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Abstract

A progressive increase of the elderly population in the world has required techno-

logical solutions capable of improving the life prospects of people suffering from

senile dementias such as Alzheimer’s. Socially Assistive Robotics (SAR) in the

research field of elderly care is a solution that can ensure, through observation

and monitoring of behaviors, their safety and improve their physical and cognitive

health. A social robot can autonomously and tirelessly monitor a person daily by

providing assistive tasks such as remembering to take medication and suggesting

activities to keep the assisted active both physically and cognitively. However,

many projects in this area have not considered the preferences, needs, personality,

and cognitive profiles of older people. Moreover, other projects have developed

specific robotic applications making it difficult to reuse and adapt them on other

hardware devices and for other different functional contexts. This thesis presents

the development of a scalable, modular, multi-tenant robotic application and its

testing in real-world environments. This work is part of the UPA4SAR project

“User-centered Profiling and Adaptation for Socially Assistive Robotics”. The

UPA4SAR project aimed to develop a low-cost robotic application for faster de-

ployment among the elderly population. The architecture of the proposed robotic

system is modular, robust, and scalable due to the development of functionality in

microservices with event-based communication. To improve robot acceptance the

functionalities, enjoyed through microservices, adapt the robot’s behaviors based

on the preferences and personality of the assisted person. A key part of the as-

sistance is the monitoring of activities that are recognized through deep neural

network models proposed in this work. The final experimentation of the project
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carried out in the homes of elderly volunteers was performed with complete auton-

omy of the robotic system. Daily care plans customized to the person’s needs and

preferences were executed. These included notification tasks to remember when

to take medication, tasks to check if basic nutrition activities were accomplished,

entertainment and companionship tasks with games, videos, music for cognitive

and physical stimulation of the patient.
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Chapter 1

Introduction

As our life expectancies steadily increase thanks to the giant strides made in

medicine, the elderly population makes up an increasingly large percentage of the

population worldwide. Advances in medicine are joined by advances in technology,

spreading more and more smart devices and sensors that are now part of our daily

lives. Technology can be an enabling tool for elderly people by improving their

life. In recent years, Socially Assistive Robotics (SAR) is playing an important

role in research for the development of technologies that can improve the quality

of life of older people. In particular, I am talking about people with dementia

or even lonely people who do not take good care of themselves during daily life,

needing support from family or caregivers. Enhance their autonomy would require

fewer interventions by family members or caregivers. Particularly in the case of

elderly people suffering from dementia, such as Alzheimer’s disease, which causes

a progressive loss of memory and a worsening of cognitive functions. This disease

slowly leads to not recognizing loved ones or feeling disoriented and confused not

knowing where the elderly person is or losing short-term memory, thus putting

the elderly person at a serious risk of safety. These are just some aspects of this

disease that affects not only the elderly but also the family or caregivers who

take care of them. SAR applications allow us to autonomously monitor elderly

people through a robot that provides information about the patient during daily

life checking possible anomalies that are then reported to caregivers. The robot

1
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can be a monitoring tool but also a cognitive and physical stimulus for the patient

allowing to make up for memory problems with reminders.

This work has been supported by MIUR within the research project PRIN2015

“User-centered Profiling and Adaptation for Socially Assistive Robotics - UPA4SAR”.

The main topic elaborated during the master thesis period was the recognition

of daily activities performed at home by elderly people with dementia for home

monitoring [28]. This first work was the basis for the continuation of studies and

research pursued during the PhD ITEE (Information Technologies and Electrical

Engineering) carried out at the University of Naples Federico II. The project that

funded this work, UPA4SAR, aims to provide a low cost solution, usable by most

people, but that is also modular, robust and scalable, to allow a greater dissemi-

nation and easier maintenance and expansion of functionality, adapting it to the

possible needs of patients. The robotic system to be implemented for elderly care

must be easily applicable to any hardware, environment, and functional needs to

best accommodate customizations. A pivotal node of such a system for elderly

care is acceptance. To improve the acceptability [73] [62] of the system, it must

be as unobtrusive as possible, be able to adapt to the user’s preferences and allow

for pleasant social interaction.

1.1 Problem Definition

The objective of the UPA4SAR project is the creation of a robotic system for

monitoring and entertaining elderly people with dementia based on the person-

alization of the services offered by the robot for greater user acceptance of the

system. The project involves profiling the user’s individual ADL (Activity of

Daily Living) related abilities, cognitive status, and personality. Based on the

information collected, it will be possible to plan a set of personalized monitoring

activities that, adapted to the current situation, will make it possible to instruct

the robot to perform the most appropriate behaviours. The robot behaviours will

also take into account the user’s preferences derived from his/her profile. There

are really many aspects of such a large project that required many heterogeneous
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figures to collaborate and cooperate with the intent to improve the life expectancy

of the elderly, especially those subject with senile dementia such as Alzheimer’s.

For increased and rapid deployment of assistive robots, the hardware of the

robotic system should be at a low cost. The robot must perform tasks to monitor

a subset of ADLs (Activities of Daily Living) while not distracting the user from

their daily activities for greater robot acceptance. Activity recognition is typically

based on data from sensors deployed in the surrounding environment. In this

project, the robot is the core of the system and is used as an active sensor to

monitor the activities performed in the home by the user to avoid adding invasive

and often expensive sensors in the environment thus increasing the uptake of

this application. The robot must have navigation capabilities within the home

environment to be able to monitor activities using sensors for user and context

detection. The robot must give the ability to provide cognitive support with

reminders and notifications but also provide stimulation through music, videos

and games.

The robot must be able to communicate with other devices such as smartband

and smartphone. The smartband is a low cost wearable sensor useful to detect the

vital functions of the user and his pose (i.e. standing, sitting, walking, running,

working on computer, climbing stairs) but also to identify an approximate distance

between the robot and the user through Bluetooth communication and the RSSI

(Receive Signal Strength Indicator) value. The smartphone instead is a useful

device to be able to communicate with a family member or a caregiver, both for

social interactions and for possible alarms detected and launched by the robotic

system. Other useful devices for the navigation of the robot and the identification

of rooms within the home environment are the iBeacons. In order to recognize

and identify subjects within the home, the robot must be able to run Artificial

Intelligence (AI) algorithms.

For a better acceptance, the behavior of the robot must be able to adapt to

the user’s needs and cognitive state, a crucial aspect for a real integration in

daily life. All the services offered by the robot must be managed automatically
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by a scheduler that minimizes the intervention of technicians. In particular, the

robot will have to assist the elderly in their home environment in total autonomy,

minimizing possible interventions by technicians. The planned experimentation

is within the homes of elderly people over 50 years old with different cognitive

states, i.e. affected by subjective memory disorder, affected by mild cognitive

impairment, affected by Alzheimer’s dementia in mild to moderate stage (Mini

Mental State Examination, MMSE, greater than 16, Clinical Dementia Rating

Score (CDR): 1-2).

1.2 Our Solution

Our solution includes the analysis and implementation of a service-based robotic

architecture consisting of several modules and the implementation of an algo-

rithm for monitoring ADLs (Activities of Daily Living). The project UPA4SAR

was developed in several phases, from the analysis of the requirements to the

experimentation in the homes of the elderly, requiring the approval of an ethics

committee. Through the collaboration of various professional figures, it was pos-

sible to implement and test the robotic system into the homes of the elderly who

offered themselves for experimentation. Doctors and psychologists of the project

team were dedicated to finding elderly people with the right requirements for field

testing, collecting psychological questionnaires and user preferences in order to

profile the subjects and adapt the robotic system to the needs and personality of

the patients. During the selection of patients, I worked in parallel on the func-

tional analysis of the system and then moved on to implementation and testing

in the laboratory. Several experiments were performed with elderly people who

volunteered for interaction with a robot that included topics such as proxemics

and adaptation to personality traits [72], distraction created by the robot while

the patient performs activities of daily living [68] [71], robot acceptance [16], the

robot’s approach and interaction with people [70]. I must then consider the el-

derly monitoring functionality that is based on the recognition of daily activities

performed within their home, the so-called ADLs (Activity of Daily Living). The
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field of activity recognition, or AR, requires the development of a model trained

on registered instances to be able to recognize possible new instances performed

by the user [28]. In addition, the recognition of possible deviations from the activ-

ity being performed is also fundamental, in order to be able to verify the correct

execution in the event of a possible danger that could harm the elderly person [67].

In order to lower the cost of the robotic application, with the intent of spreading

this solution to all seniors’ homes, we did not use environmental sensors such as

external cameras. In most cases, volunteers’ homes are not smart homes and do

not have a centralized system of sensors for the home. Therefore, the onboard

sensors of the robot, which is a proactive device due to its navigation and sensor

capabilities, are exploited. For experimentation, we opted to use an assistive robot

marketed at a low cost. The robot in question is Sanbot Elf, a cloud-enabled in-

telligent service robot developed by Qihan Technology Co. Ltd. To easily expand

the functionality of the system, for easy code maintenance, and to make it scal-

able, I opted for a microservice-based architecture that communicates through an

event-driven communication framework.

In summary, the main features of our approach are the following:

• the proposed robotic application is low-cost to encourage its deployment

• no external environmental sensors are used such as environmental cameras

inside a smart home

• the robot becomes a proactive device due to its sensoristics and navigation

capabilities

• a deep neural network model classifies the activities of daily living (ADLs)

to monitor the person

• the architecture of the robotic system is modular and scalable because the

functionalities have been implemented as microservices

• the communication between microservices is based on an event-based archi-

tecture
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• the robotic application is performed completely autonomously, without the

intervention of technicians, inside the homes of the elderly during the exper-

imentation.

• the robot provides several assistance services such as notifications for tak-

ing medicines, entertainment suggestions through multimedia contents that

allow to stimulate physically and digitally the elderly people

• the behavior of the robot adapts to the person’s preferences to improve

acceptance of the robotic system.

1.3 Innovative Aspects

Over the past decade, many projects for robotic assistance of elderly people have

been completed or are currently under development. One of the innovative goals

achieved that differentiate us from other approaches is the development of a soft-

ware architecture of the robotic application based on microservices. While projects

such as “Accompany” [74] or “SocialRobot” [64] are based on ROS (Robot Oper-

ating System), I used the latest technologies in web development on the cloud to

speed up the implementation of the robotic application. This allowed us to make

the robotic application modular, scalable and easily integrated into all hardware

devices. I used “Nodejs” for orchestration and execution of various modules writ-

ten in various programming languages. Moreover, these modules can be run in

containers like Docker [5] that use virtualization to avoid conflicts between depen-

dency libraries. The isolation of the components allows us to minimize possible

system interruptions. Communication between system services is done through

the “SocketI.IO” library, making the architecture event-based. The architecture

initially developed in [28] [67] has been thoroughly tested and found to be a system

capable of working in real time without the need for ad-hoc feature extraction.

