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Abstract 

DESIGN AND IMPLEMENTATION OF BAND REJECTED 

ANTENNAS USING ADAPTIVE SURFACE MESHING 

AND GENETIC ALGORITHMS METHODS 

 
Simulation and Measurement of Microstrip Antennas with the Ability of 

Harmonic Rejection for wireless and Mobile Applications Including the 

Antenna Design Optimisation Using Genetic Algorithms  
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With the advances in wireless communication systems, antennas with different shapes and 

design have achieved great demand and are desirable for many uses such as personal 

communication systems, and other applications involving wireless communication. This has 

resulted in different shapes and types of antenna design in order to achieve different  antenna 

characteristic. One attractive approach to the design of antennas is to suppress or attenuate 

harmonic contents due to the non-linear operation of the Radio Frequency (RF) front end. 

 

The objectives of this work were to investigate, design and implement antennas for harmonic 

suppression with the aid of a genetic algorithm (GA). Several microstrip patch antennas were 

designed to operate at frequencies 1.0, 1.8 and 2.4 GHz respectively. The microstrip patch 

antenna with stub tuned microstrip lines was also employed at 1.0 and 1.8 GHz to meet the 

design objectives. 

 

A new sensing patch technique is introduced and applied in order to find the accepted power at 

harmonic frequencies. The evaluation of the measured power accepted at the antenna feed port 

was done using an electromagnetic (EM) simulator, Ansoft Designer, in terms of current 

distribution. A two sensors method is presented on one antenna prototype to estimate the 

accepted power at three frequencies. 

 

The computational method is based on an integral equation solver using adaptive surface 

meshing driven by a genetic algorithm. Several examples are demonstrated, including design of 

coaxially-fed, air-dielectric patch antennas implanted with shorting and folded walls. The 

characteristics of the antennas in terms of the impedance responses and far field radiation 

patterns are discussed. The results in terms of the radiation performance are addressed, and 

compared to measurements. The presented results of these antennas show a good impedance 

matching at the fundamental frequency with good suppression achieved at the second and third 

harmonic frequencies.  
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CHAPTER ONE 

1 Introduction 

1.1 Background and Motivations 

With the advances in wireless communication systems, multiband antennas with 

different shapes and designs are of great demand and are desirable for many  uses such 

as personal communication systems, small satellite communication terminals and other 

applications involving wireless communications.  This has resulted in different shapes 

and types of antenna designs to achieve different variations in antenna characteristics 

[1-2]. 

 

One attractive approach of designing antennas is based on fractal geometries that feature 

two expected common properties which are self-similarity and space filling .  However, 

the lack of closed-form formulae for their design lead the designer in using optimising 

methods and algorithms.  Therefore, numerical techniques remain another option for 

analysis and synthesis of such  antennas.  Evolutionary techniques like genetic 

algorithm (GA) provide  a method to overcome this limitation by searching the design 

space and obtain the effective design parameters to achieve desired performance [2-3].  
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Genetic Algorithm (GA) is an adaptive search algorithm based on the concepts of 

natural selection and genetics [1-3]. The GA is used to model processes in natural 

systems that are required for evolution. 

 

The concept of GA was first established by John Holland in the 1960s. The GA has 

provided an alternative method to solve complex problems, which has been widely 

applied in many practical applications [2]. The GA is able to solve real world problems 

by finding optimal parameters that are difficult to achieve using traditional methods. 

 

GA is now being widely used as an optimisation and efficient tool for search and 

machine learning.  However, prior to the broader application of GA, it was   used in  

pattern identifications [4-5]. 

 

In recent years, it has proved to be versatile tool in optimisation, design and control 

applications.  The key principle of GA is that, it applies pressure on a given group with 

multiple outcomes and managing the result in order to evolve a generic optimum point. 

It is realised by ‘fitness weight selection’ process and critical search of the space 

attained by crossover and mutation of the characteristics available in the sample under 

observation.  Where it is used as an effective optimising mechanism ,  [2-6]. 

 

GA is used as an optimisation medium due to its effectiveness in rigorously searching 

the entire sample under consideration.  There are however other optimisation tools that 

can be classified as, global techniques with similar characteristic as GA; random walk, 



3 

 

simulated annealing and monte carlo localised techniques – conjugate gradient, quasi 

newton and simplex methods [6-10]. 

 

The above techniques are distinguishable by the process in which they detail their 

outcome;  the results are subject to the initial start condition. By contrast, global 

techniques are not dependent on conditions at the beginning and puts and weighs some 

variables on them. GA is effective given the following circumstances: 

 

 The problem has multiple parameters. 

 There is likely to be several optimum solutions. 

 Non distinguishable objective. 

 

Comparing the two options critically the local techniques give faster convergence than 

the global techniques.  By contrast, in electromagnetic design issues, the convergence 

rate is relatively less crucial in comparison to optimal results.  Amongst the global 

techniques, GA is considered to be more appropriate to electromagnetic design issues; 

since it is reliable, robust and readily implemented [3]. 

 

In order to put GA in  context and fully appreciate its effectiveness, it is essential that all 

the terms are fully defined.  The concept originated from the theory of evolution: 

 

 Generation: particular population or creation that are successfully conceived. 

 Parent: members are selected in a stochastic manner from a given population. 

 Children: usually derived from parents to form a new generation. 
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 Fitness: A value that determines the effectiveness of the individual variable. 

 Genes: coded variables for optimisation. 

 Chromosomes: group of genes in a string format. 

 Objective function: numerical value in equation format. 

 Search space: area with all  likely outcomes. 

 

The GA process can roughly be divided into three parts: initialization, evaluation, and 

reproduction.  The algorithm starts with an initial population of possible solutions.  The 

solutions are encoded as binary or real-valued chromosomes.  In the evaluation phase, 

the performance of each solution in the population is predicted using a simulation tool 

[2-5]. 

 

Then the cost (or fitness) of each solution is evaluated using the proper cost function 

defined in terms of the design goals.  According to the cost, the chromosomes are 

refined into the next generation through a reproduction process that includes crossover, 

mutation and geometrical filtering.  This series of processes are repeated until the cost is 

minimized meaning an optimum solution has been found [11]. 

 

A harmonic of a wave can be described as an integer multiple of the fundamental 

frequency signal.  The harmonics tend to be periodic at the fundamental frequency and 

are equally spaced by the size of the fundamental frequency [12-21]. 
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Filters are regarded as essential components in electronic systems to avoid harmonic 

interference.  In practice, the harmonics are suppressed by putting in place low pass or 

band stop filters.  A deeper rejection and compact size can be achieved using a band 

stop filter that combines shunt open stubs and a spur line [22-23]. 

Another way of achieving harmonic suppression is to use modified band pass filters.  

There are three types of band pass filters.  The first type of filter is a dual-mode patch, 

band pass filter.  The second type of filter is an open-loop band pass filter.  In this case, 

two open stubs can be added to obtain high suppression in the second harmonic.  The 

third type of filter uses half-wavelength open stubs.  In this case, a T-shaped line is used 

that operates as a band stop filter at the second harmonic [16-19]. 

 

The tapered slot antennas (TSAs) are basically printed circuit antennas.  These are often 

found in applications, such as satellite and wireless communications due to their low 

weight and ease of fabrication.  The tapered slot antennas can generate a symmetric 

beam in the E- and H-planes by selecting the right length, shape and dielectric thickness 

[16-19]. 

 

This research will aim to design a harmonic rejection antenna in order to reduce the 

harmonic radiations which can interference within the electromagnetic circuitry. The 

design approach will be to apply GA together with binary-based random search engine  

and to use method of moments with adaptive service meshing..  Specific design samples 

will be required for evaluation. The end design will be able to serve as a bandpass filter 

as well. 
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1.2 Objectives of the Research 

The main goal of this research is to model and design the antenna for harmonic 

suppression in order to reduce the overall noise levels and interferences by using the 

theory of harmonic rejection in addition with genetic algorithm to optimise the design 

parameters.  For this pupose a microstrip patch antenna with both fully and partially 

shorted wall will be designed to operate at 2.4 GHz. Method of moments with adaptive 

surface patch meshing will be used for antenna modelling and genetic algorithm for 

design optimization. The microstrip patch antenna with a folded patch will also be used 

to meet the design objectives. 

 

As the primary criteria of antenna for harmonic suppression is return loss and input 

impedance, these will be simulated and measured at the fundamental, second and third 

harmonic frequencies.  The radiation patterns for the GA optimised harmonic 

suppression antennas will also be measured at the fundamental and harmonic 

frequencies. 

1.3 Organization of the Report 

Chapter 2 provides a literature review of the harmonic suppression of microstrip patch 

antennas and active integrated antennas.  Published work on various types of antennas 

are discussed that show good suppression at both second and third harmonics.  

Published work on antenna designs using GA optimisation is also discussed.  
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Chapter 3 contains the design of square microstrip antenna operated by 1.8 GHz with 

harmonic control using inserted micro strip line feed; which can be used for integrating 

with the device.  It is shown that the suppression of the second harmonic resonance of 

the micro strip antenna can be realised by adding an open circuited tuning stub of proper 

length at an appropriate position from the micro strip feed line. 

 

Chapter 4 gives a brief view on the harmonics measurement for active patch antenna 

using sensor patches also the possibility of using this technique to find the power 

accepted by the antenna at harmonic frequencies is studied. Performance of the sensing 

patch technique for measuring the power accepted at the antenna feed port of active 

patch antennas at harmonic frequencies is evaluated using an electromagnetic (EM) 

simulator Ansoft Designer
@

 [12] in terms of the current distribution. 

 

Chapter 5 discusses genetic algorithm and adaptive meshing program the design of 

coaxially-fed air-dielectric microstrip harmonic-rejecting patch antennas for 2.4 GHz 

was investigated, enforcing suppression of the first two harmonic frequencies, using a 

genetic algorithm. The designs included patch antennas with shorted and folded walls. 

 

Chapter 6 harmonic suppression antennas using generic algorithm the micro strip patch 

antenna acts as a radiator and also provides circuit functionality by matching circuit and 

band pass filter. However, in the harmonic radiation is not suppressed it could cause 

unwanted electromagnetic interference (EMI) in the system. To address this limitation, 
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shorting pins, slots photonic band gap structures or matching stubs on the antenna 

feeding line. A microstrip line fed slot antenna was developed for harmonic suppression 

without using reference antenna and this resulted in complex geometry for 5 GHz 

operation. However, if the frequency is altered in way, then the complete antenna 

structure needed to be modified. Matching good impedance at the fundamental design 

frequency (fo) with an ideal maximum first two harmonic (2fo and 3fo) is considered to 

be a harmonic suppression antenna (HSA). 

 

Chapter 7 a coplanar edge-fed technique has been proposed and investigated for 

designing a triangular patch antenna operation at 1.02 GHz with suppression 

characteristics over harmonic frequency bands . The reflection coefficient was about -

1.75 dB at the second harmonic and -2.53 dB at the third harmonic. According to the 

results obtained, this antenna with its simple harmonic suppression structures is quite 

effective.  

 

Chapter 8 provides an integrated conclusion to this phases of the work, and indicates 

How these foundations will be taken forward in future.  
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CHAPTER TWO 

2 Literature Review 

2.1 Harmonic Control for Microstrip Antennas 

Microstrip patch antennas are regarded as one of the most widespread antennas used in 

modern wireless-communication systems, the reason being their compactness, 

inexpensive and ease of integration with microstrip technology, ease of integration with 

circuit elements, and can easily be designed to have vertical, horizontal, right-hand 

circular (RHCP) or left-hand circular (LHCP)  polarizations.  However, these antennas 

can introduce a harmful electromagnetic radiation into the system if not properly 

designed.  To overcome this problem, a bandpass filter is put in place between the 

microstrip antenna and the power amplifier.  However, by the addition of this filter the 

impedance matching of the microstrip antenna can considerably be affected that leads to 

poor performance of the system. Other solutions proposed by several researchers 

comprise modification of the patch geometry [1], use of a photonic bandgap (PBG) 

structure [2], the use of shorting pin and embedded slots at the feeding point [3], and the 

use of a filter [4-7] for the antenna. 
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2.1.1 A Selection of Reported Harmonic Suppression of Microstrip 

Designs 

 

Previous works that have already applied harmonic control to the design of microstrip 

antennas would be reviewed and presented in this section as follows: 

 

- An approach that applies new harmonic-suppression method for the square    

microstrip antenna was presented in [8].  The authors’ objective was to achieve a 

suppression of the second and third harmonics by adding loads to the antenna’s 

feeding line.  The design involved geometries of two microstrip antennas 

involving similar parameters to operate at the fundamental frequency of 1.8 GHz.  

A square radiating patch comprising side length of 40 mm was printed on the 

same substrate as of the loaded transmission line.  The microstrip line had an inset 

length of 12.8 mm. The gap between the inset microstrip line and the radiating 

patch was set to 1 mm.  The first antenna with two loading cells achieved good 

suppression of the second harmonic.  The second antenna with two large and one 

small loading cells realized the same performance as the first antenna as well as 

achieving the suppression of the third harmonic.  This paper shows that the 

fundamental-mode radiation patterns of the second antenna were similar to the 

reference antenna.  Further, an advantage is realised in terms of the suppression of 

the first two harmonics for the proposed antenna. 
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- In [9] the method for suppressing the first two harmonics of a rectangular 

microstrip patch antenna is described.  A current density distribution method on a 

conventional rectangular patch is employed so that the exact positions of shorting 

pins and slots can be found.  The antenna was designed to operate at 2.45 GHz 

where the patch had length of 38.65 mm and width of 57.7 mm.  The simulated 

results for the rejection of the second harmonic using shorting pins exhibited 

maximum current density at the fundamental and third harmonic and minimum at 

the centre of the patch for the second harmonic.  The suppression of the third 

harmonic was realised using little slots where the current density is maximum.  

The suppression of both second and third harmonics were realised using three 

shorting pins and two slots.  The consequence of shorting pins and slots on the 

input impedance resulted in reduction from 64 Ω to 2 Ω for the second harmonic 

and 83 Ω to 2.7 Ω for the third harmonic.  The shorting pins and slots had very 

little effect on the gain of the antenna, which was approximately 8 dB.  The paper 

also showed that the radiation polarization for the rectangular patch was same as 

the usual designs. 

 

- In [10] the method to suppress the spurious radiation of patch antennas is 

described with the help of the band-stop characteristic of split-ring resonators. 

This involved the design of band-stop filter.  In order to suppress the first and 

second spurious modes, four split-ring resonators of different dimensions were 

used.  The rectangular patch antenna was designed with length 13.5 mm and 

width 16.9 mm in order to operate at 6 GHz.  This design shows that the first two 
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modes were effectively suppressed without affecting the performance of the main 

mode.  

