base station is vertically polarized, the received

polarization will vary due to the angle of arrival on the nodes and the different paths
followed by the signal in the environment. By orienting the nodes along both po-
larizations, all signals received from the base station canbe captured. Furthermore,
these linearly polarized antennas are easier to construct,in comparison to textile patch
antennas with a circular polarization, thereby reducing the cost and the size of the
nodes.

5.3.2 On-body performance

The PDE is configured for the GSM-900 downlink frequency band, which is present
in most environments. Four separate nodes of the PDE are distributed at optimal
positions over the front and rear sections of the torso of a 1.85 m large test person
having a weight of 80 kg, as shown in Fig. 5.5. The polarizations of the individual
nodes are also chosen for complementarity.

The person with the four nodes distributed over the body stands on the rotor in-
side the anechoic chamber, in the far-field of the standard gain horn, radiating at
942.5 MHz, being the center frequency of the GSM-900 downlink band, connected
to a signal generator with a transmit power of10 dBm (cable losses =3.75 dB). The
person wearing the PDE is rotated in the azimuth plane over anazimuth angle of360◦.
These measurements are repeated for Horizontal (H) and Vertical (V) TX polariza-
tions. During these measurements, a commercially available secondary exposimeter
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(EME Spy 140) is worn at waist-height. The distance from the middle of the human
test subject to the aperture of the horn antenna is4.34 m.

These measurements are plotted in a logarithmic scale, shown in Figs. 5.6 and 5.7,
for TX Vertical and Horizontal polarizations, respectively. Besides the field strength
on each single node, the averaged field strength over the fournodes is calculated in
the azimuth plane for each azimuth angleϕ, for both horizontal and vertical polariza-
tions. The average field strength of the proposed PDE, calculated for each angle in the
azimuth plane, is approximately constant, making the exposimeter output independent
of the transmit polarization.
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Figure 5.6: Electric field strength [dB] on all4 nodes in the azimuth plane, worn on-body as
shown in Fig. 5.5.180◦ = front side of the body, vertically polarized TX antenna

In order to determine the dependence on the polarization when worn on-body,
the standard deviationσpol is calculated based on the difference in the received field
strength of both polarizations. It is determined for both the ”EME Spy 140” and for
the PDE, by averaging the logarithmic field strength over thefour nodes. This results
in

σPDE diff H/V = 2.32 dB

σEME Spy 140 diff H/V = 3.73 dB

This allows us to conclude that the PDE is less polarization dependent than the
”EME Spy 140”. To compare the PDE and the ”EME Spy 140” in an on-body sce-
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Figure 5.7: Electric field strength [dB] on all4 nodes in the azimuth plane, worn on-body as
shown in Fig. 5.5.180◦ = front side of the body, horizontally polarized TX antenna

nario, the standard deviationσ of the field strength over different azimuth angles is
calculated for both horizontal as well as vertical polarization. σ indicates how circular
the pattern is in azimuth angle. A pattern that is perfectly omnidirectional results in a
standard deviation of0 dB. σφ is derived from the (Logarithmic) field strength on the
four nodes, resulting in

σPDE Hor = 2.70 dB

σPDE Vert = 3.35 dB

σEME Spy 140 Hor = 6.94 dB

σEME Spy 140 Vert = 9.13 dB

We clearly obtain a better performance for the PDE in comparison to the commer-
cial exposimeter. In Figs. 5.8 and 5.9, the normalized field strengths, for both the PDE
and the ”EME Spy 140”, are plotted for a vertically and horizontally polarized trans-
mitted signal, respectively. This visually verifies the above results. The PDE clearly
achieves a more uniform distribution of the field strength over the azimuth plane.
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Figure 5.8: Normalized electric field strength [dB] on the PDE and ”EME spy 140”.180
◦ =

front side of the body, TX vertical polarization

5.4 Calibration

As discussed above, the power received by the PDE is almost constant, independent
of polarization or azimuth angle for a given transmit power.To obtain an accurate
measurement result of the actual RF field strength at the location of the human body
in a real environment, the PDE requires calibration, which is performed in an anechoic
chamber. The calibration eliminates the influence of the body on the PDE measure-
ment.

