2,245 research outputs found

    Robot’s Inner Speech Effects on Human Trust and Anthropomorphism

    Get PDF
    Inner Speech is an essential but also elusive human psychological process that refers to an everyday covert internal conversation with oneself. We argued that programming a robot with an overt self-talk system that simulates human inner speech could enhance both human trust and users’ perception of robot’s anthropomorphism, animacy, likeability, intelligence and safety. For this reason, we planned a pre-test/post-test control group design. Participants were divided in two different groups, one experimental group and one control group. Participants in the experimental group interacted with the robot Pepper equipped with an over inner speech system whereas participants in the control group interacted with the robot that produces only outer speech. Before and after the interaction, both groups of participants were requested to complete some questionnaires about inner speech and trust. Results showed differences between participants’ pretest and post-test assessment responses, suggesting that the robot’s inner speech influences in participants of experimental group the perceptions of animacy and intelligence in robot. Implications for these results are discussed

    Strange Concepts and the Stories They Make Possible

    Get PDF
    Fantastic tales of rebellious robots and animated artifacts are a permanent fixture in popular culture. What kind of behavior do we expect from such conceptual hybrids in science fiction, nonsense poetry, and surrealist art

    Ethical values and social care robots for older people : an international qualitative study

    Get PDF
    Values such as respect for autonomy, safety, enablement, independence, privacy and social connectedness should be reflected in the design of social robots. The same values should affect the process by which robots are introduced into the homes of old people to support independent living. These values may, however, be in tension. We explored what potential users thought about these values, and how the tensions between them could be resolved. With the help of partners in the ACCOMPANY project, 21 focus groups (123 participants) were convened in France, the Netherlands and the UK. These groups consisted of: (i) older people, (ii) informal carers and (iii) formal carers of older people. The participants were asked to discuss scenarios in which there is a conflict between older people and others over how a robot should be used, these conflicts reflecting tensions between values. Participants favoured compromise, persuasion and negotiation as a means of reaching agreement. Roles and related role-norms for the robot were thought relevant to resolving tensions, as were hypothetical agreements between users and robot-providers before the robot is introduced into the home. Participants' understanding of each of the values – autonomy, safety, enablement, independence, privacy and social connectedness – is reported. Participants tended to agree that autonomy often has priority over the other values, with the exception in certain cases of safety. The second part of the paper discusses how the values could be incorporated into the design of social robots and operationalised in line with the views expressed by the participants

    ACII 2009: Affective Computing and Intelligent Interaction. Proceedings of the Doctoral Consortium 2009

    Get PDF

    Confirmation Report: Modelling Interlocutor Confusion in Situated Human Robot Interaction

    Get PDF
    Human-Robot Interaction (HRI) is an important but challenging field focused on improving the interaction between humans and robots such to make the interaction more intelligent and effective. However, building a natural conversational HRI is an interdisciplinary challenge for scholars, engineers, and designers. It is generally assumed that the pinnacle of human- robot interaction will be having fluid naturalistic conversational interaction that in important ways mimics that of how humans interact with each other. This of course is challenging at a number of levels, and in particular there are considerable difficulties when it comes to naturally monitoring and responding to the user’s mental state. On the topic of mental states, one field that has received little attention to date is moni- toring the user for possible confusion states. Confusion is a non-trivial mental state which can be seen as having at least two substates. There two confusion states can be thought of as being associated with either negative or positive emotions. In the former, when people are productively confused, they have a passion to solve any current difficulties. Meanwhile, people who are in unproductive confusion may lose their engagement and motivation to overcome those difficulties, which in turn may even lead them to drop the current conversation. While there has been some research on confusion monitoring and detection, it has been limited with the most focused on evaluating confusion states in online learning tasks. The central hypothesis of this research is that the monitoring and detection of confusion states in users is essential to fluid task-centric HRI and that it should be possible to detect such confusion and adjust policies to mitigate the confusion in users. In this report, I expand on this hypothesis and set out several research questions. I also provide a comprehensive literature review before outlining work done to date towards my research hypothesis, I also set out plans for future experimental work

    Nonverbal immediacy as a characterisation of social behaviour for human-robot interaction

    Get PDF
    An increasing amount of research has started to explore the impact of robot social behaviour on the outcome of a goal for a human interaction partner, such as cognitive learning gains. However, it remains unclear from what principles the social behaviour for such robots should be derived. Human models are often used, but in this paper an alternative approach is proposed. First, the concept of nonverbal immediacy from the communication literature is introduced, with a focus on how it can provide a characterisation of social behaviour, and the subsequent outcomes of such behaviour. A literature review is conducted to explore the impact on learning of the social cues which form the nonverbal immediacy measure. This leads to the production of a series of guidelines for social robot behaviour. The resulting behaviour is evaluated in a more general context, where both children and adults judge the immediacy of humans and robots in a similar manner, and their recall of a short story is tested. Children recall more of the story when the robot is more immediate, which demonstrates an e�ffect predicted by the literature. This study provides validation for the application of nonverbal immediacy to child-robot interaction. It is proposed that nonverbal immediacy measures could be used as a means of characterising robot social behaviour for human-robot interaction