 

- In [11] a rectenna design is described, which includes a microstrip harmonic-

rejecting circular sector antenna operating at 2.4 GHz.  This design involved a 

circular sector angle of 240° and feeding angle of 30° for the circular antenna.  

This paper shows that the proposed design can effectively suppress the first two 

harmonics and generate high output power. 

 

- In [12] the microstrip-fed slot antennas with simple structure are described.  The 

design included a novel rectangular slot antenna where the size of this antenna is 

miniaturized by meandering of the slot.  The harmonic suppression was achieved 

by placing conductor lines attached with ground plane inside the slot.  The 

rectangular slot antenna by meander type slot radiators had sizes of 

17.23 mm x 0.7 mm and 6.75 mm x 4.55 mm, respectively.  The results showed 

that the antenna resonate at 5.4 GHz and suppress second and third harmonic at 

10.8 GHz and 16.2 GHz frequencies respectively.  The second and third harmonic 

radiations of the proposed rectangular type slot antenna were less than -28 and 

-33 dB for the normalized peak power of the fundamental frequency, respectively.  

In case with meander type slot antenna, the second and third harmonic radiations 

were less than -32 and -35 dB.  These antennas showed good operation as 

radiators and ability to suppress the second and third harmonics effectively. 
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2.2 Harmonic Suppression for Active Integrated Antennas 

The active integrated antenna (AIA) has been attractive area of research more recently, 

due to their compact size, low cost, and multiple functionalities.  The AIA can be 

regarded as an active microwave circuit where the input or output port is free space.   In 

all cases, the antenna is fully (or closely) integrated with the active device to form a 

subsystem on the same board and can provide particular circuit functionalities such as 

resonating, duplexing, filtering as well as radiating, that describes its original role.  The 

AIA's are classified into three types: amplifying-type, oscillating-type and frequency-

conversion-type, according to how the active device acts in the antenna [13-20]. 

 

2.2.1 A Selection of Reported Harmonic Suppression of AIA Designs 

 

Previous works that have already applied harmonic suppression to the design of AIA  

would be reviewed and presented in this section as follows: 

 

- In [21] an inset-fed antenna with a shorting pin and slots is presented for 

harmonic suppression of an AIA.  This antenna had a fundamental frequency of 

5.8 GHz.  The results for the antenna show that the second and third harmonic 

return losses are suppressed to 6.7 dB and 17.7 dB with respect to the 
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conventional patch antenna, respectively.  This antenna design is particularly 

appropriate as the harmonic tuning load for a class F amplifier. 

 

- In [22] the integration of an H-shaped microstrip antenna with a bipolar junction 

transistor (BJT) oscillator is described.  This design is aimed to operate at 

2.4 GHz.  This paper shows that the first two harmonics are reduced by about 

10 dBm.  The antenna was designed with thickness h of 1.0 mm and loss tangent 

of 0.0002.  The antenna dimensions were adjusted to achieve high return losses at 

the second and third harmonics for suppressing harmonic radiation.  The 

integrated BJT oscillator had a bias voltage of 12 V.  The active antenna was 

measured with Tektronix 2782 spectrum analyzer which showed that the 

radiation-power was reduced as 10.51 and 8.38 dBm at the second and third 

harmonic frequencies, respectively.  This paper concludes that the proposed 

design can successfully reduce the electromagnetic radiation. 

 

- In [23]  integration of an active antenna using a T-shaped microstrip coupled 

patch antenna is described.  The design is based on feedback-antenna oscillator 

that uses T-shaped microstrip-coupled patch antenna.  This antenna design 

removes the need of using chip capacitors for blocking the dc current in the radio 

frequency path resulting in a low-cost solution. The feedback-antenna oscillator 

was designed with length and width of 16.6 mm to operate at 5.8 GHz.  This 

oscillator antenna design achieved an effective isotropic radiation power of 

19.2 mW and reduced cross-polarization levels. 
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- In [24] the design of a T-shaped microstrip-line-fed slot antenna for 10 GHz is 

given.  This design is based on the feedback-antenna oscillator circuit.  The 

antenna had a slot size of 4.3 mm x 10.8 mm with an optimised T-microstrip line 

length of 8.8 mm and width of 1.56 mm, which was similar to the width of the 

50-Ω microstrip line.  This oscillator antenna design achieved an effective 

isotropic radiation power of 37.79 mW and good cross-polarization levels in both 

planes.  This paper also suggested its potential use in circuits for low-cost 

transmitting systems. 

 

- In [25-30] the researchers have reported the possibility of integrating microstrip 

bandpass filter with patch antenna in order to suppress antenna harmonics .  This 

involved compact microstrip pseudo-interdigital, stepped impedance bandpass 

filter design with enhanced stopband.  The purpose of this was to replace 

microstrip line in inset microstrip-line fed patch antenna.  The design of the filter 

used impedance ratio of 0.72 with the second pass band at 3.85fo.  The patch 

antenna was designed using fundamental frequency of 2.4 GHz.  The designed 

filter was then integrated to this patch antenna.  The additional transition section 

consisting of microstrip taper and meander line was used to improve impedance 

matching.  The simulated return-loss results of the integrated antenna-filter 

showed that both second and third harmonics were fully suppressed.  The results 

also showed that the gain of integrated antenna-filter was 1.3 dB, which was less 

than conventionally fed antenna. 
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- In [31-41] the design for new dual-frequency rectifying antenna operating at 2.45 

and 5.8 GHz is given.  The design included two small ring slot antennas, a low 

pass filter, and a rectifying circuit. The slot annual ring antenna was used to 

operate at 2.45 GHz and the slot rectangular ring antenna was used for 5.8 GHz.  

The slot annual ring antenna used the notched meander line.  The slot rectangular 

ring was inset within the meandered slot annual ring. This rectenna had 

dimensions of 38.09 mm x 25.54 mm, whose area (regardless of thickness for the 

substrate) is around 15% of the previous reported designs.  Therefore, this makes 

it the smallest dual-frequency rectenna design.  The low pass filter was designed 

that is based on elliptic-function filter as reported in [40].  This uses two hairpin 

resonator components to achieve a sharp cut-off frequency response.  The length 

of the filter used was 8.36 mm, which was shorter than λg / 10 at 2.45 GHz.   This 

hairpin filter showed a good suppression of second and third harmonics at both 

operation frequencies.  The rectenna showed good maximum gains and improved 

RF-to-dc efficiencies at both operating frequencies.  This paper suggested that the 

dual-frequency rectenna design could find its use in applications including 

microwave power transmissions, embedded sensor, or in combination with other 

wireless communication components.  

 

- In [42] the AIA based rectenna design is described that uses a new probe-fed 

U-slot antenna for harmonic suppression.  The design uses a u-slot that was 

located in the centre of the patch.  The microstrip patch was fed using a 50-ohm 
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coaxial probe.  The purpose of using the coaxial feed for this antenna was firstly 

to separate the electric circuit and the antenna by the ground plane, and secondly, 

to realise the benefit of the layered structure for reduced occupied area. The 

physical size of this antenna was reduced significantly compared to square patch 

antenna.  The gain of this proposed antenna was 6.96 dBi, which was 2.6 times 

greater than the gain of a square patch antenna.  Due to the u-slot antenna in the 

rectenna design, the second and third harmonics were suppressed successfully. 

Therefore, this removed the need for band pass filter as generally required in 

conventional rectenna [43-49]. 

 

- In [50] a novel microstrip antenna for 2.4 GHz with harmonic rejection is 

described.  This design have the same advantages as the earlier reported low cost, 

low profile, and light weight active integrated antennas [51-53].  The antenna was 

designed with arc-slot with dimensions W = 9 mm, L = 25 mm, D = 38 mm, 

K = 17 mm, Theta = 25° on a substrate with thickness of 0.80 mm.  The arc-slot 

was used to lengthen the surface current path.  Therefore, the physical size of this 

novel antenna was reduced by 40% in comparison to the conventional square 

patch antenna for probe-fed.  Advance design system (ADS) 2006a and Agilent 

Momentum full-wave software were used to optimise antenna's dimensions.  The 

results showed good suppression for both the second and third harmonics.  The 

results also showed that this antenna has linear polarization. 
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- In [54-57] the design for a 2.4 GHz patch antenna is presented that includes the 

use of harmonic tuning with Composite Right/Left-handed (CRLH) transmission 

lines.  The width for a 50 Ω transmission line was worked out using ADS 

transmission line calculator [59].  The integrated patch antenna was designed 

using simulation called Sonnet Lite [58].  The antenna dimensions used in this 

design were 41.1 mm x 50 mm, and were worked out using cavity (resonant) 

approach [60].  The results showed that the second and third harmonics could be 

suppressed using CRLH transmission lines. 

 

- In [61] a wide band harmonic suppression microstrip patch antenna using 

Koch-shaped defected ground structure (DGS) is described.  This proposed 

antenna design could be applied in active integrated antenna systems.  The 

microstrip circuit of the patch antenna was constructed by Koch patterns on the 

ground plane of a standard transmission line.  The non-uniform distribution was 

applied to narrow the dimensions of the etched Koch-shaped DGS units [62].  The 

third iteration order and the iteration factor of 1/3.5 were applied in Koch fractal 

patterns.  The distance between the two adjacent units was set to 12.5 mm.  The 

feed line was fabricated on the substrate with thickness of 0.8 mm.  The whole 

antenna was fabricated on the same substrate as above.  The Koch-shaped DGS 

circuit was adopted as the feed part of the proposed antenna.  The source signal 

was fed directly to the antenna by the 50-microstrip line.  The parallel slots were 

inserted to adjust the impedance matching of the antenna.  The length and width 

of the parallel slots were 11mm and 1.5mm, respectively.  The simulated and 
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measured results demonstrated that the spurious radiations from second to sixth 

harmonic were suppressed effectively.  This paper shows that in comparison with 

antennas reported in other literatures, the proposed antenna exhibited excellent 

spurious suppression characteristics. 

 

2.3 Antenna Design Using Genetic Algorithm 

The genetic algorithm (GA) can be used to optimize performance of existing antenna 

designs and in creating new types of antenna designs.  The GA gives the possibility of 

setting down the desired performance of an antenna and let the computer to search the 

parameters for the proposed design. 

 

The GA has been applied to several different antenna designs for  electromagnetic 

optimisation as reported in [63-99].  The GA technique is extremely useful for many 

reasons, involving:  

 

 Antenna principles that are based on Maxwell’s equations, are very difficult to 

understand. 

 There are numerous high-speed antenna simulators available that requires only 

seconds to generate correct results. 

 There is minimum amount of design information required to produce 

high-quality results. 
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2.3.1 A Selection of Reported Antenna Designs Using Genetic Algorithm 

 

Previous works that have already applied GA to the design of various antennas would 

be reviewed and presented in this section as follows: 

 

- The Crooked Wire antenna is probably the most well-known GA-designed 

antenna due to its fascinating and non-intuitive shape [100]. Derek Linden 

designed this antenna as part of his PhD thesis from MIT, with the intention of 

optimizing the polarization and radiation pattern. Specifically, the search was for 

a right-hand circularly polarised (RHCP) antenna that radiates over one 

hemisphere.  Each wire component of the antenna was defined by its (X, Y, Z) 

coordinate for its start and end points.  In binary GA, 5 bits were allowed for each 

axis coordinate, such that there were 323 possible vertices at which the wires 

could be connected.  The antenna was composed of 7 wire segments.  The cost 

function solely optimised the radiation pattern. 

 

Gene: 5-bits for each axis coordinate, 3 axis coordinates per point, 7 design 

points 

Chromosome/Individual: 5x3x7 = 105 bits 

Cost Function: Hemispherical Coverage with RHCP—Using NEC2, computes 

hemispherical radiation pattern at increments of 5° in elevation (θ = -80° to +80°) 
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and 5 percent in azimuth (φ = 0° to φ = 175°), calculates average gain for RHCP 

wave for elevation angles above 10°: Score = Σfor all θ, φ[Gain(θ,φ) – Avg. 

Gain]^2 

Population: 500 individuals 

Crossover: 50% 

Mutation: Variable, <8% 

Generations: 90 

Result:  The result of this experiment GA antenna clearly has no resemblance to 

existing antenna designs and concepts yet it functions all the same. 

 

- In [100] the Yagi-Uda antenna consists of an array of elements—a driven dipole, 

a reflector, and parasistic elements.  It is lightweight and inexpensive and has 

been widely used in high gain and narrowband applications.  Because the 

performance of the Yagi-Uda antenna has been slow to improve, Linden and 

Altshuler set about optimizing the Yagi-Uda antenna using genetic algorithm.  

The goal of their first GA optimisation was to increase the gain and improve 

VSWR for four N-length (N = 14, 17, 18 and 22) Yagi-Uda antenna. 

 

Gene: The genes were again mapped in binary to represent the lengths of the 

different elements and  spacings between the elements. Each element was 

constrained to a maximum length of 0.75λ and with a set boom (total length of 

spacings), each spacing had a minimum of 0.05 λ between the elements. 

Chromosome/Individual: Entire set of element and spacing values. 
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Cost Function: F= -G + C1 x (VSWR), Where G is the gain, and C1 is 1 when 

VSWR is greater than 3.0 and .01 when VSWR is less than 3.0.  The goal was to 

minimize F. 

Population: 50 

Crossover: 30% 

Mutation: 2% 

Generations: N/A 

 

The GA configurations were much different from the typical Yagi antennas with 

the same boom length.  Conventional Yagi antennas have elements whose lengths 

gradually decrease and spacings  gradually increased along the array.  The GA 

Yagis however, the lengths and spacings along the array showed no pattern and 

appeared to be random.  The GA antenna had a higher gain at the design 

frequency of 432 Mhz.  Other GA optimizers were utilized to control gain, 

sidelobe level, backlobe level, VSWR, and polarization of Yagi antennas. One 

GA-designed antenna had low sidelobes over a specified region in space and 

another created a circularly polarised Yagi antenna, both design features that did 

not previously exist with Yagi antennas. 

 

- In [65] the GA optimisation of broadband patch antenna design is described.  This 

includes a simple patch antenna that was optimised to produce a wider operational 

bandwidth than classical designs. Specifically, the goal was to produce a patch 

antenna with a 2:1 VSWR over 20% bandwidth centered at 3 GHz.  A 5.0 x 5.0 
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cm patch was suspended 0.5 cm above the ground plane.  The GA optimised the 

patch by removing square metal subsections from the patch region. 