Moreover, this architecture has been trained on the dataset sampled in our lab

with the social robot Pepper but also in other different contexts such as gesture

recognition. We recorded some activities of interest from elderly volunteers using
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the Pepper social robot made by SoftBank Robotics. During these experiments

on the robot’s approach towards people [27] and distraction during their non-

interactive tasks [68] we sampled videos of the activities performed by the elderly

using Pepper’s front-facing camera. Using this data, I trained a deep neural net-

work model and obtained a good accuracy result. Finally, another goal achieved is

the use of a low-cost, fully autonomous robotics system that adapts to the user’s

needs. One of the reasons why we still don’t have a global deployment of assistive

robots is precisely the excessive cost. Not everyone can afford a social robot at

home. Mostly, they are very common on cruise ships or in shopping malls. Lower-

ing the overall cost of the entire robotic system, making it fully autonomous and

adaptable to the user’s profiles would allow a rapid diffusion of this application

within the homes of the elderly, encouraging improvement and research in this

field.

In summary, there are three innovative aspects of the proposed robotic appli-

cation:

• the implementation of a modular robotic architecture based on micro ser-

vices.

• the training of a deep neural network model with a dataset sampled during

experiments with elderly volunteers in our laboratory

• the low-cost experimentation in the homes of the elderly with a fully au-

tonomous robotic system that adapts to the needs and cognitive profile of

the person

1.4 Thesis’ Contribution

I would like to emphasize that this thesis work is about my contribution offered

to the UPA4SAR project. In particular, I was involved in

• analysis and implementation of the robotic system with all the services of-

fered
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• recognition of Activities of Daily Living

• experimentation in the homes of the elderly

• final analysis of the experimentation.

1.5 Structure of the Thesis

In chapter 2, I introduce the state of the art of the three main topics pertaining to

this thesis. In section 2.1, I present some assistive robot projects for elderly people

tested in controlled environments and smart homes. In Section 2.2, I introduce

the Service-Oriented Architecture (SOA) approaches that are at the base of our

project. Finally, in section 2.3, I discuss some Activity of Daily Living (ADL)

classification approaches. In chapter 3, I discuss the architecture of the proposed

robotic system, starting from the functional requirements described in section 3.1

to the discussion in section 3.2 of the architecture developed and tested during

field experimentation in elderly homes. In chapter 4, I first consider an overview of

the software analysis in section 4.1 and provide a more detailed description of some

of the implemented system components in the section 4.2 and 4.3. Specifically,

these components are divided into three main groups, which perform different

types of functionality, respectively: A) Monitoring Services in section 4.4, which

include activity recognition via a wearable device or via camera using pose/skeletal

recognition, emotion recognition, and disengagement; B) Navigation Services in

section 4.5, for user search and approach; and C) Interaction Services in section 4.6,

for speech recognition and synthesis using multimodal user interaction. In section

4.7 I discuss about the communication between the services and in section 4.8 I

show the tests conducted on the response times of person finder services within the

simulated home environment. In chapter 5 I introduce the approaches used during

experimentation for activity recognition based on a deep neural network described

in section 5.1. The proposed models were first trained on the public CAD-60

dataset in section 5.2. I then described a deep model, in section 5.3, trained on

a dataset recorded in our lab during experiments with elderly volunteers. An
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approach used as part of a collaboration with the Sheffield Hallam University to

recognize the gestures of autistic children mimicking the gestures of a robot is

described in section 5.4. In chapter 6, I show and discuss the final results of the

experimentation conducted within the homes of elderly volunteers. Finally, in

chapter 7, I summarize and show some conclusions of the research experiments

described in this thesis.
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Chapter 2

Related Work

In this chapter, I discuss the related work of the three main topics addressed

during my PhD. As my thesis research is related to the MIUR UPA4SAR project,

the main topic is the daily care of the elderly through the use of social robots,

especially elderly people with dementia such as Alzheimer’s disease. In the future,

I expect social care robots to be deployed in every home, not just for seniors, and

based on a cloud-based service architecture: Robot as a Service (RaaS). Among

the various monitoring services for the care of the elderly, the Activity of Daily

Living (ADL) classification has been at the heart of my study path.

In section 2.1, I present some assistive robot projects for elderly people tested in

controlled environments and smart homes. In section 2.2, I introduce the Service-

Oriented Architecture (SOA) approaches that are at the base of our project. Fi-

nally, in section 2.3, I discuss some Activity of Daily Living (ADL) classification

approaches, considering the different models used to deal with the Activity Recog-

nition problems.

2.1 Assistive Robot for Elderly Home Care

Socially Assistive robotics is a branch of robotics that aims to assist the user

by following their needs, through observation of the user’s behavior and health

conditions. To ensure the user’s health status and safety, the robot monitors the

11



CHAPTER 2. RELATED WORK 12

person on a daily basis, reminding them to eat, take medications, or entertains

them through activities to keep the assisted person both physically and intellectu-

ally active. Some of the main topics addressed in this field include assessing and

increasing the acceptance of these systems for a daily support to elderly people,

allowing them to be active and independent at home.

For the development of our robotic platform, we have been inspired by projects

previously proposed for the care of the elderly. There are several projects funded

by European Union (EU) that have seen the cooperation of universities, compa-

nies and professional figures of various fields for the realization of the same. Our

project is based on the cooperation of various figures including doctors, psychol-

ogists, professors and engineers and various research institutions: University of

Naples Federico II - Department of Electrical Engineering and Information Tech-

nology, National Research Council - Institute of Parallel Computation and High

Performance Networks (ICAR - CNR), University of Naples Federico II - Depart-

ment of Neuroscience, Reproductive Sciences and Odontostomatology, University

of Campania L. Vanvitelli - Department of Psychology.

The aim of this project is the development of a mobile robotic platform able

to interact with the elderly for physical and cognitive stimulation, monitoring

and entertainment. It focuses primarily on profiling and adapting to the personal

needs and preferences of the elderly. I present hereafter other projects following

the same lines of research which I have compared with our own.

In the European Union (EU), the 7th Framework Programme (FP7) for re-

search funded several projects in social robotics. In these projects, a robotic

companion was developed to interact with humans in a smart home environment

for cognitive stimulation and therapy management of patients with cognitive dis-

abilities and for monitoring the activities of the users.

In the “GiraffPlus” [13] project, the user leaned on a telepresence robot to com-

municate with relatives or caregivers. Projects based primarily on an autonomous

social robot that delivers services to the user, are “Accompany [74]”, “Robot-Era”

[6], “Mobiserv” [54], Hobbit [30] [65].
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In the “Accompany” [74] project, the Care-O-Bot 3 was developed for more

complex interactions with the elderly people, providing services to facilitate inde-

pendent living at home, assisting the user in the daily tasks. The authors created

an ontology of the robotic home, consisting of sensors, locations, objects, people,

the robot, and the robot’s behaviors. This ontology has been instantiated in a

MySQL database and is used to model and test the robotic system, representing

the various artifacts in the ontology not as separate parts but as units belonging

to the same environment. The robot’s navigation is entrusted to ROS using the

robot’s range-finders lasers, allowing a real-time map to be updated and obstacles

to be avoided. The house contains about 50 sensors, for example sensors that de-

tect when doors are opened or appliances are turned on, and which communicate

with the system via ROS messages. In addition, there are cameras mounted on

the ceiling and external sensors which detect the weather. Robot behaviors are au-

tomatically generated through a template consisting of pre-conditions followed by

the execution of robot actions and post-conditions that update the system state.

The scheduling system used is the open source scheduler HTN (Hierarchical Task

Network) (SHOP 2 [55]) that encodes each scheduling domain via a lisp-like syn-

tax, using a scheduling priority assigned to each behavior. If each precondition

of a behavior is met then the behavior is executed, following the assigned priority

order. This project allows for customization of behaviors by both experts and

non-experts, via simple interfaces. Even the elderly person can issue commands

via the tablet. However, there appears to be no mention of clinical planning of

elderly care activities by caregivers. In addition, the system requires an expensive

home automation environment with a large robot that cannot be adapted to any

home environment.

The “Robot-Era” [6] project integrated advanced robotic services in a smart

home environment, in real world conditions, cooperating with elderly people to

improve their life and facilitate independent living. In this project, they highlight

the use of cloud systems for service delivery and the use of sensors to locate the

person within the apartments, via invasive devices such as mobile radios worn by
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the users.

In the “Mobiserv” [54] project, the Authors created an intelligent system with

a robot and smart sensors for assisting older people. They focused on health

monitoring (using wearable sensors), safety and nutrition support. For example,

the implemented robot can remind the user to drink or eat something, to do

physical exercises or a puzzle game, and - through sensors - it controls gas, water,

windows and doors, checking if they are open. All these possible behaviors and

scenarios of the robot have been assigned to each user to make the adaptation and

customization of the system flexible, according to personal needs.

The robot developed in the “Hobbit” [30][65] project can learn, bring and pick

up objects. It provides entertainment functionalities, such as games, exercise,

films, music and books to keep the user cognitively and physically active. Impor-

tantly, it can detect warning situations. The robot is able to recognize, carry, and

pick up objects as in the “Accompany” [74] project. This type of design allows

for basic robot customization through user choice of sound volume, robot speed,

and robot voice gender, but does not allow for more advanced customization on

the schedule and services offered by the robot. All the projects described above,

proposed a robotic platform relying on a modular architecture.

This concept is also taken up in the European collaborative project, called

“SocialRobot” [64], where the Authors developed a mobile robotic platform by in-

tegrating it with virtual social assistance technology to meet the personal needs of

the elderly by adapting during the aging process. Their ultimate goal is to main-

tain users’ self-esteem while managing their daily routines. The proposed platform

consists of a modular system to support caregivers, family members, friends, who

follow the elderly during their daily tasks. The innovation in this project is adap-

tation in human-robot interactions, for example through emotion recognition and

empathic interaction, and adaptation to daily events. The proposed architecture

[64] is based on a Workflow Engine that interprets service requests described by

XML messages. The services are then called through ROS (Robot Operating Sys-

tem) services. This kind of approach has been the inspiration for our project,
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which differs in technologies and architecture used. In [63], related to the “Social-

Robot” project, the Authors tested their mobile robot platform in a care center

during a week-long pilot. It targets elderly with mild physical or psychological

issues, offering a set of smart services providing advanced user-robot interaction:

for instance, face recognition, emotion recognition, word spotting, navigation to

a specific place/room, approach to the person, monitoring, docking/undocking,

speech synthesis. They focused on security, autonomy, privacy and safety, man-

aging the daily routine with a modular designed platform that mainly supports

caregivers and family.

The “Robot-Era” [6] and “SocialRobot” [63] projects followed the principles of

a Service-Oriented Architecture (SOA) with a hierarchical approach where each

complex service is the composition of simpler operations. Their modular service

robot architecture promotes scalability and layer abstraction exploiting high-level

service personalization according to the user preferences and habits. In [6], the

Authors proposed the improvement of the performance of the robot behaviors by

using a cloud robotics paradigm, with the Robot as a Service (RaaS) architecture

that provides scalability, elasticity, computational capabilities and much more,

enabling to offload complex processing, user and environment information sharing.

However, the tests were conducted in a home automation environment and a

care facility, both controlled environments, focusing on the latency of the services

offered by the cloud and the localization of the user using invasive sensors which

aims at improving the acceptance of the robotic system without the use of sensors

inside the house or invasive wearable sensors. The most interesting works in

literature that considered the testing of the robot platforms in real environments,

like home care or controlled apartments, with a considerable number of patients

and with medium to long term periods, are proposed below.