The measurements in the anechoic chamber for both horizontal and vertical TX
polarizations, used earlier to validate the exposimeters,are now employed to calibrate
the PDE when performing on-body measurements.PH

geom (ϕ) andPV
geom (ϕ) are the

geometric average received powers for the horizontally andvertically transmit polar-
ization as a function of the azimuth angle, respectively. Furthermore, the free-space
incident powersSH

inc andSV
inc are measured using the NBM-550 broadband probe, for

both polarizations at the TX horn antenna, as described in section 5.3.2 for the PDE,
but now with the broadband probe at exactly the same location.

From the calibration measurements, the geometric average Antenna Aperture
(AAgeom) of the total PDE is determined, given by

AAgeom (ϕ,ψ) =
PH
geom (ϕ)

SH
inc

cos2 (ψ) +
PV
geom (ϕ)

SV
inc

sin2 (ψ)
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Figure 5.9: Normalized electric field strength [dB] on the PDE and ”EME spy 140”.180
◦ =

front side of the body, TX horizontal polarization

whereSV
inc =0.541mW/m2 andSH

inc =0.394mW/m2, and withψ the polar-
ization of an incident electric field.AAgeom (ϕ,ψ) is calculated for103 ψ-samples,
located in the interval [0-2π] radians. Theψ-samples are drawn from a Gaussian
distribution in an ”Urban Macro cell” scenario [3, 21], in order to take into account
a realistic polarization of the incident electric field. This scenario provides the best
correspondence to earlier measurements performed in the city of Ghent [6].

The set of values resulting from this procedure provides thedistribution ofAAgeom

for realistic angles of arrival. From this distribution, the median is chosen as the value
of the Antenna Aperture (AAgeom) of the total PDE. In addition, the full calibration
procedure is repeated100 times, and the results are averaged in order to improve ac-
curacy. Based on this calibration process, the average value ofAAgeom is found to be
6.58 cm2

Once the value ofAAgeom is determined, a real world measurement can start.
After this measurement, the incident power received on the body of the test person
can be determined by

Sinc =
Pgeom

AAgeom

, (5.1)

wherePgeom is the geometric average received power on the four nodes of the
PDE, observed during the real world measurement.
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Figure 5.10: Received power density [dBW/m2] on the body of the test person, measured
with the active nodes of the PDE versus the commercially available exposimeter. The position
markers corresponding to the numbers in Fig. 5.11

To perform a real-world measurement, the same test person asin previous mea-
surements, equipped with the PDE and the ”EME spy 140”, walksalong a predefined
path in the city-center of Ghent (Belgium). During this walk, the received power is
recorded on all the exposimeter nodes as well as on the ”EME spy 140”, in a time in-
terval of1 second. Fig. 5.10 shows the total power density received by the test person
with the calibrated PDE during the complete walk, as well as the power density on
the ”EME spy 140”. In Fig. 5.11, the 2.6 km outdoor trajectorythrough Ghent, fol-
lowed by the test person, is shown. On this map, the position markers corresponding
to the numbers in Fig. 5.10, as well as the position of the nearby GSM-900 base-
stations [22], are shown.

The total power density, received during the walk, is determined based on the ac-
tive exposimeter nodes of the PDE, after applying the calibration procedure described
in Section 5.4. The power density of the ”EME spy 140” is extracted from the mea-
surement logging file. The measurement results clearly showthat the received powers
of both measurement devices exhibit the same trend, but withshort-term differences
in power density levels. The shadowing by the body has a significant influence on
the measurement results by the commercial ”EME spy 140”. As stated earlier in Sec-
tion 5.3, the signals received on the ”EME spy 140” are dependent on the angle of
arrival of the signals in the azimuth plane. The omnidirectional receive pattern, which
is obtained with the PDE, ensures a more accurate estimationof the power density
levels in comparison to a non-distributed device such as the”EME spy 140”.