 

Gene: 1-bit string representing the presence or absence of a subsection of metal 

in the patch 

Chromosome/Individual: λ/2 square patch, fed by simple wire feed 

Cost functions: Minimize S11 magnitude at three frequencies, 2.7 GHz, 3 GHz, 

and 3.3 GHz.  The s-parameter S11 is yet another metric to measure the reflection 

of energy between two media, like Γ and VSWR. A value of S11 = -10 dB 

corresponds to a VSWR value of 2. Therefore, S11< -10dB signifies the 

antenna’s impedance bandwidth.  Fitness = min (S11n) 

Population: 100 Individuals 

Crossover: 70% 

Mutation: 2% 

Generations: 100 

Result: the patch antenna had a bandwidth of approximately 6%. After GA 

optimisation, this bandwidth increased to the desired 20.6%. 

 

- In [96] Choo et. al. uses a similar approach in designing a broadband patch 

antenna as the Johnson patch antenna described above.  Again, they began with a 

metallic patch, in which sub-patches were represented by either ones (metal) or 

zeros (no metal).  The goal was to broaden the bandwidth of a microstrip antenna 

around the center frequency of 2 GHz by changing the patch shape.  The 
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implemented cost function was defined as the average S11 values that exceed -

10dB within the frequency range of interest.  The bandwidth of this design is 

found to be ~8 % by simulation and measurement where a regular square 

microstrip antenna (36 x 36 mm) has a bandwidth of only 1.98%.  This four-fold 

increase in bandwidth is a result of creating an unusual ragged-shaped patch 

antenna that makes no intuitive sense. 

 

- In [101] the goal was to design a dual-band patch antenna for wireless 

communications operating at 1.9 GHz and 2.4 GHz.  The hybrid fitness function 

combines the VSWR at the desired frequencies as well as the cross-polarised far 

field (low desired). 

 

Gene: Like other GA patch antennas, 1-bit string representing the presence or 

absence of a subsection of metal in the patch. 

Chromosome/Individual: 2D rectangular array of 46 binary metallic elements. 

Population: 260 

Crossover: 70% 

Mutation: 5% 

Generations: 200 

Results: The resulting GA-optimised design has 5.3% and 7% operating 

bandwidths at 1.9 GHz and 2.4 GHz. 
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- In [95] the study not only used genetic algorithms to optimize specific antenna 

designs, but compared the GA-optimised designs to determine which design has 

better bandwidth performance.  The two designs are the bowtie antenna and the 

reverse bowtie antenna, both over an infinite ground plane. 

 

Gene: The antenna height H and the flare angle α were the variable genes in this 

experiment.  The reverse bowtie had an additional parameter, the feed height hf, 

which is the distance of the feed point above the ground plane. 

Chromosome/Individual: Bowtie or reverse bowtie antenna with specified 

height H, flare angle α, and feed height hf in the case of the reverse bowtie. 

Population: For each antenna type, population size was 60. 

Crossover: 50% 

Mutation: 2-4% 

Generations: N/A 

Results: The results showed that the RBT could achieve 80% fractional 

bandwidth with a significantly smaller size than the regular BT. Fractional 

bandwidth means that 20% fractional bandwidth around 1 GHz would be 

900 MHz – 111 MHz.  The GA-optimised antennas were also built and physically 

tested, of which the measured results matched the simulated results. 

 

The implications of this paper are more than that the RBT has a better broadband 

performance than the regular bowtie design. The paper also demonstrates that 

genetic algorithms are an effective way of evaluating antennas, and specifically 

the bandwidth of antennas. 
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- In [102] the GA optimisation for circular microstrip antenna is discussed.  The 

new approach based on GA method [103] was used to optimize circular 

microstrip antenna.  This method was used to determine the optimal parameters of 

a microstrip antenna, with circular radiant element, fed with coaxial probe.  The 

objective was to find the values of the three parameters: radius a, substrate 

thickness H and relative permittivity εr, so that the antenna satisfies the constraint 

(a resonant frequency equal to 5 GHz).  The DERNERYD [104] model was used 

as an analysis method.  The simulation results of the GA optimisation after 3 

seconds were obtained as: a = 1.25 cm, H = 0.35 cm and εr = 1.36.  The technique 

used in this paper had the advantage of escaping the local solutions; it produced 

global optimal results without requiring a great deal of information about the 

solution domain. 

 

- In [105] the optimisation of E-shaped patch antenna is given.  This paper 

describes that the bandwidth of the antenna can be optimised using fuzzy logic 

such as fuzzy decision-making.  For the fuzzy system, input parameter included 

population, and output parameters included recombination to generate the next 

generation.  The fuzzy inference system was adopted for the control of the 

parameters [106].  The antenna bandwidth was increased by adding two slots into 

the patch.  The results showed that this antenna can produce wide bandwidth and 

can be used for 1.9 and 2.4 GHz.  This paper showed that this novel technique is 

faster in terms of simulation time as compared to conventional genetic algorithm. 
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- In [107] the techniques of Multiobjective Genetic Algorithm, Multiobjective 

Simulated Annealing and Divided Range Multiobjective Particle Swarm 

Optimisation (DRMPSO) are compared in terms of their suitability for designing 

an antenna tuning unit.  The optimisation of harmonic suppression and reflection 

coefficient of an antenna has been applied in the Pi-Network arrangement to 

obtain impedance matching.  The results show that DRMPSO technique produces 

the similar standard of optimisation as other techniques and stands out in terms of 

good algorithm efficiency.  This paper also presents significant improvement over 

the previously reported antenna filter tuning [108-109]. 

 

- In [110] the GA optimisation of planar monopole antennas is given.  This GA 

optimised antenna represents an improvement over previously reported notch-

band and monopole designs [111-120].  In this design, a matrix-based 

chromosome was used to explain the shape of the planar monopole element.  It 

was revealed that the pattern symmetry in the notch band could be enhanced by 

optimizing both impedance matching and radiation pattern characteristics at the 

same time.  This GA optimised antenna exhibited considerably wide attenuation 

bandwidths than the conventional band-notched planar monopole designs. 

 

- In [121] the microstrip patch antennas with harmonic suppression are designed 

and optimised, using a GA and applying a novel adaptive meshing program to 

generate a wire-grid simulation. Two coaxially fed air dielectric patch antenna 
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designs with shorting walls were investigated.  The measured results for the 

suppression of second and third harmonics were very good and the presented 

examples showed the capability of the FORTRAN program in antenna design 

using GA. 

 

- In [122] the new design strategy for miniaturization of antennas is proposed by 

operation of chromosome-length in GA.  Proposed design technique provides a 

minimum area necessary for keeping antenna characteristics .  And, efficient 

miniaturization of a antenna and removal of many undesirable conductors in a 

design area is possible.  Removing undesirable conductors provides lower-cost 

designing of antennas.  The new design method can become rational design 

strategy for antennas miniaturization. 

 

- In [123] the novel types of genetic algorithms are used as a global optimisation 

method to seek the geometry of ultra-wideband slot-line antenna (UWB SLA).  

The global optimisation method is combined with local optimisation method for 

accurate results of optimisation.  For accurate and wideband computation, time 

domain method in CST MW Studio is used.  The antenna is optimised for two 

basic parameters: wideband impedance matching and directivity pattern of the 

antenna.  The algorithm exhibits good accuracy of the analysis, fast optimisation 

and universality of optimisation for similar EM problem. 
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- In [124] GA is used to design the patch geometry, substrate thickness and 

permittivity in order to optimize the gain and bandwidth of the antenna. The 

design parameters and content of fitness function were changed and tested for 

achieving higher bandwidth properties.  The results show that including antenna 

parameters such as patch geometry, substrate thickness and permittivity in GAO 

improves the antenna performance than conventional rectangular shape antenna.  

Using higher thickness values in substrates give comparatively higher bandwidth 

improvements than reducing return loss value limits. 

 

- In [125] the design of a micro-strip patch antenna is proposed by optimizing its 

resonant frequency, Bandwidth of operation and Radiation resistance using GA.  

The disadvantage of micro-strip patch is limited bandwidth (usually 1 to 5%).  To 

overcome this problem the proposed design in this work is an appropriate 

alternative, which generates an optimised bandwidth in the simulation, as high as 

25.52% bandwidth for the resonant frequency of 18 GHz.  The design is done for 

frequency range 3-18 GHz.  Therefore, this microstrip antenna is suitable for any 

application in the microwave frequency band S (3-4 GHz), C (4-6 GHz) and X 

(8-12 GHz). 

 

- In [126] an optimisation on the input impedance of Koch triangular quasi-fractal 

antennas using an efficient GA is described.  The impedance matching is done by 

using an inset-fed, which is optimised to minimize the return loss.  The excitation 

of this structure is done using a microstrip line.  The antennas are designed using 
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the Ansoft Design TM software and the new structures that are optimised with 

GA are simulated, measured and compared with the same patch antenna but with 

the lengths of the inset-fed (y0) calculated by well-known models available in the 

literature [127-128].  The return loss value of the GA optimised antenna is below 

-40 dB at the resonant frequency of 2.4 GHz. 

 

- In [129] a simple dual-frequency microstrip antenna based on the second iteration 

of modified Koch fractal configuration is presented.  Complex structure of fractal 

shape is built up through replication of a base shape.  The aim of this research is 

to examine new modified fractal element antenna through simulation and 

optimisation procedure.  In the absence of any available closed-form formulae, 

this scheme uses a real coded genetic algorithm (RCGA) in conjunction with 

electromagnetic simulation.  Parametric definition of conventional Koch shape 

evolves new geometries of antenna structure, which suggest wide space design 

[130].  Genetic algorithm efficiently searches the possible combinations of 

parameters and finds the best structure for the antenna's operation at 5.8 GHz and 

2.4 GHz. 

 



33 

 

2.4 Triangular Patch Antennas 

The triangular patch antenna (TPA) has been an attractive area of research  recently, due 

to their small size compared to other shapes like the circular and rectangular patch 

antennas.  The most commonly used shapes of TPA are equilateral TPA (ETPA), right 

angle isosceles TPA (RAITPA), 30°-60°-90° TPA and 30°-30°-120° TPA. The 30°-60°-

90° TPA has the least area among all these triangular shapes [1]. A miniaturized 

structure is often obtained by applying techniques such as shorting pin or embedding 

slot onto this triangular shape.  

2.4.1 A Selection of Reported Triangular Patch Antenna Designs 

Previous works that have used the design of TPA antennas would be reviewed and 

presented in this section as follows: 

 

- In [131] a triangular patch antenna design with 15°-75°-90° angles is presented.  

The simulations have been performed using IE3D full-wave simulator on this 

design to obtain the resonant frequency.  It has been established that for the same 

resonant frequency, this design have the least area among all common triangular 

shapes.  The antenna  with reduced size  has been simulated with side length of 95 

mm and substrate thickness of 1.6 mm for 900 MHz operation.  The resonant 

frequency has been found to be close to the resonant frequency of 30°-60°-90° 

triangular antenna with the same dimensions, but with significant reduction in 

area.  A 15°-75°-90° TPA has been fabricated and measured to confirm the 
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simulation results.  A 15°-75°-90° TPA with a shorting pin at the tip has been 

simulated for reflection coefficient and compared to usual 15°-75°-90° TPA 

without shorting pin.  It has been found that a reduction of greater that 75% in the 

resonant frequency is achieved by shorting the tip of the triangular patch. 

 

- In [132] the design of tri-loaded slotted equilateral triangular antenna is presented. 

In this paper, a new technique of embedding an equilateral triangular slot in the 

equilateral triangular patch antenna is used to obtain the antenna size reduction. 

The antenna was designed with side length of 48 mm and substrate thickness of 

1.6 mm.  The antenna had an operating resonance frequency of 1915 MHz.  A tri-

slot with a side length of 33 mm was centered at the null-point of the triangular 

patch.  The antenna had a size reduction of 38% as compared to triangular patch 

antenna without tri-slot at a fixed frequency.  Further 50% size reduction was 

obtained by vertically splitting the proposed antenna in two equal parts and by 

optimising the feeding position to ensure the same resonance frequency operation.  

Therefore, a total of 70% antenna size reduction was achievable with a single 

band operation.    

 

- In [133] the design of right angle triangular patch antenna with slot is described.  

The design for reduced antenna size has been achieved by embedding a narrow 

slot on the proposed antenna and introducing a single feed.  The proposed antenna 

with a truncated tip was designed with substrate thickness of 0.6 mm and was 

mounted above ground plane at a height of 8 mm.  The probe feed method was 
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used to ensure the feed can be placed at any location in the patch to match with its 

50 Ω impedance.  This proposed antenna had a resonant frequency of 3.25 GHz 

and impedance bandwidth of 310 MHz or 9.5% with stable gain and cross 

polarization characteristics. 

 

- In [134] the design of triangular patch antenna with truncated tip is described.  

The design for reduced antenna size has been attained by cutting all three tips of 

the triangular patch antenna and placing a single coaxial feed.  The proposed 

antenna with all three truncated tips was designed with substrate thickness of 

1.6 mm and was mounted above ground plane at a height of 6 mm.  The coaxial 

feed method was adopted to ensure the feed can be placed at any location in the 

patch to match with its 50 Ω impedance.  This proposed antenna had a resonant 

frequency of 3.43 GHz and impedance bandwidth of 380 MHz or 11% with stable 

gain and cross polarization characteristics.  This makes the antenna useful in 

applications such as modern communication systems where multi-frequency 

operating modes are required. 

 

- In [135] the design of triangular patch antenna with V-slot is presented.  The 

design for reduced antenna size has been attained by embedding two narrow slots 

(each of length 29.5 mm) in V shape on the triangular patch antenna and inserting 

a single feed.  The proposed antenna with V-slot was designed with substrate 

thickness of 0.6 mm and was mounted above ground plane at a height of 6 mm.  It 

was found that the antenna’s fundamental resonant frequency can be reduced by 
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increasing the length of the probe feed.  This proposed antenna had a resonant 

frequency of 3.6 GHz and impedance bandwidth of 330 MHz or 9.2% with 

antenna gain and return loss observed.  This antenna has also shown a good 

broadside radiation pattern. 

 

- In [136] the design of a short-circuited triangular patch antenna with truncated 

corner is described.  The compact design has been achieved by truncating all the 

corners of the triangular patch.  The antenna design includes insertion of two 

shorting walls with a V-shaped slot patch, so that the two resonant frequency 

modes can be excited at the same time.  The proposed antenna was designed with 

substrate thickness of 0.6 mm and was mounted above ground plane at a height of 

6.4 mm.  The antenna was fed by coaxial transmission line having radius of 0.6 

mm.  The shape of the patch used was equilateral triangular kind having side 

length of 60 mm.  After corner truncation each side of the patch was reduced to 

39.1 mm.  This proposed antenna had two resonant frequencies of 2.53 GHz and 

3.5 GHz covering the first and second band.  The impedance bandwidth of 50 

MHz has been achieved for the first band and 310 MHz for the second band.  This 

antenna also had a return loss of below -10 dB over the entire frequency band.  