In another early project related to the European FP7 project “Companion-

Able” (2008-2012) [76], the Authors developed a companion robot for assistance

by combining a mobile robot with a smart home used for testing. Volunteers tested

the system by freely using the robot for two days. Services provided by the robot
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include reminders of appointments, predefined or added by the user or caregiver,

frequent recommendations for specific activities provided by the caregiver, video

calls with family and friends, and cognitive stimulation games to monitor for cog-

nitive impairment as well. In addition, the robot they developed can be controlled

via displays located within the smart environment or via voice command to call

the robot for instance. In total, they conducted 12 days of testing, providing an

enjoyable experience for the volunteers, elderly people with cognitive impairments,

and their partners. Projects such as “CompanionAble” present experimentation in

appropriately prepared apartments or in care centers used for the integration of

IoT devices in order to help the robot to provide more reliable services. Using IoT

devices to create a smart home would increase the cost of the project by requiring

structural interventions within the seniors’ homes.

The same robot was proposed again for the German research project “SER-

ROGA” (2012-2015) still in the field of home care for the elderly, with the task

of keeping the elderly physically and mentally active. In [33] this project is pre-

sented with a new approach to allow a quantitative description and evaluate the

complexity of navigation in the apartments, so that they can be compared for

functional testing under real-world conditions. 12 project staff and elderly apart-

ments were tested, with 9 elderly people, aged from 68 to 92 years. In total, testing

in private apartments of the project staff and the elderly lasted 7 days, and in the

elderly apartments lasted 16 days, where the robot interacted with the elderly in

complete autonomy, without supervision. The testing of the experiment with the

robot alone, without any person supervising, lasted a maximum of three days. The

elderly ultimately enjoyed the functionalities of the robot and also made emotional

connections with it. The hypothesis formulated by the Authors is confirmed by

the results: robots provide psycho-social and instrumental advantages over com-

puters, tablets, or televisions due to their physical presence, mobility, and social

interaction capabilities. These capabilities help the elderly to overcome loneliness

and improve people’s psycho-physical well-being.

The German research project “SYMPARTNER” (2015-2018) presented in [34]
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aimed to develop a mobile domestic robot that can stimulate the elderly. In [34],

they did not consider user customization and profiling a fundamental requirement.

The authors consider that it would be necessary to allow the system to adapt to

the user’s needs and preferences as possible future developments of the project.

Therefore, The architecture of the robotic system, its components, and essential

behaviors are presented. A long-term study carried out from January to June

2018, with two autonomous robots used in 20 elderly households, in complete

autonomy, without supervision, highlighted technical aspects on the suitability

and robustness of the robot, usability, familiarization and acceptance of the robot

with its users. The tests lasted to 20 weeks, with elderly people aged 62 to 94

years. The services offered by the robot during the trial worked autonomously

for the majority of cases, with local navigation problems occurring in only a few

cases. This project highlights the importance in the implementation of navigation

methods, interaction and other services offered. The level of satisfaction and the

expectations of users on the individual support services offered by the robot should

be further investigated. Even if the long-term experimentation has given reliable

results, the robot platform proposed in [34] presents some possible improvements:

the touch screen, for instance, should allow an easier access when people are

standing; the proposed robot is not able to overcome thresholds and higher carpets,

along with other irregularities.

In [35], an adaptive approach is proposed that allows scheduling of robot ac-

tivities that can be modified even by lay users such as caregivers of elderly people

prone to Alzheimer’s disease (IAD). A caregiver can customize the default care

protocol through a survey-style questionnaire that contains binary or multiple-

choice questions and a small number of open-ended questions to provide detailed

instructions. The responses are then processed to automatically generate the new

schedule. Open-ended responses must be written by the caregiver in a predefined

language structure for the generator to extrapolate predicates or operators. This

type of approach allows for continued adaptation of the protocol by the caregiver.

Through simple questions posed to caregivers, it is possible to customize a care
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protocol on an ongoing basis by modifying the robot’s high-level daily planning.

Two protocols for the care of older adults with dementia have been implemented

to evaluate this approach. The robot’s planning also relies on sensors set up in the

home to detect activities regarding the care protocol. The proposed framework

was evaluated with the help of caregivers who redesigned the care protocols based

on the preferences of the testers, 8 IAD patients.

Regarding the functional requirements, the following study is very interesting

for the development of an affordable service-oriented robotics platform. In [40], a

study of the requirements for developing an affordable mobile robot is presented.

This study is about researching the needs and requirements of the elderly in a

nursing home. Three groups of subjects were composed for this study: elderly,

clinicians, and caregivers. Their goal is to define the system requirements needed

by a robotic system for daily care, using a low-cost robot with affordable prices.

The three groups identified an order of priority to various services. Thirty-six

unique functions with the highest priority were then sketched from their eval-

uations. The most important services that seniors desired in a low-cost robot

related to instrumental activities (iADLs), leisure activities, making their prefer-

ences known, and the ability to socialize. In contrast, physicians and caregivers

prioritized reminders and adherence to care plans, monitoring the health and

safety of the elderly. Of course, a low-priced robot requires trade-offs in design

and service robots provide some but not all desired services. This study suggests

that the best elderly care robot promotes connectivity between the elderly and

the community, entertainment, safety, health care, and aids in simple recovery

activities.

Finally, in a recent project [14] funded by European Union (EU) under the

Horizon 2020 program, the Authors highlight the innovations of perception and

interaction between the mobile robot developed by the Authors and the users, for

in-home assistance to elderly people with mild cognitive impairment. In particu-

lar, they developed a robotic system capable of mapping everyday objects in the

home through RFIDs and able to monitor users with non-invasive tools. The phys-
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iological monitoring module is based on the Fourier analysis of the temperature

of the forehead and nose, thus being able to detect the temperature, respiration,

heart rate while the elderly entertains himself with cognitive games or other in-

teraction tools of the robot. For the detection of physiological functions, it is

essential that the face is visible to the robot’s camera. This platform allows for

more dynamic and flexible user monitoring and object mapping, adapting even

in cluttered environments, thus eliminating the need for fixed sensor installations

and configurations within the home. Our project is based on the adaptation and

profiling of the person based on several psychological tests performed by the team

of psychologists. Our experimentation aim to verify the degree of comfort and

acceptance of the users with respect to the robotic system based on two protocols

used for planning: a personalized day planning and a random one. One of the key

goals of our project was to experiment in real-world settings, specifically in the

homes of the elderly and not in assisted living facilities. It was carried out on 7

volunteers for an average duration of two weeks for each. The robot was left in

complete autonomy without the intervention of operators, without connection to

the Internet to preserve the privacy of the elderly and their family. We avoided

the use of environmental sensor like cameras to limit the cost of the platform and

to decrease invasiveness.

2.2 Service-Oriented Architecture (SOA)

The introduction of Industry 4.0, 5G, IoT devices, smart devices (smartphones,

tablets, smartwatches, smartbands), home automation, voice assistants, and robotics

have made service-oriented architecture (SOA), edge computing, and cloud com-

puting increasingly dominant. Hence, many researchers started to use such ap-

proach also for designing robotics applications.

For example, in [9], the design and evaluation of a Robot as a Service (RaaS)

prototype is presented. The proposed platform follows the participatory principles

of Web 2.0, sharing the source code to allow developers modifications and additions

to the RaaS on Windows and Linux operating systems and on Atom and Core 2
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Duo architectures. To make the customization of the services accessible also to

high schools, in addition to the possibility to develop services with languages such

as Java and C#, it supports the Microsoft Visual Programming Language (VPL)

to be able to graphically compose the services, allowing the graphical composition

based on Robotics Developer Studio. This design is very flexible, easily portable

to different systems, and has been tested in various experiments. The Authors also

proposed a robotics starter kit for dissemination in high schools and leveraged this

design to create training courses in robotic programming [10] to attract student

interest and teach robotic service oriented programming (RaaS).

In [7] the Authors propose an early stage approach based on ROS (Robot

Operating System) which is an operating system for creating robotic platforms

widely used in both research and industrial sectors, providing libraries and tools

to help developers create robotic applications. Their approach is based on the use

of SOA technologies, i.e. service-oriented architectures, and web services. The

basis of the platform is the communication between the client, i.e. the robot,

and the provider that provides various services through the web with the help of

Cloud architecture. It differs from our project for the use of ROS, voluntarily not

used because I considered it as an additional module and level of communication

with other robotic platforms, keeping our robotic platform at a lower level of

communication, to reduce the latency and not add more complexity. ROS remains

one of the most widely used research tools in our lab as well, making module (node)

implementations very easy and fast. Instead, I looked for a viable alternative for

a fast and robust implementation that would safely allow communication and

integration with ROS.

Another similar ROS-based approach is proposed in [1]. The Authors con-

sidered the ROSJAVA client Application Program Interface (API) for represent-

ing meta-models using web services implementing two communication protocols:

JAX-WS (Java API for XML Web Services) and JAX-RS (Java API for REST-

full). This allowed the development of REST (Representational State Transfer)

interfaces based on XML (eXtensible Markup Language) documents using SOAP
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(Simple Object Access Protocol) messages. The Authors’ goal is to control service

robots through these Web interfaces, leveraging the computational power of Cloud

computing. The robot then acts as a client requesting computational resources

from the cloud for various artificial intelligence services that are often difficult to

perform on machines with low computational capacity such as social robots or

drones. The system proposed in [1] was then tested for drone surveillance.

Through a unified interface to easily manage heterogeneous mobile robots re-

motely, the Authors of [53] propose their own platform called Open Mobile Cloud

Robotics Interface (OMCRI) that leverages the RaaS architecture. This platform

is an extension of the Open Cloud Computing interface (OCCI) standard and

leverages the OCCIware tools, testing them on three mobile robots: Lego Mind-

storm NXT, Turtlebot and Parrot AR.Drone. This platform is also modular and

extensible, but is dependent on the Open Cloud Computing Interface (OCCI), an

open source project that requires commitment from developers to maintain.

Other projects I have already considered in section 2.1 that used service-

oriented architecture (SOA) are the projects “Robot-Era” [6] and “SocialRobot”

[63]. Each complex service is composed of elementary services or operations to

form a hierarchical service structure. Such a modular architecture allows the

robotic system to scale by abstracting services at various levels for easy parame-

terization and customization of services. Indeed, the services must adapt to the

preferences and habits of the elderly person. A further improvement is the use of

decentralized software architectures such as edge computing or cloud computing:

an example is the work [6]. In [6] the authors want to improve the performance

of the offered services by exploiting the Robot as a Service (RaaS) architecture

that offers scalability, elasticity and computational power, being able to process

all the information of the user and of the surrounding environment extrapolated

from IoT sensors. A limitation of this type of architecture, however, is the multi-

layered security of the architecture over data transmitted over the cloud or privacy

that is often violated or, under certain conditions, user information is exploited

by companies that take advantage of privacy contracts that are unclear, verbose
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or difficult to interpret. In [64] the daily schedule is generated by an engine, called

the Workflow Engine. This engine processes requests via XML messages, using

ROS (Robot Operating System) services.

Our solution allowed us to easily integrate artificial intelligence modules, such

as activity recognition and facial recognition, but most importantly, it facilitated

communication with the robot used in the project. It allows the modification and

implementation of new services with various programming languages like Python,

Javascript, Java. Moreover, the communication of our robotic platform is based

on Socket.IO, a library of Node.js. Socket.IO, an event-oriented JavaScript li-

brary, enables real-time two-way communication between web clients and servers.