The maximum instantaneous power density measured by the PDEduring the ex-
periment is28mW/m2. As a result, the average power density levels over a6-minute
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Figure 5.11: Map of Ghent with the path walked by the test person, with numbered position
markers and GSM-900 basestation symbols, (source: Google Earth)

time frame are well below the ICNIRP reference level of4.8W/m2 [1]. Furthermore,
from these measurements, the SARwb can be determined, as described in [23, 24].

5.6 Conclusion

A compact wearable Personal Distributed Exposimeter is proposed, which increases
the measurement accuracy in comparison to conventional Personal Exposimeters, in-
cluding the dependency on the polarization and the angle in the azimuth plane. The
Personal Distributed Exposimeter is composed of several newly designed on-body
exposimeter modules, which are integrated onto the feed plane of a textile antenna.
The different modules apply synchronous exposure data sampling, while being un-
obtrusively integrated inside a garment and being distributed over the body of the
test person. Therefore, this new compact exposimeter is a step forward towards user-
friendly Personal Distributed Exposimeters in multiple frequency bands, integrated
into a single garment for measuring exposure data in a convenient way. Validation of
the Personal Distributed Exposimeter shows that the systemexhibits less dependence
of the received polarization or the angle of the azimuth plane, compared to commer-
cial available exposimeters. A fast and accurate calibration process is proposed, to
eliminate the influence of the body onto the PDE. To validate the measurements per-
formed by the Personal Distributed Exposimeter, a real world exposure measurement
was carried out for the GSM-900 downlink band. The measurement is performed in
the city center of Ghent, whose propagation characteristics correspond to an Urban
Macro Cell. The measurement was also carried out employing an ”EME spy 140”
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commercial exposimeter. This experiment clearly illustrates that the PDE provides a
more accurate estimation of the power density levels on the human body. The com-
mercial, non-calibrated exposimeter deployed on the body influences the measurement
results due to shadowing by proximity of the body, leading toan underestimation of
the power density levels on the human body. The maximum instantaneous power den-
sity measured by the PDE during the experiment equals28 mW/m2, which is well
below the ICNIRP reference level of4.8 W/m2 for an average power density level
in a 6-minute time frame. Based on these measurement data, the whole-body SAR
may readily determined. Besides for verifying compliance of RF field exposure with
ICNIRP reference levels, the proposed modules can also serve as sensor nodes to eval-
uate the potential of RF energy harvesting [25–28] and wireless power transfer [29].
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Lucyszyn, P. Mezzanotte, J. Kracek, D. Masotti, A. Boaventura, M. Nieves Rúız,
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CHAPTER6

Conclusions and future work

6.1 Conclusions

The research presented in this work, focused on the integration of electronic systems
on wearable textile antenna platforms. The integration of electronics onto a textile
antenna has proven its added value, by reducing power consumption, increasing the
antenna efficiency, improving the link quality, etc. Several prototypes were developed
and evaluated for rescue worker applications. Besides the rescue worker applications,
a consumer application was also considered.

First, a textile wearable wireless node, for operation in the 2.45 GHz ISM band,
was designed. The electronic system was integrated onto thefeed plane of the textile
antenna, complete with a transceiver implementing receivediversity. Fragile and lossy
interconnections were eliminated. They were replaced by very short radio-frequency
signal paths in the antenna feed plane, reducing electromagnetic compatibility and
signal integrity problems. The resulting textile wirelessnode was validated, both in
flat and bent state, in the anechoic chamber, by assessing thecharacteristics of the
integrated system in free-space conditions. Moreover, performance was verified in
various real-world conditions, integrated into a firefighter garment, and used as an
autonomous body-centric measurement device. Furthermore, these textile wearable
wireless nodes were used to deploy a fully-autonomous, wearable, wireless sensor
network, where each flexible textile node performed cooperative synchronous acqui-
sition and distributed event detection. The results of the computationally efficient
situational-awareness algorithms, which are implementedon these wearable wireless
nodes, are wirelessly transmitted to a base station, directly, as well as forwarded by
other on-body nodes. By repeating the sensor data from the other on-body nodes,
the communication reliability is drastically enhancing byexploiting diversity to elimi-
nate packet loss. Extensive experiments in realistic conditions have demonstrated that
this new autonomous, body-centric, textile-antenna, wireless sensor network is able to
correctly detect different operating conditions of a firefighter during an intervention.
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Besides increasing the number of nodes on the body of one person, several persons
can join the sensor network, share each other’s sensor data and forward each other
data packets.