 

- In [137] the design of right triangular patch antenna (30°-90°-60°) with and 

without air gap is described.  This design has been developed based on previous 

work of equilateral and right isosceles triangular antennas under different 

modifications [138, 139].  The proposed antenna was designed with substrate 
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thickness of 0.159 mm with the backplane conductor to produce a microstrip 

antenna.  The length of the proposed antenna was 51.9 mm and the height used 

was 30.6 mm.  The probe feed method was used to ensure good 50 Ω impedance 

matching of the antenna.  This proposed antenna had a resonant frequency of 3.11 

GHz.  However, poor radiation efficiencies of around 38% was achieved at this 

resonant frequency.  To improve the design, an air gap between the ground plane 

and radiating element was applied where the structure had two dielectric layers 

separated by air gap of 1.5 mm.  This enabled the antenna to resonate at two 

frequencies giving dual band with improved bandwidth.  The radiation efficiency 

at resonance frequency of 3.24 GHz was about 62%, which was much higher as 

compared to radiation efficiency of antenna design without an air gap.  The 

antenna with air gap design also showed remarkable improvement in terms of 

gain and directivity values. 

 

- In [140] an equilateral triangular patch antenna design with T-shaped notch is 

presented.  The shape of the patch used was equilateral triangular type having side 

length 100 mm with height from ground plane of 1.7 mm.  The proposed antenna 

was designed with a centre frequency of 1.8 GHz.  This proposed antenna with T-

notched exhibited a gain of 9.5 dB at 1.8 GHz, which was higher as compared to 

the gain of the conventional equilateral triangular antenna without notch.  It has 

been found that higher gain is achievable at the cost of greater T-notch patch area 

as the ratio of patch surface area. 
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- In [141] an equilateral triangular patch antenna design with bow-tie aperture 

coupling is described.  In this paper, triangular patch design is achieved by 

electromagnetically coupling the patch using two orthogonally oriented bow tie 

shaped apertures.  This equilateral triangular patch had a side length of 52 mm. 

The antenna was designed to transmit and receive the two different types of 

polarised wide band signals at the same time using a single antenna.  The use of a 

thick dielectric foam gave enhanced improvement in bandwidth. The impedance 

bandwidth was improved by 7.16 % and the ellipticity bandwidth was improved 

by 10.14% for the proposed design as compared to the patch of alike geometry 

with usual rectangular shaped apertures.  The use of dielectric foam was 

beneficial in achieving a low cost and light weight antenna. 

  

- In [142] the design of right triangular patch antenna with and without slits is 

presented.  The antenna was designed having three layer structure in between the 

ground plane and radiating patch.  It was discovered that antenna with no slits 

present and with an air gap of 1 mm resonated at a single frequency.  However, 

much better bandwidth of 32.8 % was achieved as compared to previous designs.  

When the two parallel slits in this patch were applied, the proposed antenna 

exhibited high impedance bandwidth of 33% and showed antenna resonating at 

two different frequencies. With this antenna, the directivity of up to 7.52 dBi can 

be achieved.  However, further work is needed in experimentation before 

reaching any conclusion. 
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- In [143] the design of a short-circuited triangular patch antenna is described.  The 

compact design has been achieved by truncating the corner of the equilateral 

triangular patch, which is embedded with a V-shaped slot.  The antenna design 

includes insertion of two shorting walls at the opposite edges of a tip-truncated 

triangular patch with a V-shaped slot, so that the two resonant frequency modes 

can be excited at the same time.  The proposed antenna was designed with 

substrate thickness of 0.6 mm and was mounted above ground plane at a height of 

6.4 mm.  The antenna was fed by coaxial probe having radius of 0.6 mm.  The 

shape of the patch used was equilateral triangular kind having side length of 60 

mm.  This proposed antenna was designed to cover UMTS bands (1.92 - 2.48 

GHz).  It was found that the centre frequency of the operating frequency band of 

the proposed antenna can be reduced by 20% than that of the similar-size Planar 

inverted-F antennas with one shorting wall.  The antenna results showed that the 

10 dB impedance bandwidth is greater than 25%, and its total antenna height is 

less than 0.06 free-space wavelengths. 

 

- In [144] the reflection loss of a slotted triangular patch antenna is presented.  In 

this paper, the reflection loss of the equilateral triangular patch at three broadside 

modes, TM10, TM20, and TM21 is shown to be decreased by the insertion of 

triangular slots that perturb the broadside modes’ magnetic field pattern.  The 

resonant frequencies of the triangular patch were calculated using equations as 

found in [145].  The simulation studies were carried out using antenna patch with 

side length of 102.5 mm and height of 88.8 mm.  The antenna patch had a 
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substrate thickness of 3 mm and infinite ground plane was assumed.  The antenna 

was fed using coaxial feed.  The antenna patch was simulated from 0.5 GHz to 8 

GHz.  The results showed that the reflection loss at the resonant frequencies for a 

triangular patch can be decreased by inserting triangular slots nearby the magnetic 

field nulls.  The results suggested that reduced reflection loss can also be attained 

at higher order resonant frequencies.  This method of suitable placement of 

triangular slots, can be used to further reduce the reflection loss for a particular 

resonant frequency in a traditional patch antenna.  However, further work is 

required on developing a more accurate location for the triangular slots or using 

slots of other shapes.  

- In [146] the design of an equilateral triangular patch antenna fed by coplanar 

waveguide is described.  This design is based on feeding system that uses 

electromagnetic coupling to avoid the disadvantages of probe technique.  The 

electromagnetic coupling here is used as microstrip line and coplanar waveguide.  

This design presents further development to the dual-frequency triangular patch 

antenna design using microstrip feed line as previously reported in [147].  The 

proposed antenna was designed using a pair of slits to increase the bandwidth.  

The antenna was designed with substrate thickness of 1.57 mm.  The antenna was 

operated at the frequency of 4 GHz and had a side length of 26.6 mm.  The two 

slits were inserted at the bottom of the patch antenna symmetrically and parallel 

to each other with fixed slit height of 12 mm and slit width of 1 mm.  The two 

slits were also separated with a distance g, which was varied.  The two resonant 

frequencies were produced by controlling the distance between the two slits.  The 
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return loss of -25.31 dB at 3.01 GHz and return loss of -23.51 dB at 3.96 GHz 

was obtained when the distance between the two slits was at 5 mm.  The results 

showed the impedance bandwidth can be increased to 27.26% for the proposed 

antenna. 

 

- In [148] the design of a triangular patch antenna with a folded shorting wall is 

presented.  The proposed patch antenna was designed with the shape of an 

isosceles triangle with side lengths 30 mm and 20 mm respectively.  The antenna 

patch was excited by coaxial probe and was placed 6 mm above the ground plane.  

The folded shorting wall was connected to the edge of the triangular patch and the 

ground plane.  The shorting wall had dimensions of height 3 mm and width of 6 

mm.  A stable gain of 6.4 dBi was found over a bandwidth of 28.1%.  The 

proposed antenna exhibited 48% area reduction and 34% bandwidth improvement 

compared to the traditional rectangular patch antenna designs. 

 

- In [149] the design of tuneable equilateral triangular patch antenna with variable 

air gap is investigated both experimentally and theoretically.  The resonant 

frequencies for different air gap heights were theoretically calculated using 

equations based on improved cavity model [150].  These results were confirmed 

with measurements performed for a coaxially-fed antenna.  The tunability of the 

antenna as a function of the air gap height was investigated theoretically giving 

over 200% tunable range of an equilateral triangular patch antenna having a side 

length of 50 mm.  Bigger patches with high dielectric constant substrate would 
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offer larger tunable frequency ranges.  The computed results for the antennas with 

no air gap height were compared with a standard spectral domain moment 

technique analysis as carried out by other earlier reported experiments.  A good 

agreement was shown in all comparisons. 

 

2.5 Conclusions 

Several microstrip patch antennas were reviewed for harmonic rejection.  The square 

patch design for 1.8 GHz operation can be used to suppress the first two harmonics by 

adding loads to the antenna’s feeding line.  The rectangular patch design using shorting 

pins and slots has the same radiation polarization as of the conventional patch designs.  

The rejection of spurious radiation of patch antennas can be achieved using split-ring 

resonators comprising band-stop filter. 

 

As compared to a conventional square-patch, the circular-sector antenna using inset 

feeding has high reflection coefficients at the second and the third harmonics. 

 

The active integrated antennas are attractive due to their compact size and low cost.  An 

H-shaped microstrip antenna integrated with a bipolar junction transistor oscillator for 

2.4 GHz operation can suppress the first two harmonics.  An active antenna integrated 

using a T-shaped microstrip coupled patch design removes the need of using chip 

capacitors for blocking the dc current in the radio frequency path resulting in a low-cost 
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solution.  The rectifying antenna (rectenna) design using a new probe-fed U-slot 

antenna for harmonic suppression gives a reduced antenna physical size as compared to 

square patch antenna.  The rectenna also has higher gain than the square patch antenna. 

 

The genetic algorithm can be used to optimize performance of any antenna design.  This 

method can effectively search the possible combinations of parameters and find the best 

structure for the antenna at the operating frequency.  The genetic algorithms are an 

effective way of evaluating antennas for bandwidth.  
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CHAPTER THREE 

3 Square Microstrip Antenna Operated 

by 1.8 GHz with Harmonic Control 

3.1 Introduction 

In modern wireless networks; it would be feasible to incorporate built in active micro 

strip antennas in diverse applications such as electronic tag, wireless local area network 

and electronic point of sales terminals. In these applications, not only  the microstrip 

antenna is functioning as a radiator, it also serves as a resonator for the power 

transformers and amplifies in the active circuits [1-8]. 

 

In such a set up, unless attempt is made to suppress harmonic resonance, it is likely that 

unwanted electromagnetic interference (EMI) would occur. To overcome this; bandpass 

filter should be installed between micro strip antenna and the power amplifier. 

Nevertheless, the added filter can have an effect on the impedance matching of the 

microstrip antenna operated at the fundamental frequency.  Furthermore, by operating at 

higher frequencies, the interconnects added as a result of the supplementary components 

will not be effective and the system output would equally be compromised. There are 

however other methods such as modifying the patch geometry [1-3] or alternatively 
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using photonic bandgap (PBG) ground plane [4-5] for the micro strip antenna has also 

been illustrated. By altering the patch geometry, the specifications of using a circular 

sector radiating patch at the patch’s centre line [2] or radiating edge [3] with several 

shorting pins are identified. By using PBG ground plane, which restricts the 

electromagnetic wave propagation within the designed stopband, the suppression of the 

second and third harmonic resonances of the microstrip antenna has been presented in 

[9-16].  The embedded PBG revolves within the antenna’s ground plane causing the 

radiation patterns of the antenna at the fundamental frequency to become two 

directional. 

 

3.2 Antenna Design Concept 

This design illustrates the basic harmonic control system for micro strip antenna; using 

inserted micro strip line feed that can be used for integrating with the device.  It is 

shown that the suppression of the second harmonic resonance of the micro strip antenna 

can be realised by adding an open circuited tuning stub of proper length at an 

appropriate position from the micro strip feed line. Additional details are presented 

below and experimental results are given and discussed. 
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Figure 3:1: The geometry of the square microstrip antenna fed by 50 Ω inset microstrip-

line and the proposed 50 Ω inset microstrip-line (a tuning stub to the ground dielectric 

substrate is not shown). 

 

3.3 Antenna specification 

The geometries of the regular and suggested inset microstrip-line fed are shown in 

Figure 3.1.  The square radiating patch has a side length of L and is engraved on a 

microwave substrate of thickness h and relative permittivity of e. The inset microstrip-
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line is a 50 Ω characteristics impedance and with a width of w f.  The inset length of the 

microstrip-line is ln and the gap between the inset microstrip-line and the patch is 

represented as g, which is confined to only 1mm. The open-circuited tuning stub has a 

length of l, which is measure to 0.125 guided wavelengths at the fundamental resonant 

frequency (f01) and is placed at l1 from the feed point. 

 

The distance between the tuning stub and the microstrip line is represented by l2 which 

is expected to be 0.125 guided wave length at the fundamental resonant frequency. As 

the antenna is designed to operate at the fundamental resonant frequency, the likely 

second harmonic (2f01) signal into the antenna can be impaired and blocked. It is as a 

result  of  the tuning stub length of 0.25 – guided wavelength at the frequency 2(f01). 

Therefore the impedance at point (b) is seen in the tuning stub zero or short-circuited 

and as a result the impedance at point (a) is visible in to the microstrip antenna's infinite 

or open circuited. This suggests that the likely second harmonic radiation of the 

proposed antenna is suppressed and equally the undesirable EMI is resolved. 
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3.4 Simulated Antenna And measurement Results  

 

Figure 3:2: Reflection Coefficient |S11| versus the operating frequency. 
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Figure 3:3 : Simulated input impedance for the proposed antenna (er = 3.1, h = 

1.6mm, l = 40mm, l1 = 12.5mm, l2 29.6mm, g = 1mm, w = 5mm, ground-plane size 

= 75 x 75 mm square). 
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Figure 3:4: Measured and simulated radiation patterns for 1.8 GHz, 3.6 GHz and 

5.4 GHz over: (top) z-x plane; (bottom) z-y plane; (‘x x x ’measured Eθ, (‘- - - -

’simulated Eθ, ‘o o o’ measured E, ‘───’ simulated E). 

. 
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3.5 Results and Conclusions 

The existing and proposed microstrip antenna is represented in Figure 3.1. It is designed 

to operate at TM01 mode, the fundamental resonant mode at around 1.8 GHz. 

Therefore, the square radiating patch is measures  40mm (l) and the FR4 dielectric 

substrate is h = 1.6mm; er = 3.1 and L4 = 17.56mm. 

 

Figure 3.2 gives the measured real input impedance against frequency.  At the second 

harmonic resonant frequency (2f01) is not zero which makes it possible to generate the 

second harmonic radiation. The measured imaginary impedance of the proposed 

antenna is illustrated in Figure 3.3.  It is evident that the real part of the input impedance 

at (2f01) is down to zero, thus the increase in the second harmonic resonance is 

suppressed.  

 

The measured return loss against frequency for the designed antenna is given in 

Figure 3.4 and compared with other antennas described in references. The proposed 

antenna with w = 5mm shown in the diagram is compared to other antennas.  A strong 

excitation of the fundamental resonant mode is apparent and it is likely that excitation of 

high order modes (TM02 and TM21 modes) close to 2f01 are suppressed. The 

suppression of the third harmonic resonance caused by the addition of two or more stubs 

lengths to the inset microstrip line at appropriate locations is given in Figure 3.3. 
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The results show that the good suppression at the second and third harmonic frequencies 

can be achieved using a suitably designed square patch antenna fed by 50 Ω inset 

microstrip-line and by adding more stub lengths to the feeding point.  
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CHAPTER FOUR  

4 Harmonics Measurement on Active 

Patch Antenna Using Sensor Patches 

4.1 Introduction 

More recently, the active integrated antenna (AIA) has been an attractive area of 

research, due to its compact size, low weight, low cost, and multiple functionalities.  In 

all cases, the antenna is fully (or closely) integrated with the active device to form a 

subsystem on the same board and can offer particular circuit functions such as 

duplexing, resonating, filtering as well as radiating, that describes its original role.  