Thanks to this library, it is possible to make heterogeneous modules communicate

using clients made available in various programming languages. The architecture

presented in our work is service-oriented architecture (SOA) with a hierarchical

approach. Each complex service is the composition of simpler operations. This

type of architecture is also used in projects such as “Robot-Era” [6] and “Social-

Robot” [63]. It is a scalable modular architecture that allows the customization

of services according to the preferences and habits of the elderly.

2.3 ADL Classification Methods

Human Activity Recognition (HAR) aims to recognize activities or actions and it

is a challenging task for human activity classification. In this section, I consid-

ered different activity recognition approaches applied on different datasets and in

particular on dataset CAD-60. I considered the CAD-60 dataset since it contains

people’s daily self-care activities (ADLs) and it has been used by us to achieve our

goals. The works presented concerns machine learning methods that are currently

state of the art. Deep artificial neural network models are used in these works like

Long short-term memory (LSTM) and Convolutional Neural Network (CNN), in

conjunction with classical machine learning techniques for feature extraction.

In [24], the Authors introduced an approach where the human skeleton data is

analyzed by considering five parts (i.e., arms, legs, and torso) and a hierarchical
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bidirectional RNN network with a final Long short-term memory layer is deployed

to extract features for building a higher-level representation. Subsequently, a fully

connected deep LSTM network is proposed in [85] to recognize action with a

framework composed of three LSTM and two feed-forward layers, incorporating

the co-occurrence regularization into the loss function, so exploring the conjunc-

tions of discriminative joints and different co-occur-rences for several actions. In

[47], a deep LSTM framework, based on RNN, is proposed to better localize the

start and end of action with a regression module, to automatically extract the

features. This joint classification-regression RNN considers the sequence frame by

frame and does not require a sliding window approach. A hierarchical approach is

also presented in [84], where they propose three exploration fusion methods based

on multilayer LSTM. The first LSTM layer takes geometric features computed on

the 3D coordinates of the human joints, then the upper LSTM layers investigate

into more detail the input features, abstracting into a high level of knowledge.

All these approaches are characterized by a deep/hierarchical structure aiming at

recognizing high-level features for temporal data. Indeed, in the presented work, a

single LSTM layer is used but in combination with CNN, so relying on the possi-

bility to extract spatial dependencies on the skeleton’s joints patterns. In [28], we

showed that a multi-scaled LSTM approach resulted in slightly lower performances

with respect to the proposed one.

Other approaches dealt with the use of CNN for activity recognition. For ex-

ample, in [23], the skeleton sequence is represented as a matrix concatenating all

frames together in chronological order. This allows us to treat the time sequence

of joints in a single image that is fed into a CNN model for feature extraction and

activity recognition. In [11], the whole images, and not the skeletons, are used to

extract joint heatmaps (using CNNs) for each video frame and colorize them using

a specific color depending on the relative time. To obtain a fixed-size represen-

tation independent from the duration of the video, they aggregate the colorized

heatmaps with different methods to obtain the clip-level representation with a

fixed dimension. The necessity of compressing temporal date into single images is
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overcome by the use of 3D CNN that recognizes spatial-temporal features applying

convolutions on a time series of frames [2, 39]. Also in [57], the Authors consider as

input for CNN all the skeleton joints of all frames, arranged in a 3D matrix. This

3D matrix has in the first dimension the number of joints, in the second dimension

the number of consecutive frames and in the third dimension the 3D coordinates

of the joints. Results of the CNN is then combined with an LSTM using a two-

stage training strategy that focuses first on CNN training and then on the entire

CNN+LSTM method. In our approach, the CNN takes as input each frame of the

sequence independently since temporal relationships are deployed at the LSTM

layer. In [83], the Authors propose a novel model of dynamics skeletons called

Spatial Temporal Graph Convolutional Networks (ST-GCN) tested on Kinetics

and NTU-RGBD datasets. The ST-GCN implementations are different from 2D

or 3D CNN since the temporal properties of the skeleton are kept together as in

a graph. It follows the similar implementation of graph convolution [43]. In [49],

the Authors consider the action recognition and the human pose estimation as

one problem that they solve with a multi-task CNN. The human pose estimation

is composed by a CNN with one entry flow and K prediction blocks to estimate

both the 2D and the 3D pose by volumetric heat maps. Appearance-based recog-

nition relies on local visual features considering also the objects used during the

performed action. The results are combined to estimate the action. Finally, in

[46], the Authors use a combination of CNN and LSTM to extract spatio-temporal

information, but, differently from our approach by merging the individual scores

obtained from the CNN and the LSTM. Also in this case, contrary to the method

proposed by us, they consider all the joints of the skeleton, extrapolating also

other information of distance and trajectory between the joints and the poses.

The 3 LSTM models take in input the real positions, distances between joints,

distances between joints and lines, while the 7 CNN models take in input the joint

distances maps and the joint trajectories maps in time to generate color image to

be fed into a CNN mode. The innovation in our proposed approach compared to

similar works presented so far is in proposing a new spatial representation of the
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features of human pose.

Different approaches are presented in the literature that are evaluated by the

use of the CAD-60 dataset. These approaches are mainly characterized by differ-

ent features extraction initial processes. In [12], for example, a k-means clustering

algorithm computes the “key poses” to describe the activity for each sequence

with K centroids that composed the features vector. In [78], the key poses are

identified by recognizing poses with the kinetic energy close to zero to perform a

sequence segmentation. This approach is shown to be robust respect to the tem-

poral stretching of an action. In [41], the fusion of 5-CNN is proposed for activity

recognition, using Motion History Image (MHI), Depth Motion Maps (DMMs)

(Front, Side, Top), and skeleton images (an image representation of the skeleton

joints) as input. Each different type of data is trained on a different CNN and the

softmax scores are fused to classify the activity. In [29], the distances and motion

features (evaluated as the distances between the initial position of a joint and the

position in the following frames) form a total of 14 features that characterize the

12 activities of the dataset. A Dynamic Bayesian Mixture Model (DBMM) is pro-

posed to classify the activity considering the temporal information. Depth-based

action recognition is evaluated in [86] using the spatial-temporal interest point

(STIP) with the combination of different interest point detectors and descriptors.

The SVM classifiers are used to detect the activity. A neurobiologically-motivated

approach is presented in [61] to recognize action in real-time with the Growing

When Required (GWR) networks. The GWR network is a set of neurons that dy-

namically change their topological structure according to the input creating new

neurons with different weights. The architecture proposed is a two-stream hierar-

chy of GWR networks that can learn spatio-temporal dependencies processing in

parallel the pose and motion features extracted from video sequences.

In a recent work [48], Liu et al. proposed a classical machine learning technique,

selecting the features from the skeleton data. First, they pre-processed the skeleton

data denoising, transforming, and normalizing the pose. Then, they considered the

position, the velocity, and the acceleration of the poses. The recognition method
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is a three-step weighted voting process based on k-Nearest Neighbors (kNN). They

evaluated their method on MSR-Action3D and CAD-60 datasets, obtaining good

results. Currently, this approach is the one obtaining the best performance on

precision and recall for CAD-60 considering a whole video sequence. The main

difference between our work and [48] is that I use a sliding window solving a

totally different problem. The obtained model trained on 140 frames instances

can classify activities in real-time on videos of a few seconds. I also tested our

model on the whole videos to compare our approach with the others. Unlike

the approaches applied on the CAD-60 dataset that select and extract features

manually, I propose a deep learning model for automatic feature extraction that

uses CNNs to extract spatial dependencies from human poses and LSTMs to

extract temporal dependencies between poses.

2.4 Summary

In summary, in this work, I attempt to implement and testing in real world envi-

ronment a personalized social assistive robot to take care of elderly people. There

are a planty of assistive robot projects for elderly people, often tested in controlled

environments such as laboratories or smart homes. While many projects have fo-

cused on deploying intrusive sensor technologies toward the person’s privacy, we

seek to bring assistive robots even without in-home sensors or video surveillance

cameras as far as lack of Internet access. Being able to develop a robot that works

autonomously for several weeks is itself an accomplishment. In the Table 2.1 we

show a summary of the main features of interest of the related projects.

The main features considered are the following:

• Telepresence: the robot is only used in telepresence mode to communicate

with relatives and caregivers;

• Autonomous : the robot is fully autonomous and offers a range of services

for the daily care and entertainment of the person;
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Table 2.1: Main features of the assistive robot projects for elderly people.
Project Telepresence Autonomous Environment sensors Arm

GiraffPlus [13] X

Accompany [74] X X X

Robot-Era [6] X X

Mobiserv [54] X

Hobbit [30][65] X X

SocialRobot [63] X X

CompanionAble [76] X X

Our Project X

• Environment sensors: the robot has environment sensors in a smart home

such as cameras e.g. to locate the person inside the house;

• Arm: the robot is able to pick up and carry objects via a robotic arm.

In contrast to other projects, ours aims to achieve rapid deployment in the

production phase through affordable cost. For this reason and due to privacy

concerns, we did not use intrusive environmental sensors. In addition, a robotic

arm to pick up and carry objects would greatly increase the total cost of the system

and would require environments suitable for the possible movements of the arm

that requires a lot of space.

Regarding the literature regarding Service-Oriented Architecture (SOA), we

can summarize the technologies used in the following list:

• RaaS architecture based on principles of Web 2.0 [9]

– two programming languages: Java and C#

– it supports the Microsoft Visual Programming Language (VPL) (Robotics

Developer Studio)

• early stage approach based on ROS (Robot Operating System) [7]

• ROSJAVA client Application Program Interface (API) [1]

– meta-models representation using web services
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– two communication protocols: JAX-WS and JAX-RS that use SOAP

messages

• modular and extensible platform Open Mobile Cloud Robotics Interface

(OMCRI) [53]

– extension of the Open Cloud Computing interface (OCCI) standard

• the projects “Robot-Era” [6] and “SocialRobot” [63]

– each complex service is the composition of elementary services

– modular architecture

– scale system

– profile adaptation

• Robot as a Service (RaaS) architecture [6]

– it offers scalability, elasticity and computational power processing IoT

sensors data

– privacy issues due to exploitment of user information by companies

• daily schedule Workflow Engine [64]

– it processes XML requests using ROS services

• our project

– various programming languages for the implementation of services like

Python, Javascript, Java

– Node.js handles the executions of the services

– Socket.IO, an event-oriented Javascript library, handles the communi-

cation between the services

– easy communication with the robot (using a Socket.io client) that used

a Android tablet to manage it
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– the communication system is based on JSON messages that can invoke

various services

– even if the system can run on the cloud as a RaaS architecture, for

privacy issues the system runs on a small server, an Intel NUC, in

offline mode, thus avoiding security issues due to unauthorized external

accesses

In conclusion, regarding the methods of Activity Recognition, we can summa-

rize in the following list the various methodologies I have considered in literature:

• human skeleton data divided in five parts (arms, legs and torso) and hierar-

chical bidirectional RNN network with final LSTM layer [24]

• fully connected deep LSTM network composed by three LSTM and two

feed-forward layers [85]

• a deep LSTM for action segmentation with regression module to automati-

cally extract the features [47]

• a hierarchical approach with three fusion methods based on multilayer LSTM

[84]

• multi-scaled LSTM approach [28]

• CNN approach with the skeleton sequence represented as a matrix concate-

nating all frames [23]

• the whole images are used to extract joint heatmaps using CNNs [11]

• 3D CNN [2, 39]

• skeleton joints arranged in a 3D matrix as input of the CNN [57]

• Spatial Temporal Graph Convolutional Networks (ST-GCN), the temporal

properties of the skeleton are kept together as in a graph [83] [43]

• multi-task CNN [49]
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• combination of CNN and LSTM to extract spatio-temporal information

merging the individual scores from CNN and LSTM [46]

The considered ADLs recognition approaches applied, in particular, to the

CAD-60 dataset are the following:

• k-means clustering algorithm computes the “key poses” to describe the ac-

tivity for each sequence with K centroids that composed the features vector

[12]

• the key poses are identified by recognizing poses with the kinetic energy close

to zero to perform a sequence segmentation [78]

• fusion of 5-CNN using Motion History Image (MHI), Depth Motion Maps

(DMMs) (Front, Side, Top), and skeleton images as input [41]

• the distances and motion features as input and a Dynamic Bayesian Mixture

Model (DBMM) as classifier [29]

• spatial-temporal interest point (STIP) with the combination of different in-

terest point detectors and descriptors as input and SVM as classifier [86]

• Growing When Required (GWR) networks learning spatio-temporal depen-

dencies processing in parallel the pose and motion features extracted from

video sequences [61]

• position, velocity, and acceleration of the poses as input and three-step

weighted voting process based on k-Nearest Neighbors (kNN) as classifier

[48]

The approach proposed in this work for ADL recognition will be discussed in

detail in the chapter 5.