Second, a compact wearable Personal Distributed Exposimeter was designed, com-
posed of several newly designed compact personal wearable RF exposimeter modules.
Each individual exposimeter module is integrated onto the feed plane of a wearable
textile patch antenna, allowing unobtrusive garment integration. The design allows
sample-level synchronization of each individual exposimeter module to enable com-
bining of measurement data collected by different nodes. Validation of the Personal
Distributed Exposimeter shows that the system exhibits less dependence of the re-
ceived polarization or the angle in the azimuth plane, compared to commercial avail-
able exposimeters. A fast and accurate calibration processis proposed, to eliminate the
influence of the body onto the PDE. To illustrate the PersonalDistributed Exposimeter,
a real world exposure measurement was carried out for the GSM-900 downlink band.
The measurement is performed in the city center of Ghent, which is characterized as
an Urban Macro Cell environment.

6.2 Future developments

6.2.1 General improvements

The electronic systems are implemented on a copper-on-polyimide film. This tech-
nique provides a good overall flexibility for the textile antenna system. The size of
the copper-on-polyimide circuit can be further reduced, byremoving the non-copper
plated polyimide film from the circuit, providing extra flexibility of the wearable sys-
tem. Furthermore, stretchable textiles have the potentialto further enhance the flexi-
bility and breathability of the textile system. By enhancing the system with the pro-
posed techniques, mechanical stress can be minimized or eliminated, increasing the
robustness of the total wearable system.

The designed integrated wearable textile systems can be further improved with
other functionalities, such as an advanced power management system. Such power
management system can consist of different components, such as flexible batteries,
providing energy to the system without hindering the user, as well as a solar panel,
providing continuously energy to the system.

More flexibility of the textile system can be obtained by miniaturizing the elec-
tronic system, which is integrated onto the textile antenna. The presented prototypes
are constructed using several discrete components (transceiver chip, microcontroller,
memory, filters, etc.). To minimize the size, these components can be integrated into a
single chip, specifically designed for these applications,ensuring a flexible integrated
system. Furthermore, this chip can be integrated into a versatile printed circuit board,
by thinning the silicon chip itself, which enhances a flexibility of the circuit. Practical
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experience in thinning silicon chips exists at Ghent University.

6.2.2 Large scale production

During this research, working prototypes were developed. These prototypes, both the
flectron antenna patch and ground plane, as well as the substrate of the textile antenna
were handmade or cut by means of a laser. Making these textileantennas requires
good practice, and knowledge, which is no problem for prototyping or small-scale
production. When moving towards large scale production for integration into rescue
worker garments, the fabrication process needs to be optimized.

The textile antenna fabrication process needs to be optimized for convenient inte-
gration into rescue worker garments. The substrates of the textile antennas presented
in this work, are made out of the same material as applied for garments of rescue
workers, allowing to integrate the assembly of the textile antennas during the produc-
tion of the garments. The fabrication of the antennas is critical in terms of size of the
antenna patch and alignment of the patch with respect to its feed structure. To opti-
mize the production in terms of the accurate size of the patch, several options can be
studied. An option already applied during this work, is to make use of a laser cutter.
The used laser cutter has an accuracy of approximately0.1 mm, which is suitable for
this application. The construction by laser cutter needs further research in terms of
integrating the laser in production process of garments. Besides a laser cutter, a cut-
ting plotter is a second cheaper option to cut the textile material. Besides the accuracy
of the size of the different parts of the antenna, the alignment of the several antenna
components is critical. In aperture-coupled antenna designs, the antenna feed needs to
be accurately aligned with the antenna patch. To attach the conductive textile material
onto the flexible foam, thermal glue is used, which is activated by applying heat onto
the surface of the antenna. This technique of activating theadhesive is also a disad-
vantage. When the fabricated antenna is exposed to excessiveheat, the thermal glue
may loosen, such that the antenna patch detaches from the substrate material. Further
research is required to find a way to attach the different textile components to each
other without compromising flexibility, performance and safety. An option that has
already been investigated, is the use of chemical activatedadhesives.