AIAs are classified into three types: amplifying-type, oscillating-type and frequency-

conversion-type, according to how the active device acts in the antenna [1-12]. 

 

In general, radiated power by the active integrated antenna at the targeted design 

frequency and its harmonics can be measured using Friis transmission equation in the 

anechoic chamber [13]. In addition, a simple measurement technique for measuring the 

power accepted by the active patch antenna, using a sensing patch feeding the network 

or spectrum analyzer, was first proposed in [14]. The technique eliminates many 

uncertainties and errors, such as cable losses, effects of the pattern, effects of nearby 
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scatterers, and gain estimation errors, and even makes it unnecessary to operate in the 

far field. This technique was originally developed for the measurement of amplifying-

type active patch antennas at their fundamental design frequency. It was subsequently 

applied to measurements on oscillating-type antennas [15]. 

 

This work introduces the possibility of using this technique to find the power accepted 

by the antenna at harmonic frequencies. Performance of the sensing patch technique for 

measuring the power accepted at the antenna feed port of active patch antennas at 

harmonic frequencies is evaluated using an electromagnetic (EM) simulator Ansoft 

Designer [16] in terms of the current distribution. A prototype antenna, including two 

sensors at appropriate locations around the patch, is fabricated and tested at three 

designated frequencies to estimate the accepted power by the antenna, including 

determination of the sensor calibration factor. It is shown, based on experimental 

results, that the original technique can also be employed to measure the second 

harmonic power; measurement of the third harmonic power is also possible if another 

sensing patch is added in an appropriate position. 

 

4.2 Antenna Design Geometry  

An inset microstrip-fed patch antenna, resonating at 2.44 GHz, was chosen for the test, 

since this type of antenna is convenient for the design of active oscillator antennas. The 

important dimensions of this antenna are illustrated in Figure 4.1.  
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Figure 4:1:Important dimensions of the patch antenna studied  (W=38.15, 

L=45.96, L1=18.32, Wm=4.24, Lm=17, Wf=2.54, Lf=10.02, Gs=2, Ws1=5, Ws2=3 and 

Ls=3; all dimensions are in millimetres). 

 

The performance of the sensing patch method at the fundamental, 2
nd

 and 3
rd

 harmonic 

frequencies was evaluated with this antenna. The current distribution on the patch at 

harmonic frequencies was first studied to find the proper position for the sensing patch.  

Figure 4.2, Figure 4.3 and Figure 4.4 show the corresponding harmonic current 

distributions on the patch. 
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Figure 4:2: Current distribution on the patch antenna at fundamental frequency 

 

Figure 4:3: Current distribution on the patch antenna at 2
nd

 harmonic frequency. 
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Figure 4:4: Current distribution on the patch antenna at 3
rd

 harmonic frequency. 

 

The position of the sensing patch is optimally set adjacent to a point of maximum 

voltage, which corresponds to a point of minimum current distribution on the patch. 

Thus, the position of the sensing patch can be set next to the middle of the end edge of 

the patch for the 2
nd

 harmonic and one-third of the way along one side of the patch for 

the 3
rd

 harmonic.  It was found that the presence of the sensing patch has very little 

effect (about ±0.2 dB) on the return loss at the input port of the main patch at the 

fundamental operating frequency and the first two harmonics as shown in Figure 4.4.  
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Figure 4:5: Simulated antennas return loss with and without the sensor patch. 

 

The antenna with two sensing patches was mounted on 1.524 mm thick Duroid 

substrate material with relative permittivity of 2.55 and loss tangent of 0.0018.  The 

sizes of the sensing patches used for the 2
nd

 and 3
rd

 harmonic frequencies were 3 mm x 

5 mm and 3 mm x 3 mm, respectively.  A spacing distance of 2 mm between the sensing 

patches and the antenna patch (see Figure 4.5) was found acceptable for sufficient 

coupling and had no noticeable effect on the antenna input return loss.  It has to be 

noted that the sensing patch at the 2
nd

 harmonic has the same location as at the 

fundamental. The sensing patch was linked to ground via a 50 Ω chip resistor. The 

inclusion of the 50 Ω resistor creates a relatively well-matched source for the attached 

cable.  A 50 Ω coaxial probe was mounted at the rear of the circuit board and connected 

to the resistor load: this fed the sensor output to a traceably-calibrated network analyzer.  
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Figure 4:6:  Fabricated antenna showing sensor locations: (left) Top view, (right) 

Underside. 

 

The sensing patch for the 2
nd

 harmonic was first tested. According to the work presented 

in [14], the performance of the sensing patch for harmonics can be evaluated using the 

calibration factor |S21|, which relates the sensor’s output power to the power accepted 

by the radiator from RF circuitry (e.g. a RF power amplifier or oscillator), as follows: 

 
2 2 2

21 21 111S S S                                                                       (1) 

where 
11 12

21 22

[ ]
S S

S
S S

 
  
 

 

The scattering parameters [S] in Eqn. 1 were obtained by measuring two-port 

S-parameters between the antenna input feed line and the sensor’s output from 2 GHz to 

8 GHz using a traceably-calibrated network analyzer (HP 8510C). The variations of the 
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measured [S]’s extended over the fundamental frequency and the first two harmonics 

are presented in Figure 4.6; the corresponding calibration factor from the measured 

antenna data was computed using Eqn. (1).  The measured return loss and computed 

calibration factors are presented in Table 1 at 2.44, 4.88, and 7.32 GHz, respectively.  

In order to evaluate the sensor’s calibration factor for harmonics, a 0 dBm RF signal 

was injected into the main patch from a sweep oscillator HP 8350B at the fundamental 

and harmonic frequencies. The measurement setup is illustrated in (Figure 4.6, 

Figure 4.7 and Figure 4.8).  The Return Loss (R.L.) of the antenna tested was optimised 

at its fundamental frequency into an impedance of 50 Ω, as shown in Table 4.1.  

Table 4.1: 2nd
 harmonic sensor measurement results for the fundamental and harmonics. 

Freq 

(GHz) 

S11  

(dB) 

|S21′|
2
 

(dB) 

Lcable 

(dB) 

Preading  

(dBm) 

Paccepted  

(dBm) 

Paccepted′  

(dBm) 

2.44 -24.86 -23.20 1.33 -25.33 -0.0144 -0.8 

4.88 -1.75 -20.42 2.67 -28.5 -4.796 -5.412 

7.32 -4.241 -23.45 4 -27 -2.052 0.45 
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4.3 Measured two-port S-parameters  

 

Figure 4:7:  Measured two-port S-parameters between the antenna input port and the 

sensor’s output port at fundamental frequency. 

 



77 

 

 

Figure 4:8:  Measured two-port S-parameters between the antenna input port and the 

sensor’s output port at the 2
nd

 harmonic frequency. 
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Figure 4:9:  Measured two-port S-parameters between the antenna input port and 

the sensor’s output port at the 3
rd

 harmonic frequency. 

 

However, at harmonic frequencies, the input impedance of the antenna was greatly 

different from 50 Ω.  Thus, the power accepted by the antenna (Paccepted) is given by: 

 

 2
1  incidentaccepted PP                                                                (2) 
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where Γ is the reflection coefficient at the input of the antenna and |Γ|
2
 = 

Preflected/Pincident. Preflected is the power reflected at the antenna input, and Pincident is the 

power outgoing from the signal generator (in this case, Pincident = 0 dBm at all 

frequencies). The power from the sensor’s output (Preading) was observed using a 

spectrum analyzer (HP 8563A). Care was taken to find the loss in the cable (Lcable) 

before measuring the output power from the sensor. The estimated power accepted by 

the antenna (Paccepted′) can be found as: 

2

21accepted reading cableP P S L                                                    (3) 

A summary of measured parameters for the 2
nd

 harmonic sensor is presented in 

Table 4.1. The technique shows that the power accepted by the antenna at the 

fundamental and 2
nd

 harmonic frequencies can be achieved using the same sensing 

patch.  It can be seen from Table 4.1 that the accuracy of this technique is around 0.7 dB 

(i.e., the maximum difference between the Paccepted and Paccepted′ at the fundamental and 

2
nd

 harmonic). It should be noted that the power accepted at the 3
rd

 harmonic frequency 

varies greatly in the measurement and this is because the sensor at this position is 

weakly coupled to the maximum voltage of the 3
rd

 harmonic. 

 

Similarly, for the 3
rd

 harmonic sensor, the same process was used as with the 2
nd

 

harmonic sensor. A summary of measured parameters for the 3
rd

 harmonic sensor is 

presented in Table 4.2 
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Table 4.2:  3
rd

 harmonic sensor measurement results for the fundamental and 

harmonics. 

Freq 

(GHz) 

S11  

(dB) 

|S21′|
2
 

(dB) 

Lcable 

(dB) 

Preading  

(dBm) 

Paccepted  

(dBm) 

Paccepted′  

(dBm) 

2.44 -26.09 -32.403 1.33 -33 -0.0109 0.733 

4.88 -1.74 -25.25 2.6 -33 -4.814 -5.155 

7.32 -4.19 -23.59 4 -30.67 -2.084 -3.08 

 

 

 

Figure 4:10:  Photograph of measurement setup in this study. 
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It is shown that the technique is still valid within 1dB accuracy for 3
rd

 harmonic power 

measurement. In addition, this sensor can also be applied for the 2
nd

 harmonic power 

measurement, with very good accuracy. This is because the current distribution at the 

2
nd

 harmonic frequency near to the location of the 3
rd

 harmonic sensor is close to 

minimum, and this can be easily seen from Figure 4.5. It is notable that the power 

accepted at the fundamental frequency varies greatly in the measurements. In addition, 

care should be taken on means of improving the port impedance matching at the sensor 

patch port in order to eliminate measurement errors and improve measurement accuracy 

at fundamental and harmonic levels using this proposed technique. This challenging 

problem including the antenna operation over a wide frequency band is left to future 

work.  

 

4.4 Conclusions 

 The measurement of the power accepted by a microstrip patch antenna, using the 

sensing patch measurement technique, has been demonstrated at both fundamental and 

first two harmonic frequencies. The results of the present work are shown to be 

acceptable and agreed with direct measurements. The proposed technique is shown to 

achieve good accuracy of 0.7 dB and 1 dB for the 2
nd

 and 3
rd

 harmonic measurements 

respectively. 
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CHAPTER FIVE 

5 Genetic Algorithm And Adaptive 

Meshing Program 

5.1 Introduction 

Active transmitting antennas often suffer from significant non-linearity; the driving 

transistor drain (or collector) produces time-harmonic currents which feed directly into 

the radiator, resulting in unwanted radiated power [1].  In active antenna design these 

unwanted harmonic currents can be terminated (or substantially eliminated) using the 

radiator itself, in which case the active circuit does not require any additional 

complexity for harmonic tuning, thus contributing to the desired compactness of the 

design. 

 

Harmonic suppression antennas (HSAs) are used to suppress power radiation at 

harmonic frequencies from active integrated antennas.  An antenna that presents a good 

impedance matching at the fundamental design frequency (fo) and maximised reflection 

at harmonic frequencies is said to be a harmonic suppression antenna. In addition, the 

input impedance of any HSA design has to have minimised resistance at the harmonic 

frequencies and hence will be largely reactive [2]. Several techniques have been 
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proposed to control such harmonics, such as shorting pins, slots or photonic bandgap 

structures [3, 4].  In [5], the modified rectangular patch antenna with a series of shorting 

pins added to the patch centre line was applied to shape the radiated second harmonic 

from the active amplifying-type antenna, in order to increase the transmitter efficiency. 

Unfortunately, the proposed design does not give the termination for the third harmonic. 

A circular sector patch antenna with 120 cut out was investigated and proved to 

provide additional harmonic termination for the third harmonic, also claiming a further 

enhancement in the transmitter efficiency [2]. Further, an H-shaped patch antenna was 

designed and applied in oscillator-type active integrated antennas for the purpose of 

eliminating the unwanted harmonic radiation [6, 7].  

 

Generally, most of the published designs for modified patch HSA have been based on a 

specific reference antenna, suggesting that the proposed techniques for rejecting 

harmonic radiation have specific constraints imposed onto them. For example, in [8] a 

microstrip-line fed slot antenna was developed for harmonic suppression without using 

a reference antenna. This was achieved with a rather complex geometry for 5 GHz 

operation. This process does not usefully generalise, so that if a new operating 

frequency is required, then the whole structure must be redesigned.  Thus there exists a 

clear motivation to develop a coherent design strategy for microstrip HSA in active 

integrated applications. In this design we adopt a computational technique using 

adaptive surface meshing driven by a genetic algorithm.  
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5.2    Genetic Algorithm and Adaptive Meshing Program 

Genetic algorithms (GA) are stochastic search procedures modelled on natural genetics, 

selection and evolution. They are adapted from Darwinian concepts of natural 

evolution, thus making them plausibly thorough in seeking an optimal design [9].  After 

its first introduction in the 1960s by J. Holland, GA has become an efficient tool for 

search, optimisation and machine learning; however in the pre–GA era, similar concepts 

had been looming and applied in game playing and pattern recognition [10]. Over the 

recent years, it has proven to be a promising technique for different optimisations, 

designs and control applications. 

 

An approach to the use of GA in collaboration with an electromagnetic simulator has 

been presented for antenna designs and has become ever more accepted more recently 

[11]. For example, GA has been used to design wire antennas [12, 13] and microstrip 

antennas [14]. Other uses have also been developed such as wideband antenna designs 

based on the fundamental requirement for near field imaging tools such as are needed 

for microwave breast cancer detection: this was reported using GA as the main 

optimisation tool [15]. Another application applied to beam-control of an antenna array 

was also derived through the use of a genetic algorithm, based on adjusting the required 

reactance values to obtain the optimum solution [16]. In addition, GA can enhance 

antenna designs for multiple input multiple output (MIMO) systems, which dramatically 

increase channel capacity in wireless communication systems [17-20]. The GA-
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optimised MIMO antenna designs provide substantial size reduction, reduced power 

consumption [19] and cost minimisation [18] in such systems.   