Chapter 3

Architecture

This chapter discusses the architecture of the proposed robotic system, starting

from the functional requirements described in section 3.1 to the discussion in

section 3.2 of the architecture developed and tested during field experimentation

in elderly homes.

3.1 Functional Requirements

Before starting the experimentation in elderly people’s homes with assistive robots,

we had to analyze the functional requirements and design a service-based robotic

architecture. In this section, I will discuss the functional requirements of the

robotic platform for elderly care.

An in-depth study of the functional requirements for the development of an

affordable mobile robot is considered in [40]. The authors, in particular, focused

on researching the needs and requirements of the elderly, one of the key features

of our work, within nursing homes. Three groups of subjects, elders, doctors, and

caregivers defined their system requirements by prioritizing various services. It was

noted that the elderly prefer a low-cost robot that considers instrumental activities

(iADLs), leisure activities, considers their preferences, and is able to socialize with

them. Doctors and caregivers, on the other hand, placed a higher priority on

reminders and achieving care plans by monitoring the health and maintaining the

31
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safety of the elderly. It must be taken into consideration, however, that a low-cost

robot requires tradeoffs in design.

The objectives to be achieved are the implementation of services offered by

the robotic system for profiling and adaptivity of the assistance robots. The robot

must be able to monitor and assist the user, remembering the various activities

to be performed during the day and entertaining him with games, songs and

videos customized according to the user’s profiling. The experimentation in the

users’ homes will last two weeks. The robot will not be followed by any operator

and will not be in Wizard of Oz mode (technique widely used in human-robot

interaction (HRI)), but will operate in complete autonomy. The planning of the

robot behaviors will have to follow the user’s habits. Fundamental importance

will be an initial interview with the user to get all the necessary information for

the adaptation and planning of the behavior of the robot with respect to the

preferences and schedules of daily routine activities of the user.

Four types of IoT devices will be distinguished:

• the robot that will have to monitor through its own sensors (or through

a sensor wearable by the user) the activities, emotions and vitals of the

user, reminding the user to take his medication, to eat, to distract him-

self through a game, music or an entertainment video, to perform physical

activity through videos of physical exercises to be performed in the house;

• a smartband or smartwatch wearable by the user equipped with heart rate

detection (HR sensor) and Bluetooth connection for communication with

other IoT devices;

• beacons for indoor localization of the user wearable device or robot;

• a smartphone for the caregiver to receive any notifications from the robotic

system for dangerous situations or requests for intervention.

The robot will need to incorporate a variety of user support services:
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• The robot shall be able to offer a variety of entertainment services including

games, videos (e.g., documentaries, video recipes, physical exercises to be

performed at home), and music via the tablet with which the robot will be

equipped. These types of entertainment will be tailored to the preferences

of each user.

• Of fundamental importance is the reminder function that will have to be

established according to the times of a user’s habits or medical prescriptions,

if it is about taking medicines.

• In order to make the robot interact with the user, AI algorithms will be

implemented for user recognition. The robot will then be able to navigate

around the house looking for the user by taking advantage of the built-in

video cameras to recognize and locate the user’s presence.

• If the robot has low batteries it must locate the charging base and connect

to it to recharge itself.

• The robot interacts with the user through tablet and voice suggesting ac-

tivities to be performed daily such as taking medicine or asking if a certain

activity has been performed to verify the correct execution of daily habits.

In the case of a negative answer, the robot will alert the robotic system of

the anomaly to eventually contact the caregiver or a family member in case

of need.

• The robot’s built-in cameras will detect the person’s emotions and activities.

• The robot must be able to communicate via Bluetooth with other devices:

- the user’s wearable device to detect the user’s pose, positioning, and heart

rate and pass this information to the robotic system; - beacons to locate the

robot inside the house.

The user-wearable smartband or smartwatch will have the following function-

ality:
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• Heart rate detection by HR sensor

• detection of the user’s position inside the house by calculating the distance

of the device with respect to the beacons through Bluetooth connection

• detection of the user’s pose (standing, sitting, working on computer, walking,

running, climbing stairs) by exploiting the motion sensors (accelerometer,

gyroscope)

• Bluetooth communication to pass on-demand information to the robot, de-

rived from the previously described functionalities.

Beacons are devices that transmit low-power radio waves by exploiting Blue-

tooth technology to identify the presence of devices. Therefore, two devices will

be placed inside the house to identify two rooms most used by the robot for user

interaction and monitoring. Two possible scenarios need to be distinguished:

• The robot identifies the distance between itself and the two beacons, identi-

fying its position inside one of the two rooms based on the closest detected

beacon.

• The robot identifies the user’s location within one of the two rooms by

making a location request to the user’s wearable device, which will detect

the nearest beacon to recognize the location within one of the two rooms.

The smartphone that will be provided to the caregiver will be the means of

communication between the robotic system and the caregiver for any requests for

help or to notify any anomaly found by the robotic system during the monitoring

of the performance of daily activities of the user.

3.2 The Proposed Architecture

The analysis of the functional requirements described in 4.2 was the first step

for the formalization and implementation of the robotic system I present in this

section, based primarily on user personalization and profiling.
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Other intelligent robotic systems, such as the project “Mobiserv” [54], also fo-

cus on health monitoring (using wearable sensors), safety, and nutritional support.

In [54], for example, the robot can remind the user to drink or eat something, do

physical exercises or a puzzle game, and monitors through sensors the gas, wa-

ter, windows and doors by checking if they are open. These robot behaviors and

scenarios are adapted through customization of the system according to personal

needs, as in our project. Similarly, in the project “SocialRobot” [64], the Authors

developed a mobile robotic virtual social assistance platform that meets the per-

sonal needs of the elderly while maintaining the users’ self-esteem during daily

routines. This platform adapts to daily events during human-robot interactions

through emotion recognition and empathic interaction.

Testing in real-world contexts for home-based assistive care of the elderly

within their own apartments is the innovation that differentiates us from the other

projects already discussed in section 2.1. In the other projects, they tested their

platforms in nursing homes or assisted living facilities, i.e., in controlled environ-

ments that often consist of IoT sensors that are invasive to people.

An additional innovative aspect is user adaptivity and profiling i.e. an adaptive

approach that is easily customizable. This additional aspect is the basis of our

work and the framework I present in this section. An example is in [35], where an

adaptive approach is proposed that can be customized even by non-expert users

such as caregivers. Through a questionnaire, the caregiver customizes the care

protocol. The answers obtained are then used for the automatic generation of the

daily schedule.

What I present is the schema of the framework from the perspective of the

planner, a fundamental component for customizing the behaviors of the robotic

system according to the user’s needs. Next, I instead present the schema of the

framework from the point of view of the communication between the various mod-

ules that offer services to the user.
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3.2.1 The proposed framework from planner perspective

The proposed framework for the generation and the execution of personalized as-

sistive plans for home patients affected by neurological disorders is composed of

different modules organized according to a layered architecture depicted in Figure

3.1. The aim of the design is to decouple low-level functions for managing devices,

for data elaboration, and for basic robotics behaviors, from high-level functions

adopted for reasoning on the assistive plans. The lower layer is the Daily Assistive

Workflow Generator (DAWG) [19] [18], a middleware responsible for the gener-

ation of a personalized set of assistive tasks, named a Daily Assistive Workflow

(DAW), and for its reconfiguration when changes are detected by the Smart Envi-

ronment. A DAW represents the flow of the activities that the robot, or even other

devices, must perform to monitor the patient, and to interact with him/her. The

DAWG is composed of different modules: the first processes the daily routine of

the patient extracting the activities to be monitored, that are considered as goals

to be fulfilled. Starting from the set of goals (according to the goal model), the en-

coded user profile, and the high-level observations deriving from the interaction of

sensors with the environment and the elaboration of such data, the DAWG selects

the assistive actions able to fulfill the goals, named an Abstract Assistive Actions.

They are represented as parametric actions that have to be configured according

to the patient’s cognitive and personality profile. The configuration consists of

selecting a specific action to execute, named a Daily Assistive Action (DAA) that

is a concrete instance of an abstract assistive action. The separation between ab-

stract and concrete actions is adopted to manage personalization and adaptation

of the DAW, decoupling the general description of a certain action from its actual

implementation concerning the way it is performed. In details, an Abstract Assis-

tive Action specifies the high-level interface of a certain functionality, including its

input parameters, preconditions, and possible outputs. Conversely, a Daily Assis-

tive Action represents the actual implementation of the action executed by using

the suitable Sensors and Actuators nodes provided by the Smart Environment.

For each Abstract Action, a list of several Daily Assistive Actions may realize the
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Figure 3.1: The proposed framework from the perspective of the planner

same functionality. Moreover, effective planning of the activities will also have to

consider contingent situations that may affect the patient’s particular conditions,

and so his/her possible habits, e.g. an activity involving the control that the pa-

tient has taken his medication may no longer be necessary if the patient had an

unexpected medical necessity. The middle layer is composed of DAAs. The goal of

such actions is to effectively provide either different algorithms for analyzing input

data to monitor the user state and behaviors (i.e., using different input data and

modalities to obtain such information), and so updating the observations and the

user profile, but also to implement different navigation and interaction strategies

to be used by the robot.

