1,159 research outputs found

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    The Coupling Effect: Experimental Validation of the Fusion of Fossen and Featherstone to Simulate UVMS Dynamics in Julia

    Full text link
    As Underwater Vehicle Manipulator Systems (UVMSs) have gotten smaller and lighter over the past years, it is becoming increasingly important to consider the coupling forces between the manipulator and the vehicle when planning and controlling the system. A number of different models have been proposed, each using different rigid body dynamics or hydrodynamics algorithms, or purporting to consider different dynamic effects on the system, but most go without experimental validation of the full model, and in particular, of the coupling effect between the two systems. In this work, we return to a model combining Featherstone's rigid body dynamics algorithms with Fossen's equations for underwater dynamics by using the Julia package RigidBodyDynamics.jl. We compare the simulation's output with experimental results from pool trials with a ten degree of freedom UVMS that integrates a Reach Alpha manipulator with a BlueROV2. We validate the model's usefulness and identify its strengths and weaknesses in studying the dynamic coupling effect.Comment: 7 pages. Submitted to ICRA 2024. Major revision from previous paper. Predictive work with recurrent neural networks is excluded, replaced with a more in-depth description of the dynamic model, along with experimental validation of the model. Additional author added (Evan Palmer). The vehicle being examined is also changed from a Seabotix model to a BlueROV2, a more common platfor

    Underwater dual manipulators-Part I: Hydrodynamics analysis and computation

    Get PDF
    1098-1103This paper introduces two 4-DOF underwater manipulators mounted on autonomous underwater vehicle (AUV) with grasping claws, such that the AUV can accomplish the underwater task by using dual manipulators. Mechanical design of the manipulator is briefly presented and the feature of the simple structure of dual manipulators is simulated by using Solid Works. In addition, the hydrodynamics of the manipulator is analyzed, considering drag force, added mass and buoyancy. Then, hydrodynamic simulations of the manipulator are conducted by using 3-D model with Adams software, from which the torque of each joint is calculated. This paper presents an integrated result of computed torques by combining the theoretical calculation and simulation results, which is instrumental in determining the driving torque of the manipulators

    Autonomous Underwater Intervention: Experimental Results of the MARIS Project

    Get PDF
    open11noopenSimetti, E. ;Wanderlingh, F. ;Torelli, S. ;Bibuli, M. ;Odetti, A. ;Bruzzone, G. ; Lodi Rizzini, D. ;Aleotti, J. ;Palli, G. ;Moriello, L. ;Scarcia, U.Simetti, E.; Wanderlingh, F.; Torelli, S.; Bibuli, M.; Odetti, Angelo; Bruzzone, G.; Lodi Rizzini, D.; Aleotti, J.; Palli, G.; Moriello, L.; Scarcia, U

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    Underwater vehicle manipulator systems: Control methodologies for inspection and maintenance tasks

    Get PDF
    open3noThis paper presents the control framework under development within the DexROV Horizon 2020 project, for the execution of maintenance and inspection tasks by a semi-autonomous ROV. The work exploits a task priority based kinematic inversion developed by the authors, extending it to encompass also a force regulation task. A way to manage transitions between the different DexROV missions is also given. The paper presents some simulation results to support the proposed control architecture.openSimetti, Enrico; Galeano, Stefano; Casalino, GiuseppeSimetti, Enrico; Galeano, Stefano; Casalino, Giusepp

    Underwater intervention robotics: An outline of the Italian national project Maris

    Get PDF
    The Italian national project MARIS (Marine Robotics for Interventions) pursues the strategic objective of studying, developing, and integrating technologies and methodologies to enable the development of autonomous underwater robotic systems employable for intervention activities. These activities are becoming progressively more typical for the underwater offshore industry, for search-and-rescue operations, and for underwater scientific missions. Within such an ambitious objective, the project consortium also intends to demonstrate the achievable operational capabilities at a proof-of-concept level by integrating the results with prototype experimental systems
    corecore