 

The advantage of using GA methods is that they give high-speed, high accuracy and 

reliable solutions for the antenna structures.  A genetic algorithm driver [21], which was 

written in Fortran, was employed in this work in combination with the authors’ Fortran 

source code [22].  Several antenna designs, derived using GA in previous work by the 

authors [23-25], have shown  GA method to be an efficient optimiser tool that can be 

used to search and find rapid solutions for complex antenna  geometries. 

 

An adaptive meshing program was also written in Fortran by the present author and 

added as a subroutine to the GA driver, with the main purpose of simulating air-

dielectric planar microstrip patch antenna designs: this used a surface patch model in 

cooperation with a GA.  The program is also able to support the design of any 3D 

antenna geometry structure, including moderate amounts of dielectric materials. The 

present work is an extended version of preliminary work reported in [26].  

 

An antenna under GA optimisation needs to be defined by a number of parameters that 

can define its configuration. For the electromagnetic surface patch model used, the 

antenna geometry is divided into optimum numbers of trilateral and quadrilateral 

polygons, each polygon node being specified by its x, y and z co-ordinates, subject to 

the defined antenna parameters.  These polygonal surfaces are then optimally 

subdivided into a set of rectangular and triangular surface patches, constrained to be 
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small compared with the operating wavelength, and then an appropriate basis functions 

are adaptively generated over these patches using a designated algorithm as shown in 

Figure 5.1 and the following subsection.   

 

Figure 5:1: The adaptive surface patch meshing used for antenna modelling. 

 

5.2.1 The GA Driver  

Review procedure was attempted and was observed that various versions of Genetic 

Algorithms drivers are available for optimisation process such as the ones implemented 

in C, MATLAB and FORTRAN 77. From  review and experience on home programmes 

(From Antenna and Advanced Electromagnetics Research Group University of 

Bradford) , FORTRAN 77 seemed more friendly and easier to manipulate for the 

present research work. The FORTRAN 77 version of the GA driver, written by David 

L. Carroll of the CU Aerospace USA [21], uses the randomized approach to initialize its 

start individuals and the tournament selection with shuffling techniques in choosing 

Rectangular surface 
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patches
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patches
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random pairs for mating. Binary coding  also enabled the uniform and non-uniform 

process of single point crossovers.  

 

The GA driver can be controlled and adjusted through an associated input data file as 

shown in the Fig. 5.2. This figure illustrates a set of parameters, these include: GA 

driver elements and the variables that need to be optimised and used through the 

electromagnetics computational codes. The functions of samples of these parameters 

have been highlighted in the data file of Figure 6.3.  These variables are the most 

important and influential to the GA driver in the antenna design and should be 

adaptively adjusted according to the various design types or objectives, in order to 

maximize the GA driver performance in searching for optimum solutions of antenna 

designs. 

 

 

Figure 5:2: A sample of GA driver input file 
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5.2.2 Implementation of antenna designs using GA driver 

The FORTRAN source code in [22] was adopted inside the GA fitness function to 

perform the required calculations for the cost functions. The source code was modified 

to accept the input data file generated by the GA code within the fitness calling 

function. These modifications are found very helpful to reduce the execution processing 

time and manipulate the output data files between the sources codes.  

 

It should be noted that before the optimisation process is initiated, the target objectives 

and number of parameters required for the whole process to achieve the optimum 

desired goal were estimated. These include the most important antenna parameters that 

are directly measured by the fitness function.  Sometimes a relationship was required to 

define a threshold for the GA which enables it to evaluate the designed antenna 

performance and terminate where necessary. Usually, this is a complex procedure to be 

applied; however, one can apply a certain constraints inside the cost function to support 

the data processing when nearly reaching the optimal design requirements.  The cost 

function is usually included in the algorithm and it measures the fitness of the 

individuals produced in each generation of the algorithm.  

A flow chart to represent the easiest way in which the GA optimizer coordinates its 

functions is represented in Fig. 5.3. The algorithm randomly initiates its population and 

converts the parameters of the initiated individuals to the electromagnetic code to 

developed the meshing process and execute the MOM to compute the induced currents 

and radiation performances and return back the targeted variables to the cost function. 
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The process will continue till the maximum value of the fitness function is obtained for 

convergence,  otherwise the whole process is repeated until optimal results are 

produced.  

 

Figure 5:3: Flow chart of the genetic algorithm adopted in this study. 

 

5.2.3 Method of Moment Formulation 

In The approach for MOM it is assumed that the surface current is allowed to have 

components both parallel to, and transverse to the surface patch segments. This leads to 

an equation of the form: 

Has max. no. of generations 

been reached?

Has max. no. of generations 

been reached?
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where Ij is a basis function for the surface current Jj, Ei is the incident electric field 

strength and L is the integro-differential operator given by: 

tan)()(   AJ jL  (5.2) 

where A and  are the vector and scalar potentials. If a set of testing functions Wm is 

defined, equation (5.1) may be rewritten as: 
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where ds and ds are the differential areas on the patch surface for the source and the 

observation points respectively, m = 1, 2, ...N is the index of the testing function and Z 

and V are the conventional abbreviations for the interaction matrix and excitation vector 

terms in the Method of Moments. The impedance matrix elements Zmj can be written 

using the closed surface integral identity [27] as follows:   
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where g(R) is the free-space Green function [28-29] and is given by the expression: 
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R is the distance between the observation and source points on the patch surface. 

Singular integral occurs when R = 0 (i.e., g(R)  ).  

 

Any arbitrary surface shape can be modelled by a number of surface patches to 

represent a discretised version of a complex current distribution. The currents were 

represented by overlapping surface dipoles, where the current basis functions are 

generally continuous and may have continuous derivatives. The Electric Field Integral 

Equation was applied to evaluate the current distribution. For the problem shown in Fig. 

5.1, the rectangular and triangular patches were used as discretising elements of the 

geometry. The self and mutual impedances of these surface dipoles were obtained from: 
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where Zrr and Ztt are the self-impedances of the current basis functions on rectangular 

and triangular patches respectively. Zrt = Ztr is the mutual impedances between the 

current basis functions on the  triangular patches.  f(p) is the current basis function for 

the rectangular patch, whereas the f(u) is the vector basis function of the triangular basis 
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function.  f(u) and f(p) are the derivatives of f(u) and f(p) respectively. paö  is the unit 

vector that specify the current basis function direction for the rectangular patch. k = 

2/ is the propagation constant, and  is the operating wavelength. G(R) is the free 

space Green function. Similarly, the source code also includes the self and mutual 

impedances over wire segments and attachment patch modes that are not shown here. It 

should also be noted that weighting functions are a copy of the basis functions.    

 

5.3 Conclusions 

The description of the numerical method employing the genetic algorithm and the 

electromagnetics codes has been presented. Set of the most appropriate parameters 

included in the GA and incorporated with the electromagnetics solver was 

demonstrated. A computational technique using adaptive surface meshing driven by GA 

has been written in Fortran and has been examined in the next chapter which can 

support the design of 3D antenna geometry structures such as the design of coaxially-

fed, air-dielectric, microstrip, harmonic-rejecting patch antennas for 2.4 GHz was 

investigated, enforcing suppression of the first two harmonic frequencies. 
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CHAPTER SIX 

6 Harmonic Suppression Antennas Using 

Genetic Algorithm 

6.1 Introduction 

This chapter examines the design of microstrip patch antenna for harmonic suppression 

with the aid of a generic algorithm. Active antennas generally have considerable non-

linearity and are compact in their specification. For this reason, the transistor drain 

would be generating harmonic current in to the radiator and would invariably be 

radiating undesirable power. In active antenna design, these undesirable harmonic 

elements could be removed with the aid of the radiating element. To achieve this, the 

circuit can be designed in a compact form without additional circuitry for harmonic 

tuning. 

 

To increase the effectiveness of the harmonic suppression the rectangular patch antenna 

shape was modified with a series of shorting pins added to the patch centre line, 

included to shape the radiated second harmonic from the active amplifying-type 

antenna. Since the intended antenna does not provide the termination harmonic, a 

circular sector patch antenna with 120 degrees cut out was analysed and it provided 
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additional harmonic termination for the third harmonic. To overcome, the unwanted 

harmonic radiation, an oscillator type integrated antenna was included. 

 

The micro strip patch antenna acts as a radiator and also provides circuit functionality 

by matching circuit and band pass filter. However, if the harmonic radiation is not 

suppressed it could cause unwanted electromagnetic interference (EMI) in the system. 

To address this limitation, shorting pins, slots photonic band gap structures or matching 

stubs can be used on the antenna feeding line. 

 

A microstrip line fed slot antenna was developed for harmonic suppression without 

using reference antenna and this resulted in complex geometry for 5 GHz operation. 

However, if the frequency is altered in a way, then the complete antenna structure 

needed to be modified. 

 

Good matching impedance at the fundamental design frequency (fo) with an ideal 

maximum first two harmonic (2fo and 3fo) is considered to be a harmonic suppression 

antenna (HSA).  However, the response of the HSA, bearing in mind the antenna return 

loss (S11), is that of a band pass filter having an ideal rejection outside the concerned 

frequency bands. In certain HSA specifications the antennas may have resonances at 

frequencies beyond the intended frequency (fo, 2fo and 3fo) but are still considered as 

antennas for harmonic suppression. 
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An additional constraint in the HSA regards the input impedance.  This has to be 

reactive at the harmonic frequencies, since the HSA was initially intended for harmonic 

termination to get class F operation for the amplifying category antenna. 

 

The primary criteria of antenna for harmonic suppression is return loss and input 

impedance.  In this study, a sample of designs are examined and presented and are all 

designed to operate at 2.4 GHz. 

 

6.2  Microstrip Patch Antenna with Fully Shorted Wall 

The design of harmonic suppression antenna with a shorted wall can be seen in 

Figure 6.1. This gives an overview of the proposed antenna sub-divided into four 

trilaterals and two quadrilaterals.  It has six parameters to be assigned in Figure 6.1 and 

Figure 6.2 illustrates the 3D of the adaptive wire grid segmentation results. 

 

 

Figure 6:1: Top elevation view of antenna geometry used for adaptive meshing using GA. 
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Table 6.1 shows the GA input parameters with likely values for the GA chromosomes 

for the optimisation, that were applied. In this chapter, first, second and also 

fundamental frequencies were considered for the GA cost function. The randomly 

generated antenna configurations were calculated for maximum fitness using the cost 

function below: 

     (1) 

  

Where F represents the fitness of the cost function, n = 3, w1, w2 and w3 are the weight 

coefficients of the cost function and they are optimally found to be 0.6, 0.4 and 0.4; the 

geometry configuration of the optimal antenna was within the maximum generation and 

is given in Figure 6.1. 

1

1
2

( ) 50 ( )
1 ( ) 1

50 50

n
o o

i
i

Z f R if
F w w if





   
        

  

 

 

Figure 6:2:  Top elevation view of resulted wire mesh used for Figure 6.1. 
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The computation time taken for each of the randomly generated antenna samples ranged 

from 60-70 seconds using various length, width and height of the patch antenna selected 

of the given antenna configuration. 

Table 6.1:  Summary of GA input parameters, antenna variables and optimum solutions. 

GA parameters 

Harmonic suppression antenna 

parameters 

Fully 

shorted 

Parameters (m) 
Optimal 

(m) 

Antenna length (L) (0.03-0.06) 0.03950 

No. of population size = 

4, 
Antenna width (W) (0.02-0.06) 0.03305 

No. of parameters: 6  

(Figure 1 (a1)), 7  

(Figure 1 (a2)), 8  

(Figure 1 (a3)), 

Shorting or folded wall position  

(d) (0.002-0.03) 
0.00972 

Probability of mutation 

=0.02, 
Antenna height (h) (0.003-0.01) 0.0079 

Maximum generation 

=500, 

Feeding point at x-axis (Xf) (0.004-

0.02) 
0.00723 

No. of 

possibilities=32768, 

Feeding point at y-axis (Yf) (0.004-

0.02) 
0.01752 

 
Variable shorting wall width (Ws) 

(0.001-0.03) 
- 

 
Extend folded wall length (Lf) 

(0.005-0.015) 
- 

 
Extend folded wall height (hf) 

(0.001-0.0035) 
- 
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A prototype GA optimised harmonic suppression antenna with a shorted wall is 

presented in Figure 6.1. A copper sheet with thickness of 0.5mm is used for the antenna 

patch, shorting wall and the ground plane with measurement 140mm x 140mm. The 

return loss was validated and the rejection of 2nd and 3rd harmonics was satisfactory. 

The prototype antenna resonates at 2.47GHz and has a bandwidth of 500MHz, with 

reflection coefficient of 1.71dB and 2.47dB for the first and second harmonics.  The 

observed resonance frequency agreed with the predicted value. 

 

Figure 6:3:  The measured and simulated return loss of the patch antenna with fully 

shorted wall. 

 

Furthermore, the input impedance of the proposed antenna was equally measured over a 

wide frequency band and is given in Figure 6.4.  An additional input impedance plot is 

also presented, in Figure 6.5, showing a constant input impedance of under 10 Ω at 

harmonic frequency bands. 
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The measured input impedance of the harmonic rejection antenna with shorted wall for 

fundamental frequency and with its first harmonic rejection antenna is illustrated in 

Table 6.2.  It gave matching of 50 Ω at fundamental frequency and resistive impedance 

at harmonics was found thus agreeing with the objective of the design. 

 

Figure 6:4:  The overall measured input impedance of patch antenna with fully shorted 

wall. 

 

Figure 6:5:  Measured input impedance of the harmonic suppression antenna for fully 

shorted wall. 
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Table 6.2 : Performance of antenna input impedance of the harmonic rejection antenna 

with shortened wall at the fundamental and first and second harmonics. 

 

Full-width shorted wall 

Frequency 

(GHz) 

Antenna input impedance 

(Ω) 

F Real Imaginary 

   fo :
 2.47 49.87 -0.587 

   2fo :  4.94 6.283 -28.917 

   3fo:   7.1 839         7.64 

 

The measurements for the far field radiation patterns of the prototype were done in a far 

field anechoic chamber.  The fixed antenna (broadband horn) had a spacing of 4m 

between the antenna and the horn.  Two pattern cuts were taken for four selected 

operating frequencies that cover the complete bandwidth.  The radiation patterns in zx 

plane and zy plane for the GA-optimised HSA with shortened wall at fundamental, 

second and third harmonic frequencies were measured. These results are given in 

Figure 6.6 showing 2nd and 3rd harmonic radiations of the HSA with shortened wall to 

be less than 13dB and 18dB for the zx plane and 10dB and 9dB for the zy plane subject 

to the normalised accepted power of the fundamental frequency. The measured 

maximum gain of the GA optimised antenna is give as 4.14dB.  
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f0=2.47 GHz f1=4.94 GHz 

(a) 

f2=7.41GHz 

   

f0=2.47 GHz f1=4.94 GHz 

(b) 

f2=7.41GHz 

Figure 6:6:  Measured and simulated radiation patterns of the proposed GA-

optimised HSA with full-width shorted wall for 2.47 GHz, 4.94 GHz and 7.41 GHz 

over: (top) z-x plane; (bottom) z-y plane; (‘───’measured Eθ, (‘o o o’simulated Eθ, 

‘- - - -’ measured E, ‘x x x’ simulated E). 
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6.3 Microstrip Patch Antenna with Partially Shorted Wall 

After the design of harmonic suppression antenna with a partially shorted wall a new 

design can be made to control the harmonics with the variation of the width of the 

shorting wall. This design operates at 2.4GHz. The antenna geometry for this is shown 

in Figure 6.7. 