This approach is in the direction of integrating robot functionalities (DAAs)

as services that can be requested for the seamless integration of robots, as well as

other IoT devices, into a web or cloud computing environment [37], or Robot as

a Service (RaaS) [9]. In this Service Oriented Architecture view of the assistive

domain, RaaS are endowed with such functionalities, or services, to control their

behavior as well as to provide meaningful observations from the input data [66].
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Moreover, a robot could use different services to provide the same functionality,

and a service could be shared and used by different robots. Some of these services

will be requested by the execution of the Daily Assistive Workflow, while others are

autonomously running or activated by events. To obtain a better adaptation to the

user, the project proposes to equip the user cognitive profile with a psychological

personality profile, and to adapt the robotic behavior not only with respect to the

choice of the single activity to be undertaken (selected by the DAW), but also with

respect to the way in which the same activity is performed. Indeed, in order to be

effectively deployed, also the robot should be able to regulate its social interaction

parameters (e.g., the interaction distances, proxemics, the speed of movements,

and the same modality of interaction) based on personality factors as well as of the

cognitive state of the user. Hence, the user profiling plays a fundamental role both

to generate a DAW tailored for each patient, but also to modulate the execution

of Daily Assistive Actions. In fact, according to the personality of a patient, some

actions can be performed with a different interaction modality, such as direct

interaction with the robot if the user is in a state of inactivity and calm, or remote

interaction with the robot staying at a certain distance, if the user is in a state of

agitation. The upper layer is represented by the Smart Environment composed of

sensors and actuators that play the twofold role of gathering information on the

patient’s state, and of performing assistive actions. Low-level functionalities make

direct use of sensors and actuators installed into the Smart Environment, which

are respectively managed by the DAA. Figure 3.1 shows how low-level nodes are

combined to compose high-level functionalities.

3.2.2 Daily Assistive Workflow Generator

The Daily Assistive Workflow Generator (DAWG) is the component responsible

for the generation of monitoring assistive plans. In order to perform this task, the

DAWG takes into account the user’s profile described along with the daily rou-

tine, the current observations and the entire set of Abstract Assistive Actions, and

Daily Assistive Actions. The daily routine is represented by a set of activities that
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Figure 3.2: Example of an abstract workflow generated for the Wake-Up activity

the user has to perform throughout the day, each of them labeled with a time con-

straint. The daily routine is then encoded into a set of goals, one for each activity,

that the system has to achieve with respect to the time constraints. The workflow

generation process consists of two main steps. The first step is responsible for the

generation of the abstract daily assistive workflow, representing the set of actions

to be scheduled to monitor the daily routine of the patient, organized as a set of

goals to be fulfilled. Figure 3.2 shows an example of an abstract workflow for the

Wake-Up activity, representing the set of abstract actions necessary to monitor

the Wake-Up activity. Each Abstract Assistive Action has to be instantiated by

a concrete Daily Assistive Action in order to be executed. Therefore, an abstract

workflow represents a high-level template for the sequence of actions required to

achieve a certain goal. The second step is responsible for the instantiation of a

specific Abstract Assistive Workflow. This process starts as soon as a certain time

constraint triggers a new goal. For instance, with respect to the workflow shown

in Figure 3.2, the instantiation process will be activated at 9:00 am by trigger-

ing the corresponding goal Wake Up at that time. When a goal is triggered, the

system retrieves the abstract workflow associated with the current activity to be
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monitored and turns it into a concrete workflow. The instantiation process fol-

lows the structure of the corresponding abstract workflow. Its general structure is

represented as a graph G(V ;E) in which each vertex v 2 V represents an abstract

action to be instantiated and each edge e 2 E represents a transition labeled with

a condition. Starting from the first vertex, each abstract action is instantiated

by selecting the most suitable one among the available concrete Daily Assistive

Actions. For instance, in Figure 3.2, the abstract assistive action Check Wake Up

may be implemented by different concrete actions offering the same functionality

with different modalities. If we consider the environmental setting depicted in

Figure 3.1, Check Wake Up can be actually realized by the Activity Recognition

module provided by the Smartwatch, as well as by the Robot via Camera. More-

over, even the Robot’s Dialogue System can be suitable for this task. The main

characteristics we consider to differentiate a concrete action from each other are

its reliability and the interaction modality. These non-functional parameters are

then matched against the user profile to determine a ranking over possible con-

crete implementations to select the one that represents the best trade-off between

user needs and reliability. Once an abstract action is instantiated, the selected

concrete implementation can be executed by the corresponding device, e.g., the

robot. In addition, the concrete action can be executed in different modes (e.g.,

interaction modes), i.e. with different values of some nonfunctional parameters.

Here, the execution of a certain action produces as output new observations de-

riving from sensors installed into the environment. These observations are used

to determine whether a certain state is reached. Hence, the system is able to

determine the transition to the next vertex in the graph after the execution of

each concrete assistive action. When a final condition is reached, the workflow

execution is completed and the system waits until a new goal is triggered.

3.2.3 The software architecture

The social multifunctional robot system, presented in this work, is composed by

an high-level layer, the WorkFlow Manager, and a low-level layer composed by
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Figure 3.3: The software architecture

the robotic behaviors. In [17], we laid down the general guidelines underneath

the architecture of the Workflow Manager, consisting the high-level layer, and em-

phasized the intent of decoupling low-level functions (e.g. managing devices, data

elaboration, and basic robotics behaviors) from high-level functions, like reasoning

on the assistive plans and generate a personalized program, tailored specifically

for elderly people affected by dementia. In this work, I focused on the lowlevel

functions for managing devices, in particular on the robot behaviors. Much like

the Robot-Era [6] and SocialRobot [63] projects, I deployed a RaaS architecture.

An architecture similar to ours, with at the center of the daily schedule an

engine that generates daily workflows, is proposed in [64]. Underlying that work,

the Authors present a Workflow Engine that interprets service requests through

XML messages. These services are then executed through ROS (Robot Operating

System) services. Another approach more widely used is the use of the cloud

through the Robot as a Service (RaaS) architecture to provide greater scalability,

elasticity and computational power as in [6].

In particular, I want to improve the deployment of the social assistive robot’s

behaviors relying on the use of a series of microservices, to allow greater adaptabil-

ity of the system. The aim is to create a scalable and highly modular architecture,
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obtained by dividing all functionalities required from the robot into a series of

basic and primitive cohesive functionalities - that we call microservices. Each

microservice can constitute itself a full system component or it can be combined

in cascade with other basic microservices, to provide a more complex function-

ality as a higher-level component. Moreover, these smaller microservices rely on

different programming languages, and may have disjoint dependencies, container

and responsibilities. The strong modularity and scalability of the proposed ar-

chitecture ensure ease of maintenance, and makes it easier to expand it whenever

necessary, without having to modify or rewrite other modules. In [22], the au-

thors introduced the most important features of the microservices compared to

a monolithic approach: the microservices are independent and directly testable

in isolation with respect to the whole system; they foster continuous integration

for an easy maintenance; changing a microservice does not require a reboot of

the system; they have their own container with their own configuration of the

deployment environment; scaling is simple and it does not require a duplication

of all components; the only constraint is the technology for the communications

between the microservices. Such a service oriented architecture (SOA) integrates

the robot functionalities into a Robot as a service (Raas) unit [9] [6], which is a

cloud computing unit. This allows to share these services among different robots

with different strategies depending on the observations and the user’s profile.

3.2.4 IoT Devices

The hardware infrastructure used for this project comprises a Sanbot Elf robot

(Figure 3.4), a service robot, developed by Qihan Technology, equipped with in-

frared sensors, omnidirectional locomotion, a full HD touchscreen (which is basi-

cally an Android tablet) and an RGB-D camera; a Polar Android M-600 smart-

watch that mounts accelerometer, gyroscope, optical heart rate measurement with

six LEDs; iBeacons, used for room labeling, capable of transmitting a signal us-

ing Bluetooth Low Energy (BLE) technology (the strength of the RSSI - Receive

Signal Strength Indicator - was used to define proximity relations); an Android
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Figure 3.4: Sanbot Elf robot and its hardware components

smartphone. The center of most of the computations, especially those regarding

operations requiring the robot to move, is the tablet mounted on the robot. The

Android APIs allow to effectively exploit all the functionalities featured by the

robot.

3.2.5 Robot Server

The main server is composed by four different modules: the WorkFlow Manager

[17], the System Controller, the System Components, the IoT Devices (Figure

3.3). All these modules are executed on a computational unit connected in a pri-

vate network with the robot. Indeed, during the final experimentation phase, the

entire system will be deployed in a real-world scenario with elderly affected with

Alzheimer’s disease. In order to comply to privacy and security constraints, the

robotic platform will rely on a private Wi-Fi network, but without any Internet

connection. The System Controller is a server implemented using Node.js”, which
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Figure 3.5: Control Interface for testing the System Components

allows to handle the I/O functionalities asynchronously. It handles the communi-

cations between all the modules of the framework with the event driven architec-

ture based on the “Socket.IO” library providing real-time communication between

the modules. The communications channels are implemented using web socket,

while the message format is defined using JSON. Thanks to the communications

protocol employed, each component can contact the others to request/response

to a particular need going through the System Controller. I have also developed

a Control Interface (Figure 3.5) for testing the System Components implemented

with which I checked the correct functioning of all the services. The Control

Interface is a web page built using the “Express” library that is a minimal and

flexible “Node.js” web application framework. Assistive plans for the robot (but

also including actions to be performed on other IoT devices) are handled by using

a module responsible for their generation and for their dynamical reconfiguration
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[19]. The module generates a workflow of services, according to a service ori-

ented approach, obtained by automatically combining the Microservices that can

be executed by the robot or other available devices.

3.2.6 Implemented Services

The implemented services are divided into services for monitoring, for navigation

and for interaction:

• Monitoring Services

– HR Detection

– Pose Detection

– In Room Detection (wearable-based)

– In Room Detection (robot-used)

– Emotion Recognition

– Activity Recognition

• Navigation Services

– Find Charging Station

– Find User

– Look User

– Approach User

• Interaction Services

– Main Interface

– Utterance Interface

– Check Interface

– Suggest Interface

– Video Interface
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– Audio Interface

– Take Photos

Communication between services is based on event-driven communication. The

server, which handles the communication via the “Socket.IO” library, then broad-

casts an event thrown by a service to reach the right recipient based on the event

thrown. I will explore the following services in more detail in the chapter 4.



Chapter 4

Services

In this chapter, I first consider an overview of the software analysis in section 4.1

and provide a more detailed description of some of the implemented system com-

ponents in the section 4.2 and 4.3. Specifically, these components are divided into

three main groups, which perform different types of functionality, respectively:

A) Monitoring Services in section 4.4, which include activity recognition via a

wearable device or via camera using pose/skeletal recognition, emotion recogni-

tion, and disengagement; B) Navigation Services in section 4.5, for user search

and approach; and C) Interaction Services in section 4.6, for speech recognition

and synthesis using multimodal user interaction. In section 4.7 I discuss about

the communication between the services and in section 4.8 I show the tests con-

ducted on the response times of person finder services within the simulated home

environment.

4.1 Software Analysis Overview

Below is a detailed description of the functionality required of the robotic system

following the objectives set.

47
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4.1.1 Product outlook

The robotic system is a completely autonomous system that will not have to

consider the intervention of any operator, managing the user’s data within its own

local network without any external connection to ensure the privacy of personal

data.

4.1.2 Product Functionality

The robotic system must:

• Manage patient wearable device information:

– HR Detection: Heartbeat detection.

– In Room Detection by wearable: Detection of the patient’s position

relative to the beacon references

– Pose Detection: Detection of patient pose

• Provide entertainment and physical/mental stimulation services according

to user customizations via the robot:

– Game: Entertainment game

– Audio: Music playlist with automatic playback or choice of tracks

– Video Entertainment/Physical Exercises: Videos of physical exercises

to do at home, documentaries, cooking, traveling or other

• Manage Robot Information:

– Look User: Detecting user presence.

