141 research outputs found

    Innovative Microwave and Millimetre-Wave Components and Sub-Systems Based on Substrate Integration Technology

    Get PDF
    RÉSUMÉ Avec le rapide développement des technologies microondes et millimétriques, les spécifications de conception des circuits et systèmes sont de plus en plus exigeantes. La tendance pour le développement des systèmes de communication se dirige vers un poids minimisé, une taille réduite, de multiples fonctions, une fiabilité accrue et un faible coût. Ainsi, des technologies microondes et millimétriques faibles coûts, performantes et convenant à une production de masse sont critiques pour développer avec succès des systèmes commerciaux. La technologie à guide d’ondes rectangulaire a toujours été parmi les plus populaires pour la fabrication des systèmes millimétriques. Cependant, une difficulté majeure est reliée à leur intégration avec des composants actifs et les autres types de lignes de transmission conventionnelles, telle que microruban ou coplanaire… Les technologies de Circuits Intégrés au Substrat (CISs), incluant la technologie Guide Intégré au Substrat (GIS), qui peut être intégrée dans les substrats diélectriques avec de faibles pertes d’insertion et de radiation, sont une famille de nouvelles structures à ondes guidées. Ces dernières permettent de faire un pont entre les structures planaires et non-planaires. Jusqu’à maintenant, les composants et les sous-systèmes micro-ondes basés sur la technologie GIS ont été largement étudiés et développés. Dans cette thèse, nous étudions d’avantage la technologie GIS afin de proposer et développer divers composants actif et passif micro-ondes et millimétriques innovant et originaux. Ces structures de composants innovants peuvent améliorer l’intégration entre les composants GIS et les autres composants planaires. Ainsi, un certain nombre de structures et composants sont proposés et appliqués dans la conception et la démonstration d’un réseau d’antennes intégré en ondes millimétriques et un sous-système d’antennes intelligentes à 60 GHz. Il est à noter que plusieurs composants étudiés dans ce travail ont été proposés et démontrés à des fréquences micro-ondes plus basses afin de faire une preuve de concept en permettant une fabrication facile des structures et des circuits. Ces circuits en basses fréquences peuvent facilement être adaptés pour des applications aux fréquences plus hautes.---------- ABSTRACT The tendency of modern microwave and millimetre-wave communication system development is towards small size, light weight, reliable, multifunctional and low-cost. Moreover, low-cost, mass producible, high-performance and high-yield microwave and millimetre wave technologies are crucial for developing successful commercial microwave and millimetre wave systems. Rectangular waveguide has always been among the most popular choices for the making of millimetre-wave circuits and systems. A major challenge, however, is related to its integration with active devices and other conventional planar transmission lines, such as microstrip or coplanar waveguide (CPW), etc. Substrate Integrated Circuits (SICs) techniques including substrate integrated waveguide (SIW), which can be integrated in planar dielectric substrate with low insertion loss, high Q and low radiation loss, present a family of novel guided wave structures. This scheme provides a bridge between planar and non-planar structures. Up to now, microwave components and sub-systems based on SIW technology have been widely studied and developed. In this thesis, we take a further study of SIW technology to propose and develop various innovative and original microwave and millimetre-wave passive and active components. These innovative component structures can improve the integration between SIW components and other planar components. Then, a certain number of proposed structures or components are applied in the design and demonstration of millimetre-wave integrated antenna arrays and 60 GHz smart antenna sub-system. Note that many components studied in this work were proposed and demonstrated at different lower microwave frequencies for the proof of concept purpose with easy-to-fabricate structures and circuits. Those low-frequency circuits can easily be scaled up for high-frequency applications

    Millimeter-Wave MMICs and Applications

    Get PDF
    As device technology improves, interest in the millimeter-wave band grows. Wireless communication systems migrate to higher frequencies, millimeter-wave radars and passive sensors find new solid-state implementations that promise improved performance, and entirely new applications in the millimeter-wave band become feasible. The circuit or system designer is faced with a new and unique set of challenges and constraints to deal with in order to use this portion of the spectrum successfully. In particular, the advantages of monolithic integration become increasingly important. This thesis presents many new developments in Monolithic Millimeter-Wave Integrated Circuits (MMICs), both the chips themselves and systems that use them. It begins with an overview of the various applications of millimeter waves, including a discussion of specific projects that the author is involved in and why many of them demand a MMIC implementation. In the subsequent chapters, new MMIC chips are described in detail, as is the role they play in real-world projects. Multi-chip modules are also presented with specific attention given to the practical details of MMIC packaging and multi-chip integration. The thesis concludes with a summary of the works presented thus far and their overall impact on the field of millimeter-wave engineering.</p