 

Figure 6:7: Top elevation view of antenna geometry used for adaptive meshing using GA. 
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Figure 6:8:  Top elevation view of resulted wire mesh used for Figure 6.7. 
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Table 6.3 presents the GA input parameters in which the possible range of values is 

shown for shorted wall.  Similar optimisation process was applied as to the previous 

example except the optimal weight coefficients of the cost function were found to be 

0.6, 0.4 and 0.4 after a few trials.  

 

Table 6.3:  Summary of GA input parameters; antenna variables and optimum solutions. 

 

GA parameters 

Harmonic suppression 

antenna parameters 

Truncated 

shorted 

Parameters (m) Optimal (m) 

Antenna length 
L) (0.03-

0.06) 

0.033
0 

No. of population size =4, Antenna width (W) (0.02-

0.06) 

0.03820 

No. of parameters: 6 (Figure 1 

(a1)), 7 (Figure 1 (a2)), 8 (Figure 

1 (a3)), 

Shorting or folded wall 

position (d) (0.002-0.03) 

0.00986 

Probability of mutation =0.02, Antenna height (h) (0.003-

0.01) 

0.00336 

Maximum generation =200, Feeding point at x-axis 0.01685 
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(Xf) (0.004-0.02) 

No. of possibilities=32768, Feeding point at y-axis 

(Yf) (0.004-0.02) 

0.01923 

 Variable shorting wall 

width (Ws) (0.001-0.03) 

0.02474 

 Extend folded wall length 

(Lf) (0.005-0.015) 

- 

 Extend folded wall height 

(hf) (0.001-0.0035) 

- 

 

 

For validation, prototypes of the GA-optimised harmonic-suppression antennas (HSAs) 

of the three models shown in Fig. 6.7 were designed and tested. Copper sheet with 

thickness of 0.5 mm was used for the patch antenna, shorted/folded wall and the ground 

plane. The ground plane size was set to 140 mm x 140 mm, the relatively large size was 

chosen in order to attenuate the effect of the edges of the finite ground plane. The return 

losses were validated and measured results compared with calculations are shown in 

Figure 6.9.  As can be seen, the results for rejection levels of 2
nd

 and 3
rd

 harmonics were 

quite encouraging and no other resonances or ripples were found over the harmonic 

frequency bands. 
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Figure 6:9:  The measured and simulated return loss of the patch antenna with a 

partially shorted wall. 

 

It was found that the full-width shorted-wall prototype antenna was resonant at 

2.47 GHz and presents quite a wide bandwidth of around 500 MHz. The reflection 

coefficient level at the first and second harmonic frequencies was found to be 1.71 dB 

and 2.45 dB, respectively.  

 

These results are quite acceptable, as compared with HSAs published in the open 

literature [27]. It is notable that the measured resonant frequency of the prototype 

antenna shows good agreement with the prediction. The second prototype antenna was 

resonant at 2.48 GHz and presented a narrower bandwidth (around 150 MHz), 

compared to the first design. This is mainly because the height of this antenna is much 
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lower (about 3.36 mm) than the first design (7.9 mm), correlating with previous 

experience that has shown that the antenna height has a most important influence on 

bandwidth enhancement of microstrip patch antennas. The third prototype exhibited 

approximately 380 MHz bandwidth, centred at a 2.45 GHz resonance frequency. The 

rejection levels of the 2
nd

 and 3
rd

 harmonics were about 1.5 dB and 1.9 dB respectively. 

 

The input impedances of the prototype antennas were also measured over a wide 

frequency band as shown in Figure 6.10. The measured input impedance of these 

antennas at the fundamental operating frequency and its first two harmonics shows that 

almost perfect matching to 50 Ω was attained at the fundamental frequency, while fairly 

small resistive impedances at harmonic frequencies were observed, as illustrated in 

Table 6.4. 

 

Figure 6:10:  The overall measured input impedance of the patch antenna with a 

partially shorted wall. 
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Figure 6:11:  Measured input impedance of the harmonic suppression antenna with a 

partially shorted wall. 

 

Table 6.4 : Performance of antenna input impedance of the harmonic rejection antenna 

with shortened wall at the fundamental and first and second harmonics. 

Truncated shorted wall 

Frequency 

(GHz) 

Antenna input impedance 

(Ω) 

 Real Imaginary 

fo :   2
48 52.75 7.828 

2fo :  4.96 
.254 -73.672 

3fo :
 7.44 5.332 15.54 
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The radiation patterns in zx plane and zy plane for the GA-optimised HSA with partially 

shorted wall at fundamental, second and third harmonic frequencies were measured. 

These results are given in Figure 6.12 showing 2nd and 3rd harmonic radiations of the 

HSA with shortened wall to be less than 13dB and 18dB for the zx plane and 10dB and 

9dB for the zy plane subject to the normalised accepted power of the fundamental 

frequency.  The measured maximum gain of the GA optimised antenna is 4.14dB. 

 

   
f0=2.48 GHz f1=4.96 GHz 

(a) 

f2=7.44GHz 

   

f0=2.48 GHz f1=4.96 GHz 

(b) 

f2=7.44GHz 

Figure 6:12:  Measured and simulated radiation patterns of the proposed GA-

optimised HSA with a truncated shorted wall for 2.48 GHz, 4.96 GHz and 7.44 

GHz over: (top) z-x plane; (bottom) z-y plane; (‘───’measured Eθ, (‘o o 

o’simulated Eθ, ‘- - - -’ measured E, ‘x x x’ simulated E). 
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6.4 Microstrip Patch Antenna with Folded Patch 

Here a new design for patch antenna for harmonic suppression using GA is extended.  A 

novel coaxial-fed, air-dielectric with folded patch at 2.4 GHz is designed. The antenna 

geometry for this is shown in Figure 6.13. 

Figure 6:13:  Top elevation view of antenna geometry used for adaptive meshing using GA. 

 

 

 

Figure 6:14:  Top elevation view of resulted wire mesh used for Figure 6.13. 

 

Table 6.5 presents the GA input parameters in which the possible range of values is 

shown for folded patch. It has a folded patch extended underneath the main patch as 
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shown. The weight coefficients of the cost function used in this example is similar to the 

previous example.  

 

Table 6.5:  Summary of GA input parameters; antenna variables and optimum solutions 

G
 parameter Harmonic suppression antenna 

parameters 

Folded  

wall 

Parameters (m) Optimal (m) 

Antenna length (L) (0.03-
.
6 0.
4540 

No. of population size 

= 4, 

Antenna width (W) (0.02-0.06) 0.03006 

No. of parameters: 6 

(Figure 1 (a1)), 7 

(Figure 1 (a2)), 8 

(Figure 1 (a3)), 

Shorting or folded wall position (d) 

(0.002-0.03) 

0.00748 

Probability of 

mutation =0.02, 

Antenna height (h) (0.003-0.01) 0.00989 

Maximum generation 

=500, 

Feeding point at x-axis (Xf) (0.004-

0.02) 

0.00571 

No. of 

possibilities=32768, 

Feeding point at y-axis (Yf) (0.004-

0.02) 

0.01392 

 Variable shorting wall width (Ws) 

(0.001-0.03) 

- 

 Extend folded wall length (Lf) 

(0.005-0.015) 

0.01327 

 Extend folded wall height (hf) 

(0.001-0.0035) 

0.00159 
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Figure 6:15:  The measured and simulated return loss of the patch antenna with a folded 

patch. 

 

 

Figure 6:16:  The overall measured input impedance of the antenna with folded 

patch. 
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Figure 6:17:  Measured input impedance of the harmonic suppression antenna a folded 

patch. 

 

Table 6.6 : Performance of antenna input impedance of the harmonic rejection antenna 

with shortened wall at the fundamental and first and second harmonics. 

Folded wall Patch Antenna  

Frequency 

(GHz) 

Antenna input impedance 

(Ω) 

F Real Imaginary 

fo :   2.45 49.33 -11.88 

2fo :  4.90 5.021 -24.81 

3fo :  7.35 4.606 27 
 

 

The radiation patterns in zx plane and zy plane for the GA-optimized HSA with folded 

wall at fundamental, second and third harmonic frequencies were measured. These 

results are given in Figure 6.18 showing 2nd and 3rd harmonic radiations of the HSA 
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with folded wall to be less than 13dB and 18dB for the zx plane and 10dB and 9dB for 

the zy plane subject to the normalised accepted power of the fundamental frequency.  

The measured maximum gain of the GA optimised antenna is 4.14dB. 

 

 
 

 

f0=2.45 GHz f1=4.90 GHz f2=7.35GHz 

 (a)  

   

f0=2.45 GHz f1=4.90 GHz f2=7.35GHz 

 (b)  

Figure 6:18: Measured and simulated radiation patterns of the proposed GA-

optimised HSA with a folded wall for 2.45 GHz, 4.90 GHz and 7.35 GHz over: 

(top) z-x plane; (bottom) z-y plane; (‘───’measured Eθ, (‘o o o’simulated Eθ, ‘- - - 

-’ measured E, ‘x x x’ simulated E). 
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6.5 Conclusions 

A novel technique for the design and optimisation of harmonic-suppression patch 

antenna, applying adaptive surface patch models and genetic algorithms, has been 

presented. Hardware realisations of three coaxially-fed air-dielectric microstrip patch 

antennas were used to assess and confirm the design theory.  The return losses were 

validated for microstrip patch antennas with full and partial shorted walls, and for 

microstrip patch antenna with folded patch.  The results showed good suppression at 

both the second and third harmonics.  The measured input impedance of these antennas 

at the fundamental frequency showed almost perfect matching to 50 Ω, while fairly 

small resistive impedances were observed at the first two harmonic frequencies. 

 

The comparison of return loss and far field radiation pattern measurements exhibited 

good agreement with the predictions.  The examples presented confirmed the capability 

of the proposed method for antenna design using GA and adaptive surface meshing, 

showing reasonable stability and accuracy in the results. 
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CHAPTER SEVEN  

7 Harmonic Rejection Triangular Patch 

Antenna 

7.1 Introduction 

Good antenna designs feature low manufacturing cost, high reliability and compact size 

for acceptable performance. For electrically small antennas, performance criteria place 

most emphasis on impedance matching, bandwidth and radiation efficiency and there is 

limited scope for controlling the pattern. Microstrip patch antennas satisfy the first two 

criteria fairly well. One of their biggest advantages is that they are low in cost as well as 

being light in weight. Various shapes of patch antenna design have been tried but the 

most common shapes are rectangular, circular and triangular [1]. Within this class of 

antennas, the Triangular Patch Antenna (TPA) has received relatively little attention, yet 

it has been claimed to have very small size for a given resonant frequency [1]. Like 

other patch antennas, it can be further miniaturised by increasing the permittivity of the 

dielectric material used for the antenna. On the other hand a major disadvantage 

associated with such types of antennas is that they are prone to excess harmonic 

radiations especially at high frequencies. This means that they provide little rejection of 

harmonic frequencies if these are present at the input of the antenna. Fortunately several 
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methods have been proposed to overcome such downsides in these types of antennas. 

One of the modern techniques is known as an electromagnetic band gap structure (EBG) 

which is especially used in microstrip patch antenna design. EBG structures are quite 

useful for high gains of about 20dBi. EBG structures have been found very useful to 

reject higher harmonics and this makes them attractive in the design of filters and other 

microwave circuits [2][3][4][5].  

Besides the EBG, another useful approach to rejecting higher harmonics and reducing 

harmonic radiation from microstrip patch antennas EBG is known as a Defected Ground 

Structure (DGS). DGS is a convenient method to recognise the effect caused by the 

slow wave nature. DGS on one hand is used to miniaturise the size of the antenna, and 

on the other hand it may be used with different defect patterns to reduce the harmonic 

radiations.  

Some of the common patterns include a “dog bone” structure, spiral DGS and 

rectangular DGS. Another common problem associated with the EBG is the backspace 

radiations due to cut-out slots just below the patch radiator. The DGS is quite useful 

under such circumstances because it helps in curing the problems by minimising the 

effects of back side radiation, providing that the proper shape of DGS is used, e.g. a 

cross shape is useful for polarisation and good radiation pattern [4][5].  

The shape of a DGS structure is significant in an antenna design in order to suppress 

radiation of a particular harmonic. Circular and dumbbell shapes are particularly 
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important to suppress a particular harmonic. Each harmonic of a particular order has to 

be treated separately because of its different wavelength [6][7].  

An attractive feature of the triangular patch antenna is that it is possible to obtain a 

given natural frequency by using less area as compared with many other shapes e.g. 

rectangular, equilateral etc. The shorting pin technique is also useful in patch design, 

whether for size reduction or control of harmonic radiation. This method helps in 

reducing the size of an antenna to around 75% of its original size which is useful in 

various applications where size remains a key issue [10]. Another technique of size 

reduction is to split an antenna patch into equal parts each having half of the full size. 

One of the equal parts can be discarded while the same resonant frequency can be 

retained. The split can be made along a plane of symmetry of the structure or along a 

voltage or current null line of the resonant mode. This procedure has a penalty as it is 

important to realise that there is always a trade-off between the size of the antenna and 

both its bandwidth and efficiency. Other factors which can effect the antenna size are 

the substrate permittivity and permeability [11].  

Minimum return loss, maximum bandwidth, compact size and high efficiency are all 

factors which are important considerations for an antenna design engineer. Other major 

requirements in modern communications include multi frequency and broadband 

communication modes. These can be achieved by using slot patches for radiating 

elements. In applications such as Wi-Fi significant impedance bandwidth can be 

achieved by using this technique, which has the attractive feature that it keeps the size 
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of the antenna as compact as it can be and the overall layout remains simple which is 

important for communication systems [12]. More enhancement in the input impedance 

bandwidth can be made by using a truncated tip in a single probe feed triangular patch 

antenna. In [12] the impedance bandwidth can be enhanced to 9% of the working Wi-Fi, 

here the impedance can be enhanced to over 11% of the working Wi-Fi. This shows that 

antenna design research has advanced considerably in recent times and much has been 

done to improve the antenna design technology for modern communications [13][14]. 