Furthermore, research on automatic assembly of integratedsystems is required.
Automatic production and assembly of rigid Printed CircuitBoards is common nowa-
days, but less common for the production and assembly of flexible printed circuits
boards. The fabrication process of integrating the electronics onto the textile antenna,
needs to be further evaluated to achieve an automatic fabrication process.





APPENDIXA

Schematics wireless sensor

The schematic of the electronic circuit which is integratedonto the feed plane of the
dual-polarized antenna, described in Chapters 3 and 4 is shown in Fig. A.1.

The heart of the system is the ADF7242 transceiver from Analog Devices to-
gether with the Silicon Laboratories C8051F921 microcontroller. The transceiver
supports the IEEE 802.15.4-20062.4 GHz PHY requirements, as well as proprietary
GFSK/FSK/GMSK/MSK modulation schemes, selected according to the desired ap-
plication. The transceiver features a dual-port RF interface, enabling diversity re-
ception. Two Johansson Technology 2450BM14E0007 baluns are used to conjugate
match RF output ports of the ADF7242 transceiver to the400 MHz wide bandpass-
filter (Murata LFL182G50TC1B905), to protect the input fromout-of-band signals.
Embedded software for the microcontroller is developed in the C programming lan-
guage and uploaded into the controller’s nonvolatile code memory by the In-System
Programming interface via a USB cable. The4 MB on-board flash memory can be
used as a buffer or as a data storage for processing and analysis. The transceiver, mi-
crocontroller and memory are connected through a Serial Peripheral Interface (SPI)
bus. For the rescue-worker application, a3-axis accelerometer is integrated, the
ADXL337 from Analog Devices. This accelerometer is directly connected to the mi-
crocontroller’s analog-to-digital converter (ADC).

Fig. A.2 shows the composite drawing of the top- and bottom- layer of PCB layout
of the wireless node circuit. The circuit is implemented in a9 µm copper layer on a
copper-on-polyimide film, UPISELR©-N by UBE, of25 µm thickness.
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Figure A.2: PCB layout of the Wireless node





APPENDIXB

Exposimeter

The schematic of the exposimeter which is used in the Personal Distributed Exposime-
ter (PDE), described in Chapter 5 is shown in Fig. B.1.

The RF signal captured by the antenna is filtered by a Surface Acoustic Wave
(SAW) Bandpass filter (BPF), for the desired frequency band. The RF signal, after the
BPF is measured by a Logarithmic RF Detector (ADL5513, Analog devices), provid-
ing an output voltage which is proportional to the input RF level in dBm over a large
dynamic range.

The output voltage of the detector is measured by means of a16 bit wide Analog-
to-Digital Converter (ADC) and transported to the C8051F921 microcontroller (µC),
by Silicon Laboratories, through the Serial Peripheral Interface (SPI) data bus. Small
temperature-dependent variations of the output level of the Logarithmic RF Detector
are corrected by an automatic frequency-dependent temperature compensation, imple-
mented by means of a Digital-to-analog-converter (DAC) connected to the on-board
microcontroller and its built-in temperature sensor. The embedded software on the
micro controller is programmed in C and uploaded to its memory through the In-
Circuit-Programming interface. The4 MB on-board flash memory can be used as a
buffer or as a data storage for processing and analysis.

Fig. A.2 shows the composite drawing of the top- and bottom- layer of PCB layout
of the wireless node circuit.
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Figure B.2: PCB layout of the Exposimeter module
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