    Hardware Development of an Ultra-Wideband System for High Precision Localization Applications

    Get PDF
    A precise localization system in an indoor environment has been developed. The developed system is based on transmitting and receiving picosecond pulses and carrying out a complete narrow-pulse, signal detection and processing scheme in the time domain. The challenges in developing such a system include: generating ultra wideband (UWB) pulses, pulse dispersion due to antennas, modeling of complex propagation channels with severe multipath effects, need for extremely high sampling rates for digital processing, synchronization between the tag and receivers’ clocks, clock jitter, local oscillator (LO) phase noise, frequency offset between tag and receivers’ LOs, and antenna phase center variation. For such a high precision system with mm or even sub-mm accuracy, all these effects should be accounted for and minimized. In this work, we have successfully addressed many of the above challenges and developed a stand-alone system for positioning both static and dynamic targets with approximately 2 mm and 6 mm of 3-D accuracy, respectively. The results have exceeded the state of the art for any commercially available UWB positioning system and are considered a great milestone in developing such technology. My contributions include the development of a picosecond pulse generator, an extremely wideband omni-directional antenna, a highly directive UWB receiving antenna with low phase center variation, an extremely high data rate sampler, and establishment of a non-synchronized UWB system architecture. The developed low cost sampler, for example, can be easily utilized to sample narrow pulses with up to 1000 GS/s while the developed antennas can cover over 6 GHz bandwidth with minimal pulse distortion. The stand-alone prototype system is based on tracking a target using 4-6 base stations and utilizing a triangulation scheme to find its location in space. Advanced signal processing algorithms based on first peak and leading edge detection have been developed and extensively evaluated to achieve high accuracy 3-D localization. 1D, 2D and 3D experiments have been carried out and validated using an optical reference system which provides better than 0.3 mm 3-D accuracy. Such a high accuracy wireless localization system should have a great impact on the operating room of the future

    Low cost ground receiving systems for television signals from high powered communications satellites, volume 1

    Get PDF
    The fabrication and evaluation of 10 engineering prototype ground signal processing systems of three converter types are reported for use with satellite television. Target cost converters and cost sensitivity analysis are discussed along with the converter configurations

    An ultra-wideband transmit/receive module using 10 to 35 GHz six-channel microstrip multiplexers and its applications to phased-array antenna transceiver systems

    Get PDF
    This dissertation introduces new and simple techniques for suppression of multispurious passbands, which are inherent to the conventional microstrip parallel coupleline bandpass filters. In addition, the operation of harmonic suppression is analyzed using a simple model. Special emphasis is placed on the applications of several new filter designs for microstrip diplexers and multiplexers. Compact, full-duplex beam scanning antenna transceiver systems with extremely broad bandwidth have also been developed. Recent advances in broadband monolithic microwave integrated circuit (MMIC) amplifiers make the realization of extremely broadband phased-array transceiver systems possible. The ultra-wideband phased-array transceiver systems can be used in multi-band mobile satellite communication systems and wideband radars. This dissertation presents a multi-band, compact, full-duplex, beam scanning antenna transceiver system for satellite communications and two designs of ultra-wideband, low-cost radar systems as applications of the MMIC amplifiers. In addition, a multi-frequency antenna has been developed. A single-feed triple frequency microstrip patch antenna is presented as an answer to the recent demand for multi-function systems in the wireless communications. In summary, the research presented in this dissertation covers every component required to build an ultra-wideband, full-duplex beam scanning phased-array antenna transceiver. The work done in this dissertation should have many applications in the wireless communication systems and wideband radar technologies

    Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications

    Get PDF
    The permeation of CMOS technology to radio frequencies and beyond has fuelled an urgent need for a diverse array of passive and active circuits that address the challenges of rapidly emerging wireless applications. While traditional analog based design approaches satisfy some applications, the stringent requirements of newly emerging applications cannot necessarily be addressed by existing design ideas and compel designers to pursue alternatives. One such alternative, an amalgamation of microwave and analog design techniques, is pursued in this work. A number of passive and active circuits have been designed using a combination of microwave and analog design techniques. For passives, the most crucial challenge to their CMOS implementation is identified as their large dimensions that are not compatible with CMOS technology. To address this issue, several design techniques – including multi-layered design and slow wave structures – are proposed and demonstrated through experimental results after being suitably tailored for CMOS technology. A number of novel passive structures - including a compact 10 GHz hairpin resonator, a broadband, low loss 25-35 GHz Lange coupler, a 25-35 GHz thin film microstrip (TFMS) ring hybrid, an array of 0.8 nH and 0.4 nH multi-layered high self resonant frequency (SRF) inductors are proposed, designed and experimentally verified. A number of active circuits are also designed and notable experimental results are presented. These include 3-10 GHz and DC-20 GHz distributed low noise amplifiers (LNA), a dual wideband Low noise amplifier and 15 GHz distributed voltage controlled oscillators (DVCO). Distributed amplifiers are identified as particularly effective in the development of wideband receiver front end sub-systems due to their gain flatness, excellent matching and high linearity. The most important challenge to the implementation of distributed amplifiers in CMOS RFICs is identified as the issue of their miniaturization. This problem is solved by using integrated multi-layered inductors instead of transmission lines to achieve over 90% size compression compared to earlier CMOS implementations. Finally, a dual wideband receiver front end sub-system is designed employing the miniaturized distributed amplifier with resonant loads and integrated with a double balanced Gilbert cell mixer to perform dual band operation. The receiver front end measured results show 15 dB conversion gain, and a 1-dB compression point of -4.1 dBm in the centre of band 1 (from 3.1 to 5.0 GHz) and -5.2 dBm in the centre of band 2 (from 5.8 to 8 GHz) with input return loss less than 10 dB throughout the two bands of operation

    The phase-switched screen

    Get PDF
    Conventional (passive) radar-absorbent materials operate either by phase cancellation or by absorbing incident electromagnetic energy and converting it into heat. This paper examines a new type of active "absorber," called the phase-switched screen (PSS). The PSS operates quite differently from passive absorbers in that it exhibits an apparently low value of reflectivity by redistributing the electromagnetic energy incident upon it over a bandwidth that is wide enough to ensure that little reflected energy falls within the pass-band of the receiver. The discussion considers the basic temporal and spectral properties of several PSS topologies, and includes measured data on both planar and cylindrical PSS structures

    Nanodevices for Microwave and Millimeter Wave Applications

    Get PDF
    The microwave and millimeter wave frequency range is nowadays widely exploited in a large variety of fields including (wireless) communications, security, radar, spectroscopy, but also astronomy and biomedical, to name a few. This Special Issue focuses on the interaction between the nanoscale dimensions and centimeter to millimeter wavelengths. This interaction has been proven to be efficient for the design and fabrication of devices showing enhanced performance. Novel contributions are welcome in the field of devices based on nanoscaled geometries and materials. Applications cover, but not are limited to, electronics, sensors, signal processing, imaging and metrology, all exploiting nanoscale/nanotechnology at microwave and millimeter waves. Contributions can take the form of short communications, regular or review papers

    Development of Compact UWB Transmit Receive Modules and Filters on Liquid Crystal Polymer for Radar

    Get PDF
    This thesis presents the design and development of various microwave components for an airborne snow-probing radar with multi-gigahertz bandwidth and cm-scale vertical resolution. First, a set of ultra-wideband, modular transmit and receive modules with custom power sequencing circuits is presented. These modules were rapid-prototyped as an initial step toward the miniaturization of the radar’s front-end, using a combination of custom and COTS circuits. The transmitter and receiver modules operate in the 2–18 GHz range. Laboratory and field tests are discussed, demonstrating performance that is comparable to previous, connectorized implementations, while accomplishing a 5:1 size reduction. Next, a set of miniaturized band-pass and low-pass filters is developed and demonstrated. This work addressed the lack of COTS circuits with adequate performance in a sufficiently small form factor that is compatible with the planar integration required in a multi-chip module. The filters presented here were designed for manufacture on a multi-layer liquid crystal polymer (LCP) substrate. A detailed trade study to assess the effects of potential manufacturing tolerances is presented. A framework for the automated creation of panelized design variations was developed using CAD tools. Thirty-two design variations with two different types of launches (microstrip and grounded co-planar waveguide) were successfully simulated, fabricated and tested, showing good electrical performance both as individual filters and cascaded to offer outstanding out-of-band rejection. The size of the new filters is 1 cm x 1 cm x 150 μm, a vertical reduction of over 90% and reducing the total cascaded length by over 50%
    • …
    corecore