One useful design is the corner- truncated short circuited antenna with triangular shape. 

This type of antenna provides very good impedance matching and the size of the 

antenna remains small as well. Another good point about such an antenna is that it can 

cover dual frequency bands and it remains low in profile and light in weight [14][15]. 

Replacing dielectrics with air where possible also plays an important role, and can have 

effects on the gain, directivity and the bandwidth of antenna. When there is an air gap, 

an antenna may resonate at two different frequencies and this may also provide 

improved bandwidth [16][17]. The right- angled isosceles design is another good option 

for a patch radiator. In right- angled types of design, computations are made in order to 

calculate harmonics of the antenna. Inputs of the antenna consist of two possible 

configurations with computations involved to get best possible results [18][19].  

In this chapter a triangular patch antenna has been proposed with a coplanar feed strip 

and an integrated stubline. The design aims to obtain a good impedance match to 50 Ω 

at the fundamental frequency while suppressing radiation of the harmonics, which is 

achieved by having a reflection coefficient near unity in a 50 Ω system at the harmonic 
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frequencies. The work is similar to [8], but the performance of the design has been 

optimised.  

7.2 Antenna Design Concept  

The triangular patch antenna designed for this investigation is shown in the Figure 7.1. 

Key design details are that the material used is FR4, thickness is 1.6mm, and relative 

permittivity (ƐR) is 4.4. The dimensions of the printed antenna patch are 90 × 25 mm 

and it lies above a complete copper ground plane of 135 × 65 mm on the reverse side. 

To match impedance to 50Ω, a through-board feed pin can be placed at any point within 

the triangular patch. If the strip feed technique is used, it can be placed at any point on 

the periphery of the patch, and it has more flexibility for incorporating additional 

printed structures. To design the antenna, Ansoft’s High Frequency Simulation Software 

(HFSS) has been used [9]. The design uses an additional stub line whose length, 

optimised together with the position of the attachment point on the main patch, allows 

good impedance match to be obtained at the resonant frequency while providing good 

rejection at harmonics. This proposed antenna had a resonant frequency of 3.43 GHz 

and impedance bandwidth of 380 MHz or 11% with stable gain and cross polarization 

characteristics.  This makes the antenna useful in applications such as modern 

communication systems where multi-frequency operating modes are required. 
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Figure 7:1: Basic geometry of the proposed antenna. 

 

 

7.3 Result and Discussions 

Figure 7.2 shows the reflection co-efficient for the above designed antenna. It can be 

seen from the results that antenna is designed for a fundamental frequency of 1.02GHz. 

The corresponding second and third harmonics are at frequencies of 2.04 and 3.06 GHz 

respectively. Impedance matching has been obtained very easily at 1.02GHz 
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fundamental frequency by adjusting the location of the feeding strip. At the fundamental 

frequency the harmonic suppression does not produce any noticeable harmful effects in 

impedance matching. The results obtained as results of simulations have been carried 

out all by using HFSS. 

 

 

                  Figure 7:2: Reflection Coefficient |S11| VS Frequency. 

It can be noticed that the return loss at 1.02GHz  is less around -26dB, which is well 

within the requirements of the design; in addition the results satisfy the fundamental 

requirements of such design in terms the significant harmonics levels for practical 

realization.  
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Table 7.1: Return Loss in dB vs Frequency in GHz for Fundamental and two 

Harmonics Frequency. 

Table 7.1 is the measured return loss values in dBs at the fundamental and the first two 

harmonics. It can be seen from the table that at frequency of 1.02GHz which is the 

fundamental frequency the return loss is measured as -26.31 dB. The return loss is less 

than -20 dB over the stated bandwidth at the fundamental frequency which satisfies the 

requirement specifications of the design. For all harmonics the return loss should be as 

small as possible, and from the table above it can be seen that for the first two 

harmonics of the design the return loss remains less than 3dBs. The design 

characteristics of the above design triangular patch antenna meet the requirement 

specifications for the antenna as outlined in the requirement specifications for the first 

and second harmonics of the antenna. The antenna had a size reduction of 38% as 

compared to triangular patch antenna without the tri-slot at the same target frequency. 

Name Frequency (f) in GHz 

along X-Axis 

Return loss in dB along 

Y-Axis 

Frequency Fundamental(f1) 1.02 - 26.31 

Frequency 2nd( 2f1) 2.04 - 1.75 

Frequency 3ed( 3f1) 3.06 - 2.53 
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The circuit impedance has also been measured in order to check and normalise 

according to the requirements. The simulation results of the impedance are shown in the 

figures below consisting of both real and imaginary parts of the impedance.  

 

 Figure 7:3: Circuit Impedance consisting of real and imaginary parts. 

Table 7.2:Impedance measured in (Ω) VS Frequqncy measured in GHz for 

Fundamental, first and second  Harmonics. 

Name Frequency (f) in GHz 

along X-Axis 

Impedance Measured in (Ω) 

along Y-Axis 

Frequency Fundamental( f1) 1.02 50.24 

Frequency 2nd( 2f1) 2.04 10.23 

Frequency 3rd( 3f1) 3.06 17.55 
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The table above shows the comparison of impedance measured in ohm's versus the 

frequency measured in GHz; in which at the fundamental frequency of 1.02GHz, the 

impedance value measured is given as 50.24Ω. This impedance value is quite 

satisfactory at the fundamental harmonic. The impedance value at 2
nd

 harmonic are 

given as 10.23 Ω, which are not very much closer  to the one obtained at fundamental 

harmonic. The values of impedance at 3
rd 

are given as 17.55 Ω. The impedances 

matching for the harmonics of the antenna design show almost perfect matching 

however fairly small resistive impedance at harmonic frequencies has also been 

observed. From the simulation results achieved it can be seen that both imaginary and 

real part of the impedance at the fundamental frequency meet the requirement 

specifications laid down, both values are well below 1. 
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Figure 7:4:  Measured and simulated radiation patterns for 1.02 GHz, 2.04 GHz 

and 3.06 GHz over: (top) z-x plane; (bottom) z-y plane; (‘x x x’ measured Eθ, (‘- - - 

-’simulated Eθ, ‘o o o’ measured E, ‘───’ simulated E). 
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Figure 7.4 shows the radiation pattern for all harmonics of the antenna designed above. 

The radiation patterns have been measured inside the anechoic chamber at Bradford 

University. Radiation pattern is categorised with main beam with 3dB beam width with 

side lobes at different harmonics. Radiation patterns are shown in YZ plane as well as in 

XZ plane for all harmonics. XZ is the horizontal plane whereas YZ is the vertical plane 

to show the radiation pattern. Radiation pattern of antenna at fundamental frequency 

(1.02GHz) shows that antenna has an omnidirectional pattern in the YZ plane. 

Comparing results of antenna at fundamental frequency and at all harmonics, it shows 

that radiation pattern fulfils the requirements of the design at almost all frequencies. 

Harmonic rejection antenna has the differences in the radiation pattern at 1.02 GHz and 

all harmonics of about 2dBi in YZ plane and about 4dBi in XZ plane. These are quite 

satisfying values of the radiation pattern comparing with many different design with 

various different shapes of the antenna. At the given dimensions of the antenna this 

design radiation pattern shows almost the ideal values which are quite satisfying for this 

design. The dimensions of the antenna are quite small compared with the wavelength at 

the fundamental and first two harmonic frequencies. From the comparison of radiation 

patterns of all harmonics with each other it can be said that the radiation pattern of the 

antenna at 1.02 GHz is better than at  all harmonics. Results achieved in both planes YZ 

as well as XZ plane are almost perfect for such a type of triangular patch antenna.  
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7.4 Conclusion 

In this design, an edge-fed technique has been proposed and investigated for designing a 

triangular patch for operation at 1.02 GHz with suppression characteristics over 

harmonic frequency bands. The reflection coefficient was about -1.75 dB at the second 

harmonic and -2.53 dB at the third harmonic. According to the results obtained, this 

antenna with its simple harmonic suppression structures is quite effective. Therefore, 

the proposed antenna can be suitable for active integrated antennas where generation of 

harmonics in the active device can be substantial. Antenna design parameters were 

almost perfect with satisfactory impedances at the fundamental frequency and dominant 

harmonics, and measured results were in good agreement with simulation. An 

acceptable omnidirectional pattern was obtained at the fundamental frequency. It is 

suggested that by employing the array technique the gain, directivity and selectivity can 

be enhanced and design can be made even better as well. It can be concluded that the 

antenna design was successful and fulfilled all the design requirements and 

specifications in terms of return loss, impedance matching and radiation pattern.  
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CHAPTER EIGHT  

8 Conclusions and Future Work 

8.1 Conclusions 

This work has been based on the design of band - rejected antennas using adaptive 

meshing and genetic algorithms (GA). The new type of antennas designed and proposed 

in this work can be used in any wireless communications devices such as mobile 

handsets and communication terminals in order to increase the systems performance 

with reduced noise levels and interefernce between electromagnetic components by 

reducing the harmonic radiations at the secong and third frequencies and will also serve 

as a bandpass filter.The main target frequency was 1.8 GHz, combined with rejection of 

its second harmonic (3.6 GHz) and the third harmonic (5.4 GHz). To meet the given 

design frequencies modelling have been done by adaptive meshing whereas the optimal 

parameters for the design have been determined by using the genetic algorithms (GA).  

GA has proved an excellent optimisation tool in antenna design technology in recent 

years.  With the requirements of compact size and harmonic rejection, GA is the one of 

the fundamental tools which can be exploited. The good thing about GA is that it can 

evolve a generic optimum point by applying the pressure on the given group with 

multiple outcomes and by managing the results. The square patch antenna fed by 50 Ω 



141 

 

inset microstrip-line for 1.8 GHz operation showed good suppression at the first two 

harmonic frequencies. The sensing patch measurement technique for the microstrip 

patch antenna has been shown to achieve good accuracy for the second and third 

harmonic measurements. Several examples were demonstrated, all including design of 

coaxially-fed, air-dielectric patch antennas implanted with shorting and folded walls. 

The measurement results for the radiation pattern showed good agreement with the 

predictions.  The presented results showed a good impedance matching at the 

fundamental frequency with good suppression achieved at the first two harmonic 

frequencies. A computational technique using adaptive surface meshing driven by GA 

was adopted for optimizing the antenna design parameters and theresults produced 

allowed us to conclude that the GA method can provide outstanding optimization 

parametrs in order to provide high-speed, accurate and reliable solutions for the 

proposed antenna design structures.   

 

Chapter 1 introduced the aims and objectives of this research, and reviewed the adaptive 

meshing and GA methods and their usefulness in antenna design.   

 

Chapter 2 is about background study. It reviews the similar work already been done in 

the field of antenna design. Significant amount of work has been review and studied and 

has been included in the review. Main study has been done in key areas including 

harmonic suppression, harmonic control, adaptive meshing, genetic algorithms and 

triangular patch antenna for mobile and wireless communications.  
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Chapter 3 described the major design study and presented a square microstrip antenna 

design for a fundamental frequency of 1.8 GHz with harmonic control. Simulated 

results of square microstrip antenna fed by 50Ω inset microstrip line at given 

specifications have presented. As the design is based on the fundamental frequency, the 

aim of this design is to check the reception of harmonic as well as observe any sort of 

specious radiations.  

 

Chapter 4 treated the harmonic radiation measurement for active patch antenna using 

sensor patches. This method is applicable to active integrated antenna designs and 

solves the problem of measuring the total harmonic radiation from the active antenna 

where it is difficult both to measure the power incident on the radiating structure at 

harmonic frequencies and to integrate the total radiated flux density over all angles. This 

design work is extension of the design in chapter 3 as it explores a method of evaluating 

the radiation of wanted power at the fundamental frequency as well as unwanted power 

at second and third harmonics. A parametric study of the sensor patch design was 

conducted using S-parameters between the input feed line of the antenna and the 

sensor’s output, measured by using HP8510C network analyser from 2GHz to 8GHz.   

 

In chapter 5 further detailed discussion of the genetic algorithm (GA) and adaptive 

meshing has been provided.  The chapter explored how GA can be used in conjunction 

with an electromagnetic simulator, making GA an efficient tool for search, optimisation 

and machine learning. In addition to its use for design of air and dielectric filled patch 

antennas, the chapter also demonstrated GA’s use for wideband antenna designs based 
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on the fundamental requirements of near field imaging tools such as are needed for 

microwave detection of breast cancer, and for the design enhancement of MIMO 

applications. 

In chapter 6 a micro strip patch antenna, designed for harmonic suppression with the aid 

of a genetic algorithm, has been explored. Return loss and input impedance of a 

conventional patch antenna as well as the input impedance of a harmonic suppression 

antenna with fully shorted walls were measured, simulated and compared. Also, the 

same parameters were measured and simulated for partially shorted wall antennas, and   

microstrip patch antennas with a folded patch were also explored.  

 

Chapter 7 explored a harmonic rejection antenna based on the triangular patch. A novel 

design including an integrated stub line was described. This has good match at the 

fundamental frequency with a reduced resonant size, as well as low transmission of  

second and third harmonics. This chapter introduces new ideas for design of compact, 

low cost, efficient antennas with good harmonic rejection. The measured and simulated 

results were very good and design seemed quite successful useful. Overall it can be 

concluded that this research has contributed significantly to bring new ideas in antenna 

design technology for wireless communication systems.  

8.2 Future Work 

The research has brought significant areas for further study. Major considerations for 

future work can be summarised as below:  
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 Design of active patch antenna can be extended for wider frequency operation.  

In an active transmitting antenna, the trade-off between rejection of harmonic 

radiation and optimisation of harmonic frequency inpedances for amplifier 

efficiency can be explored in more detail. It has been found that nonlinearity due 

to using active devices in an integrated antenna is an attractive subject of 

research. 

 The other new subject that can be tackled is the performance of these devices 

near high scattering electromagnetic fields environment. 

 The GA optimisation can be applied to the design of planar monopole antennas, 

which exhibit both ultra-wide-band (UWB) operation and a narrow-band 

frequency notch.  It would also be worth looking at implementing notch filters 

for other microstrip antenna designs. 

 The work can be extended for MIMO applications where the design could 

consider using new innovations beyond EBG, such as Met materials, for design 

of MIMO antennas for wireless communications. Such new techniques can be 

investigated in order to minimise the size of the antenna as well as reducing the 

natural frequency by artificially creating the antenna filling and support 

materials. The idea of negative refractive index can be an innovative and useful 

tool in antenna design technology for future systems. 

 In order to enhance system performance adaptive techniques can be 

implemented between different MIMO schemes which can be based on the 

statistics of the channel to enhance the overall performance of the system. For 
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systems employing multiple users, adaptive MIMO algorithms can be 

implemented for multiple transmissions. 
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