– Find user: Navigate through the home space to find the user.

– Approach: Approach of the user to interact with the user

– Check/Suggest: Text-based interaction for assertions, verification, and

suggestions by the robotic system for the benefit of the patient
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– Find Charging Station: Charging the robot via the charging station

Affectiva: Emotion detection.

– In Room Detection by robot: Detection of the robot’s position relative

to beacon references

– Activity Recognition: Detection of activities performed inside the house

4.1.3 User characteristics

The robotic system is aimed at users aged between 50 and 80 years without par-

ticular computer skills.

4.1.4 General Constraints

The video information should not be available to the operators for privacy reasons

so it will not be saved. The robotic system devices will not have access to external

networks such as the Internet. Services must be customized according to user

preferences. It will be possible to save only the success/failure information of the

services offered through the robotic system.

4.1.5 Assumptions and dependencies

The robotic system will have to be equipped with a router for internal network

management and interconnection between the various IoT devices. Data process-

ing and planning of the daily behaviors of the robot will be performed on a small

personal computer running Ubuntu 18.04 operating system, due to the reduced

computational power of the robot, which will act as a server for the robotic system.

4.1.6 Specific Requirements

User Interface

Interactions with the robotic system will be through the robot’s tablet with a very

simple interface with text and buttons that will appear according to the schedule



CHAPTER 4. SERVICES 50

of daily behaviors that the robot will have to follow. The user will only be able

to interact with the robot.

Hardware interface

The communication between the various IoT devices will take place via Wi-Fi in a

local network managed by a router and via Bluetooth for communication between

the beacons, the wearable device (smartband/smartwatch) from the patient and

the robot.

Software interface

Software communication between the various separately developed components

will be via websocket.

4.2 Functional Requirements

HR Detection Requirement

Introduction Allows detection of the heartbeat of the user wearing a smart-

band or smartwatch.

Input Name of the required service.

Processing The IoT device via the heartbeat detection sensor records a 15

second window of the readings.

Output Returns the average heart rate over a 15 second window or null due

to a timeout or other exception.

In Room Detection by the wearable Requirement

Introduction Allows to detect the location of the user wearing a smartband

or smartwatch.
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Input Name of the requested service and user ID.

Processing The IoT device connects to two beacons installed in two different

rooms: living room and kitchen. The distance to the beacons is calculated based

on the Bluetooth signal strength.

Output Returns the location of the user, living room or kitchen or null in

case of no connection to the beacons.

Pose Detection Requirement

Introduction Allows to detect the pose of the user wearing a smartband or

smartwatch. Note that detected activities can be combined with detected poses,

but they are two separate classifiers.

Input Name of the required service.

Processing The IoT device records 512 samples of the accelerometer data.

Processing of the data for pose classification is done on the server.

Output Returns null in case of connection problem or one of the follow-

ing poses: lying, sitting, standing, walking, watching TV, working on computer,

ironing.

Game Requirement

Introduction It allows to entertain the user through some games like a card

game or tic tac toe.

Input Name of the service required and type of game.

Processing The robot’s tablet will display the chosen game on the screen.
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Output Returns stopped if the game was finished by the user before its

completion, finished if the game was completed or went into timeout, null in case

of connection problems.

Audio Requirement

Introduction Entertains the user by playing a music playlist.

Input Name of the required service and type of playback, random if it should

play the tracks of the playlist randomly, select if the user should be able to select

the tracks to be played.

Processing The tablet of the robot will display the music playlist on the

screen playing the songs of the playlist.

Output Returns stopped if the user has stopped the music playback or has

timed out, finished if the user has listened to the whole playlist, null in case of

connection problems.

Video Entertainment/Physical Excercises Requirement

Introduction It allows to entertain the user playing videos among which a

list of documentaries, cooking videos, travel videos and physical exercises to do at

home to keep fit and active.

Input Name of the requested service and type of playback, entertainment if

it has to play videos of documentaries, travel, cooking, exercise if it has to play

videos of physical exercises to do at home.

Processing The robot’s tablet will display and play the requested videos

based on the type. A set of videos for each type will be prepared and will be

chosen randomly from the required type.
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Output Returns stopped if the user stopped the playback or went into time-

out, finished if the whole video was played, null in case of connection problems.

Look User Requirement

Introduction It allows to detect the presence of the user in the vicinity of

the robot that remains fixed on its position.

Input Name of the requested service.

Processing The robot searches for a person by remaining in its position,

performing four rotations to get a total view of the surroundings. It is not possible

to discriminate the person by face recognition if the distance between the robot

and the user is not adequate. To perform face recognition of the person, the robot

must stand at a maximum distance of 1.5 m and the person must be in the field

of view of the robot’s front camera.

Output Returns found if the user is in the field of view of the robot’s front

camera, null in case of connection problems.

Find User Requirement

Introduction Detect the presence of the user in the vicinity of the robot

while moving around in the home environment.

Input Name of the required service.

Processing The robot searches for a person by staying in its position, mak-

ing four rotations to get a full view of the surroundings. If the person is not around

the robot during the four rotations, the robot will start moving randomly in the

home environment to find the person. It is not possible to discriminate the person

by face recognition if the distance between the robot and the user is not adequate.

To perform face recognition of the person, the robot must stand at a maximum
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distance of 1.5 m and the person must be in the field of view of the robot’s front

camera.

Output Returns found if the user is in the field of view of the robot’s front

camera, null in case of connection problems.

Approach Requirement

Introduction Allows the robot to approach the designated person.

Input Name of the requested service, identifier of the person to be ap-

proached by the robot.

Processing The robot, having found the person in its vicinity, approaches

it in order to recognize the face.

Output Returns found if the user is in the field of view of the frontal camera

of the robot and is the person corresponding to the identifier given as input,

otherwise null, even in case of connection problems.

Check Requirement

Introduction Allows the display on the robot’s tablet of a textual question

with two buttons below to answer positively or negatively to the question.

Input Name of the requested service, text for the question, text for the

positive answer, text for the negative answer.

Processing A textual question with two buttons underneath for a positive

or negative answer to the question is displayed on the robot’s tablet.

Output Returns the answer selected by the user via the tablet, null in case

of connection problems.
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Suggest Requirement

Introduction Allows a suggestion to be displayed on the robot’s tablet with

an underlying button to accept the suggestion.

Input Name of the required service, text for the suggestion, text for the

button below the suggestion.

Processing A hint with a button underneath to accept the hint is displayed

on the robot’s tablet.

Output Returns the answer selected by the user via the tablet, null in case

of connection problems.

Find Charging Station Requirement

Introduction Enables or disables finding the charging station to charge the

robot.

Input Name of the required service, Boolean value to enable or disable the

charging base search.

Processing The robot moves around the home environment searching for

the charging base recognized by infrared sensors.

Output Returns in_charge if the robot is charging, not_in_charge if the

robot is not charging or in case of timeout, null in case of connection problems.

Affectiva Requirement

Introduction Allows you to detect the emotion felt by the user via the

robot’s front-facing camera.

Input Name of the service requested, person identifier.
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Processing The person is recognized and the facial expression is analyzed

to derive the emotion felt.

Output Returns null in case of connection problems or one of the following

emotions: joy, surprise, contempt, disgust, sadness, anger.

In Room Detection by the robot Requirement

Introduction Detect the location of the robot.

Input Name of the required service.

Processing The robot connects to two beacons installed in two different

rooms: living room and kitchen. The distance to the beacons is calculated based

on the strength of the Bluetooth signal.

Output Returns the location of the robot, living room or kitchen or null in

case of no connection to the beacons.

Activity Recognition Requirement

Introduction Allows to recognize the activity that the user is performing

daily in the home environment. Note that detected activities can be combined

with detected poses, but they are two separate classifiers.

Input Name of the required service.

Processing The robot analyzes the user’s movements by recognizing the

user’s sequence of poses, represented by a set of points that identify the joints of

the human skeleton.

Output Returns null in case of connection problems or the activity that

the user is performing, among which we have: using the PC, calling the phone,

watching TV, preparing coffee, ironing clothes, talking on the couch.
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4.3 Performance Requirements

Interaction times must be within the right limits for better acceptability of the

robotic system.

4.3.1 Design Constraints

The local network of the robotic system must not have any external access to

other networks such as the Internet in order to respect the privacy of the patient

adopting this robotic system in their home.

4.3.2 Software System Attributes - Security

The information processed by the robotic system is strictly confidential. Therefore,

no audio video data will be recorded in the robotic system. It will be possible to

process, at the end of the in-home experimentation period, only the textual data

of interaction between the robot and the patient to record the success or failure of

the interactions to assist the person in the daily planning of household activities.

4.4 Monitoring Services

Monitoring services are developed to estimate and recognize the current state of

the user, and of Activities of Daily Living (ADLs) and of Instrumental Activities

of Daily Living (IADL) he/she is occupied performing.

• HR Detection: a Bluetooth Socket connection is established between the

robot and the smartwatch. The smartwatch detects the heart rate of the

user for approximately 15 seconds, after which the mean of the readings is

returned.

• Pose Detection: the robot and the smartwatch communicate via Bluetooth

Socket. The smartwatch gathers 512 accelerometer and gyroscope data sam-

ples that are returned to the robot. These information are sent to a Python

module, using the Socket.IO-based communication system, where a Deep
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Neural Network recognizes and outputs the activity performed, which is the

one with higher prediction probability among the following activities : ly-

ing, sitting, standing, walking, watching TV, computer work, and ironing.

The Pose Recognition module consists of two LSTM layers that perform

temporal features extraction, and a fully connected layer, which outputs

the classification probabilities of the input to belong to each of the classes

(activities).

• In Room Detection (wearable-based): the application running on the robot

establishes a Bluetooth Socket communication with the Android application

installed on the smartwatch and requests the location of the user in the

house. The smartwatch, on its end, fetches the distances from the reachable

beacons placed in each of the rooms considered for the experiments. Then,

given the distances from the beacons to the smartwatch, the label of the

room with the smaller corresponding distance is returned to the robot.

• In Room Detection (robot-based): following the same procedure of the

wearable-based In Room Detection, the robot retrieves the distances from

the beacon placed in reachable rooms, which these devices transmit in broad-

cast. The label associated to the room with the smaller distance is returned

in this case as well. If this service is called after the robot has approached

the user, it provides the location of the user. Moreover, since the charging

station must be at a distance ranging from 0 to 5 meters from the robot in

order to be detected, this functionality can be employed to find the correct

room towards which the robot should navigate.

• Emotion Recognition: this service relies on the Affectiva SDK [52]. The

robot records a video of the person and transmits it to the Affectiva module,

which returns the emotion detected (joy, surprise, contempt, disgust, sad-

ness, anger), the engagement and the valence of the person with the highest

mean in the whole video.

• Activity Recognition: using the robot’s camera, the service records a video
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of the user. From the clip obtained, for each frame, the skeleton coordinates

are extracted, using TensorFlow’s pose estimation model, PoseNet [32] [60]

[59], which estimates where the key body joints are. The activity recognition

model that will rely on the skeleton joints, is implemented according to [28].