    Shared Perception in Human-Robot Interaction

    Get PDF
    Interaction can be seen as a composition of perspectives: the integration of perceptions, intentions, and actions on the environment two or more agents share. For an interaction to be effective, each agent must be prone to “sharedness”: being situated in a common environment, able to read what others express about their perspective, and ready to adjust one’s own perspective accordingly. In this sense, effective interaction is supported by perceiving the environment jointly with others, a capability that in this research is called Shared Perception. Nonetheless, perception is a complex process that brings the observer receiving sensory inputs from the external world and interpreting them based on its own, previous experiences, predictions, and intentions. In addition, social interaction itself contributes to shaping what is perceived: others’ attention, perspective, actions, and internal states may also be incorporated into perception. Thus, Shared perception reflects the observer's ability to integrate these three sources of information: the environment, the self, and other agents. If Shared Perception is essential among humans, it is equally crucial for interaction with robots, which need social and cognitive abilities to interact with humans naturally and successfully. This research deals with Shared Perception within the context of Social Human-Robot Interaction (HRI) and involves an interdisciplinary approach. The two general axes of the thesis are the investigation of human perception while interacting with robots and the modeling of robot’s perception while interacting with humans. Such two directions are outlined through three specific Research Objectives, whose achievements represent the contribution of this work. i) The formulation of a theoretical framework of Shared Perception in HRI valid for interpreting and developing different socio-perceptual mechanisms and abilities. ii) The investigation of Shared Perception in humans focusing on the perceptual mechanism of Context Dependency, and therefore exploring how social interaction affects the use of previous experience in human spatial perception. iii) The implementation of a deep-learning model for Addressee Estimation to foster robots’ socio-perceptual skills through the awareness of others’ behavior, as suggested in the Shared Perception framework. To achieve the first Research Objective, several human socio-perceptual mechanisms are presented and interpreted in a unified account. This exposition parallels mechanisms elicited by interaction with humans and humanoid robots and aims to build a framework valid to investigate human perception in the context of HRI. Based on the thought of D. Davidson and conceived as the integration of information coming from the environment, the self, and other agents, the idea of "triangulation" expresses the critical dynamics of Shared Perception. Also, it is proposed as the functional structure to support the implementation of socio-perceptual skills in robots. This general framework serves as a reference to fulfill the other two Research Objectives, which explore specific aspects of Shared Perception. For what concerns the second Research Objective, the human perceptual mechanism of Context Dependency is investigated, for the first time, within social interaction. Human perception is based on unconscious inference, where sensory inputs integrate with prior information. This phenomenon helps in facing the uncertainty of the external world with predictions built upon previous experience. To investigate the effect of social interaction on such a mechanism, the iCub robot has been used as an experimental tool to create an interactive scenario with a controlled setting. A user study based on psychophysical methods, Bayesian modeling, and a neural network analysis of human results demonstrated that social interaction influenced Context Dependency so that when interacting with a social agent, humans rely less on their internal models and more on external stimuli. Such results are framed in Shared Perception and contribute to revealing the integration dynamics of the three sources of Shared Perception. The others’ presence and social behavior (other agents) affect the balance between sensory inputs (environment) and personal history (self) in favor of the information shared with others, that is, the environment. The third Research Objective consists of tackling the Addressee Estimation problem, i.e., understanding to whom a speaker is talking, to improve the iCub social behavior in multi-party interactions. Addressee Estimation can be considered a Shared Perception ability because it is achieved by using sensory information from the environment, internal representations of the agents’ position, and, more importantly, the understanding of others’ behavior. An architecture for Addressee Estimation is thus designed considering the integration process of Shared Perception (environment, self, other agents) and partially implemented with respect to the third element: the awareness of others’ behavior. To achieve this, a hybrid deep-learning (CNN+LSTM) model is developed to estimate the speaker-robot relative placement of the addressee based on the non-verbal behavior of the speaker. Addressee Estimation abilities based on Shared Perception dynamics are aimed at improving multi-party HRI. Making robots aware of other agents’ behavior towards the environment is the first crucial step for incorporating such information into the robot’s perception and modeling Shared Perception

    Developing an Autonomous Mobile Robotic Device for Monitoring and Assisting Older People

    Get PDF
    A progressive increase of the elderly population in the world has required technological solutions capable of improving the life prospects of people suffering from senile dementias such as Alzheimer's. Socially Assistive Robotics (SAR) in the research field of elderly care is a solution that can ensure, through observation and monitoring of behaviors, their safety and improve their physical and cognitive health. A social robot can autonomously and tirelessly monitor a person daily by providing assistive tasks such as remembering to take medication and suggesting activities to keep the assisted active both physically and cognitively. However, many projects in this area have not considered the preferences, needs, personality, and cognitive profiles of older people. Moreover, other projects have developed specific robotic applications making it difficult to reuse and adapt them on other hardware devices and for other different functional contexts. This thesis presents the development of a scalable, modular, multi-tenant robotic application and its testing in real-world environments. This work is part of the UPA4SAR project ``User-centered Profiling and Adaptation for Socially Assistive Robotics''. The UPA4SAR project aimed to develop a low-cost robotic application for faster deployment among the elderly population. The architecture of the proposed robotic system is modular, robust, and scalable due to the development of functionality in microservices with event-based communication. To improve robot acceptance the functionalities, enjoyed through microservices, adapt the robot's behaviors based on the preferences and personality of the assisted person. A key part of the assistance is the monitoring of activities that are recognized through deep neural network models proposed in this work. The final experimentation of the project carried out in the homes of elderly volunteers was performed with complete autonomy of the robotic system. Daily care plans customized to the person's needs and preferences were executed. These included notification tasks to remember when to take medication, tasks to check if basic nutrition activities were accomplished, entertainment and companionship tasks with games, videos, music for cognitive and physical stimulation of the patient

    Volume 33, Issue 1: Full Issue

    Get PDF
    • …
    corecore