596 research outputs found

    Acceleration-based fault-tolerant control design of offshore fixed wind turbines

    Get PDF
    Wind turbines (WTs) are basically controlled by varying the generator load torque (with the so-called torque control) and the blade pitch angles (with the so-called pitch control) based on measurement of the generator shaft speed. These two controllers unitedly work to satisfy the control objectives, and it is crucial that they are tolerant to possible faults in the WT system. Passive fault-tolerant control comprises the design of robust controllers against disturbances and uncertainties. This enables the controller to counteract the effect of a fault without requiring reconfiguration or fault detection. In this regard, the main contribution of this paper is to propose new control techniques that not only provide fault tolerance capabilities to the WT system but also improve the overall performance of the system in both fault-free and faulty conditions. Coupling nonlinear aero-hydro-servo-elastic simulations of an offshore WT with jacket platform is carried out for several pitch actuator faults. The jacket platform motions and structural loads caused by fault events with the proposed controllers are compared with loads encountered during normal operation and with respect to a well-known baseline controller in the literature. The proposed controllers are based in the super-twisting algorithm by using feedback of the generator shaft speed as well as the fore-aft and side-to-side acceleration signals of the WT tower.Preprin

    Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model

    Get PDF
    This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind turbine controller without any change in both fault and fault-free cases. This is achieved by inserting T–S proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators to be capable to estimate different generators and rotor speed sensors fault for compensation purposes. Due to the dependency of the FTTC strategy on the fault estimation the designed observer has the capability to estimate a wide range of time varying fault signals. Moreover, the robustness of the observer against the difference between the anemometer wind speed measurement and the immeasurable effective wind speed signal has been taken into account. The corrected measurements fed to a T–S fuzzy dynamic output feedback controller (TSDOFC) designed to track the desired trajectory. The stability proof with H∞ performance and D-stability constraints is formulated as a Linear Matrix Inequality (LMI) problem. The strategy is illustrated using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    Fault tolerant control design of floating offshore wind turbines

    Get PDF
    This work is concerned with active vibration mitigation in wind turbines (WT) but not through the use of specifically tailored devices. Instead, a general control scheme is designed for torque and pitch controllers based on a super-twisting algorithm, which uses additional feedback of the fore-aft and side-to-side acceleration signals at the top of the WT tower to mitigate the vibrational behavior. In general, proposed methods to improve damping through pitch and torque control suffer from increased blade pitch actuator usage. However, in this work the blade pitch angle is smoothed leading to a decrease of the pitch actuator effort, among other benefits evidenced through numerical experiments. The most frequent faults induce vibrations in the corresponding WT subsystems. In fact, vibration monitoring has been recently used for fault diagnosis Thus, by means of vibration mitigation, different faulty conditions can be alleviated leading to a passive fault tolerant control. In this work, coupled non-linear aero-hydro- servo-elastic simulations of a floating offshore wind turbine are carried out for one of the most common pitch actuator faults.Postprint (published version

    Hysteresis-based design of dynamic reference trajectories to avoid saturation in controlled wind turbines

    Get PDF
    The main objective of this paper is to design a dynamic reference trajectory based on hysteresis to avoid saturation in controlled wind turbines. Basically, the torque controller and pitch controller set-points are hysteretically manipulated to avoid saturation and drive the system with smooth dynamic changes. Simulation results obtained from a 5MW wind turbine benchmark model show that our proposed strategy has a clear added value with respect to the baseline controller (a well-known and accepted industrial wind turbine controller). Moreover, the proposed strategy has been tested in healthy conditions but also in the presence of a realistic fault where the baseline controller caused saturation to nally conduct to instability.Peer ReviewedPostprint (author's final draft

    Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Get PDF
    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method

    Wind Turbine Reliability Improvement by Fault Tolerant Control

    Get PDF
    This thesis investigates wind turbine reliability improvement, utilizing model-based fault tolerant control, so that the wind turbine continues to operate satisfactorily with the same performance index in the presence of faults as in fault-free situations. Numerical simulations are conducted on the wind turbine bench mark model associated with the considered faults and comparison is made between the performance of the proposed controllers and industrial controllers illustrating the superiority of the proposed ones

    Fault tolerant control for wind turbine pitch actuators

    Get PDF
    This paper develops a fault detection and isolation (FDI) and active fault tolerant control (FTC) of pitch actuators in wind turbines (WTs). This is accomplished combining a disturbance compensator with a controller, both of which are formulated in the discrete-time domain. The disturbance compensator has a dual purpose: to reconstruct the actuator fault (which is used by the FDI technique) and to design the discrete-time controller to obtain an active FTC. That is, the actuator faults are reconstructed and then the control inputs are modified with the reconstructed fault signal to achieve a FTC in the presence of actuator faults with a comparable behavior to the fault-free case. The proposed techniques are validated using the aeroelastic wind turbine simulator FAST. This software is designed by the U.S. National Renewable Energy Laboratory and is widely used for studying wind turbine control systems.Peer ReviewedPostprint (published version

    Variable structure strategy to avoid torque control saturation of a wind turbine in the presence of faults

    Get PDF
    Every physical actuator is subject to saturation. It has been well recognized that, when the actuator saturates, the performance of the closed-loop system (designed without considering actuator saturation) may seriously deteriorate. In extreme cases, the system stability may even be lost. This paper proposes an avoid saturation strategy for the torque controller of a wind turbine benchmark model. The simulation results show that the proposed strategy has a clear added value with respect to the baseline controller (well- accepted industrial controller) in the presence of faults. Another advantage of the contributed method is that conservative bounds for the actuator torque can be fixed in order to extend the service life of the wind turbine.Peer ReviewedPostprint (published version

    Predictive control approaches to fault tolerant control of wind turbines

    Get PDF
    This thesis focuses on active fault tolerant control (AFTC) of wind turbine systems. Faults in wind turbine systems can be in the form of sensor faults, actuator faults, or component faults. These faults can occur in different locations, such as the wind speed sensor, the generator system, drive train system or pitch system. In this thesis, some AFTC schemes are proposed for wind turbine faults in the above locations. Model predictive control (MPC) is used in these schemes to design the wind turbine controller such that system constraints and dual control goals of the wind turbine are considered. In order to deal with the nonlinearity in the turbine model, MPC is combined with Takagi-Sugeno (T-S) fuzzy modelling. Different fault diagnosis methods are also proposed in different AFTC schemes to isolate or estimate wind turbine faults.The main contributions of the thesis are summarized as follows:A new effective wind speed (EWS) estimation method via least-squares support vector machines (LSSVM) is proposed. Measurements from the wind turbine rotor speed sensor and the generator speed sensor are utilized by LSSVM to estimate the EWS. Following the EWS estimation, a wind speed sensor fault isolation scheme via LSSVM is proposed.A robust predictive controller is designed to consider the EWS estimation error. This predictive controller serves as the baseline controller for the wind turbine system operating in the region below rated wind speed.T-S fuzzy MPC combining MPC and T-S fuzzy modelling is proposed to design the wind turbine controller. MPC can deal with wind turbine system constraints externally. On the other hand, T-S fuzzy modelling can approximate the nonlinear wind turbine system with a linear time varying (LTV) model such that controller design can be based on this LTV model. Therefore, the advantages of MPC and T-S fuzzy modelling are both preserved in the proposed T-S fuzzy MPC.A T-S fuzzy observer, based on online eigenvalue assignment, is proposed as the sensor fault isolation scheme for the wind turbine system. In this approach, the fuzzy observer is proposed to deal with the nonlinearity in the wind turbine system and estimate system states. Furthermore, the residual signal generated from this fuzzy observer is used to isolate the faulty sensor.A sensor fault diagnosis strategy utilizing both analytical and hardware redundancies is proposed for wind turbine systems. This approach is proposed due to the fact that in the real application scenario, both analytical and hardware redundancies of wind turbines are available for designing AFTC systems.An actuator fault estimation method based on moving horizon estimation (MHE) is proposed for wind turbine systems. The estimated fault by MHE is then compensated by a T-S fuzzy predictive controller. The fault estimation unit and the T-S fuzzy predictive controller are combined to form an AFTC scheme for wind turbine actuator faults
    • …
    corecore