The Deep Neural Network employed consists of two LSTM layers and a fully

connected with softmax activation function that outputs the probabilities of

each class to belong to each of activity considered. The model has been

trained on a dataset built using data gathered during the experimentations

of a previous work [69], that took place in our laboratory. The video footage

was shot the camera of the robot. The activity performed, and therefore

constituting the dataset, are watching tv, relaxing on couch, ironing, making

coffee, working at PC, and talking on the phone.

4.5 Navigation Services

These services provide the robot the fundamental functionalities required to nav-

igate within the environment and to locate the user. The considered low cost

devices do not allow to properly manage localization and mapping tasks. Hence,

in order to rely on hardware with limited capabilities, a reactive approach has

been employed for navigation.

• Find Charging Station: when activated, the service instructs the robot to

wander towards the room where the charging station is located (using the

robot based In Room Detection), and then wanders in that room to find it,

leaning on the infrared sensors it is equipped with.

• Find User: this service provides the wandering functionality, for which the

robot wanders in the apartment and avoids obstacles for one minute. In

order to find a user, this service has to be combined with the “Look User”

service.

• Look User: the robot rotates on itself to look for a person that is in the

proximity. The visual field angle of the robot camera is about 100 degrees,
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but to obtain a complete scan of the environment, the robot has to rotate

four times on itself. PoseNet is used to check if a person is in front of the

robot.

• Approach User: the user approach service relies on the evaluation of the

user pose from his/her skeleton data. A different approaching direction can

be computed according to the approach developed in [27]. When a user is

detected, the FaceNet algorithm [77] is deployed to establish if he/she was

the person it was looking for.

4.6 Interaction Services

Interaction modalities of the robot (voice interaction and GUI) can be used to

suggest and show personalized entertainment activities to the user.

• Main Interface: it is the main window showed on the Android tablet of

the user, which is launched initially when the application starts. No input

parameters are returned.

• Utterance Interface: an interface with an utterance is shown on the robot

tablet to communicate something to the user.

• Check Interface: an interface with a question and two buttons (for positive

and negative answers) is shown on the robot tablet (i.e., to check if the user

has taken the medicines).

• Suggest Interface: an interface with a suggestion and a button, to check if

the user accepts the suggestion, is shown on the robot tablet.

• Video Interface: a video is played on the tablet of the robot. The video is

randomly chosen from a list of videos considered relevant to the patient, but

it is also possible to specify it with an URL.

• Audio Interface: a list of songs relevant to the patient is showed on the robot

tablet; the songs can be played randomly or chosen by the user.
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• Game Interface: a chosen game is showed on the robot tablet relevant to the

user preferences.

• Take Photos: the robot records a video of the user and saves on the “Robot

Server” to extract the face features; that will be used to populate dataset of

the feature vectors extracted by the FaceNet to recognize the user.

4.7 Communication

Socket.IO is highly appreciated by Node.js developers because it allows synchro-

nized communication between client and server in real time. The most used appli-

cations with Socket.IO are chats on websites but the possibilities that Socket.IO

offers go far beyond that. Socket.IO is a library that allows us to simplify the

implementation and logic of communication between software and hardware com-

ponents. One of the possible communication channels used by this library is

WebSocket. It allows synchronized bilateral exchange between client and server.

WebSocket therefore allows you to create an always open communication channel

between client and server. In addition to WebSocket, Socket.IO offers the possi-

bility to use other similar methods of real-time communication, each to best suit

each client: WebSocket, Adobe Flash Socket, AJAX Long Polling, AJAX Multi-

part Streaming, Forever Iframe, JSONP Polling. This library therefore abstracts

from the implementation of each of these techniques allowing you to speed up

development and focus on high-level functionality. In order to send a message

between client and server or vice versa an event must be emitted associated to the

data: to do this, Socket.IO uses an event driven architecture. This library makes

it very easy to send events to all clients connected to the server and also allows to

send from the server in broadcasting a message to all connected clients. Sending

messages in broadcasting has therefore allowed to have a bidirectional communi-

cation also between clients through the server, based on the event launched during

the communication, which opens a communication port between two clients.

The architecture of the proposed robotic system is based on various IoT de-



CHAPTER 4. SERVICES 62

Robot

Smartwatch

Server

Components

Activity Recognition

Take Photo

Mood Recognition

Stop Robot

Game Interface

Audio Interface

Video Interface

Suggest Interface

Utterance Interface

Main Interface

Charge the robot

Pose Detection

HR Detection

In Room Detection

Face Recognition

Activity Recognition Model Pose Estimation

Affectiva

Server nodejs
(socket.io)

Workflow Middleware

Look User

Find User

Approach User

Figure 4.1: A diagram with the principal IoT components that run the different

services.

vices. Each of them implements modules that interface with the main server.

To understand the complexity of the system I present a diagram that represents

the various modules actually implemented in the system. In Figure 4.1 we have

“Robot”, “Smartwatch” and “Server Components” that communicate with the cen-

tral node, represented by the “Server nodejs (socket.io)”. The central node is

the main server script that is executed in Nodejs and exploits the communica-

tion through the library Socket.IO. Socket.IO uses a protocol based on events to

manage the communication between the server and the clients. In turn, which

are nothing more than classes in the Java programming language: Main Interface,

Utterance Interface, Suggest Interface, Video Interface, Audio Interface, Game In-

terface, Stop Robot, Mood Recognition, Activity Recognition, Take Photo, Look

User, Find User, Approach User, Charge the robot. Regarding the Smartwatch

I have instead implemented the following Java classes: Pose Detection, HR De-

tection, In Room Detection. The components module that runs on the server,

represented by Server Components, consists of the following modules: Workflow

Middleware, Pose Estimation, Affectiva, Activity Recognition Model, Face Recog-

nition. Each module of the robotics platform can communicate via Socket.IO by
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launching events that are captured by the modules involved. In order to show

a possible interaction between the various modules I have represented in the Se-

quence Diagram the possible scenario in which the robot looks for the user to ask

him a question. In the Figure 4.2 we can observe how the Workflow Manager

launches the service to approach the user. An intermediate node of the server,

which acts as a bridge between the server and the Workflow Manager, receives

the request and communicates to the module regarding the robot to launch the

service to approach the elderly user. The Approach User service launches the Find

User service. Find User in turn contacts Look User to first find out if the person

is around the robot. Look User rotates the robot on itself 360 degrees to check if

there are people around. If it is not found, it returns the response to Find User

which initiates the wandering of the robot. Then it starts Look User again to

search around itself, until it finds the person, with a maximum limit of 10 min-

utes. In the sequence in Figure 4.2 the person is found and the result is returned

to Approach User that will make the robot approach the elderly person in order

to interact with him. Once close to the possible target user, it launches the Face

Recognition service to verify that is the elderly person. In the example, the robot

was able to recognize the elderly person and finally the Workflow Manager is no-

tified of the success. The Workflow Manager continues with planning the daily

behavior of the robot by launching Utterance Interface, which shows a question to

the user. The user can now answer the question by selecting one of the possible

answers. In the example, the user answers yes to the answer, which is forwarded

to the Workflow Manager, which will then continue planning accordingly.

4.8 Testing

The proposed framework has been introduced and tested in the house of an elderly

couple of 80 and 76 years old without any relevant cognitive impairment, with the

objective of testing the whole system in a domestic environment. In order to allow

the framework to work properly, it is fundamental that the navigation services en-

able the robot to find and approach the user in reasonable time. For this reason,
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Figure 4.2: A sequence diagram example of the launch of a workflow.

I tested these in the living room of the home of the elderly participants. Specifi-

cally, the “Look User” and “Approach User” services have been tested, along with

“PoseNet” and “FaceNet” neural network implementations, that are fundamental

for their correct behavior. A user has been asked to position himself in the liv-

ing room. The robot had to find him, recognize and eventually approach him,

regardless of the different pose the participant may assume (standing, sitting, or

with his knees slightly bend - as if he was sitting in midair), and of the different

lighting condition in the room. The “Find User” component, which is the other

navigation service provided, launches the “Look User” component, and then in-

structs the robot to wander in the room for 60 seconds. The modules have been

tested separately, verifying how many seconds the functionality would take to suc-

cessfully perform the task. Three kind of tests were performed without any prior

knowledge of the environment. Three experimental settings were individuated as

follows:

• In the first set of tests, there are no obstacles between the robot and the

person.
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Table 4.1: Mean time required (in seconds) for the navigation components.
Look User Find User Approach

Test 1 21s± 5s 66s± 14s 99s± 25s

Test 2 19s± 8s 75s± 13s 191s± 94s

Test 3 16s± 3s 70s± 14s 115s± 59s

Mean 19s± 5s 70s± 13s 135s± 59s

• In the second, the robot moves in the unknown static environment, with an

obstacle between him and the person.

• In the third one, there is an obstacle between the robot and two possible

interlocutors. It will have to detect the right person between the two.

The testes have been conducted employing as server an Intel NUC7i7BNH with

Intel i7-7567U - 3.50 GHz, 16GB DDR4 RAM and 256 GB SSD.

4.8.1 Results

For the each experimental setting, 10 runs were executed. In the “Look User”

service the robot takes a picture and feeds it to PoseNet model. If a human is

detected and is in front of the robot, the task is completed, otherwise the robot

turns and repeats the process. The “Find User” service provides the wandering

behavior and uses the “Look User” service to identify a person. The “Approach

User” service, is a system component obtained combining the “Look User” service,

the “Find User” service, and the two neural network model employed. For this

reason the average time required will be higher than the other three modules

tested. However, to prevent the case where the robot continues to search for

the user and try to approach him/her for too long, a fixed time-constraint, of

300 seconds, has been introduced. The Approach User reactively calculates the

distance from the user, by continuously taking pictures. The results of the testes

executed are shown in Table 4.1.
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4.8.2 Discussion

The two navigation services aiming at looking and approaching towards a user have

been tested. The results show that the proposed services perform the intended task

in an adequate and effective way. Both the two services and the neural networks

employed executed the tasks in reasonable times. In particular, the “Approach

User” service, accomplished in executing the task in 90% of the runs, failing to

approach the user in one of the 10 executions. Despite the different configurations

of the three tests, the results are very similar. Except for the second approaching

test, where the average time is higher than the others. Most likely this result is

sometimes due to the difficulty of adjusting the trajectory to avoid obstacles. The

testing methodology, followed in this work, aims at evaluating the behavior of the

considered modules separately. Therefore, they have not been tested as part of a

series of microservices, combined to obtain a workflow handling a specific aspect or

situation in the daily routine of the elder. Moreover, the tests have been conducted

in a controlled environment, with the users assuming predefined poses. Further

evaluations, deploying the whole system proposed, will be produced in new the

experimental trials with 40 elderly patients affected with Alzheimer’s disease. The

services are overall considered to be satisfactory, and we are confident to obtain a

positive outcome as well in uncontrolled domestic environment deployment.



Chapter 5

ADL Recognition

Human Activity Recognition (HAR) is a related research field especially in the

field of Human-Computer Interaction (HCI) that aims to identify the actions, ac-

tivities or gestures performed by a human and also aims to predict the possible

targets of the action by observing it through sensors. In this project I have focused

mainly on the recognition of daily activities carried out by people in their homes,

in particular ADLs (Activities of Daily Living) [25]. Activities of daily living are

the activities that an adult individual performs independently and without the

need for assistance to survive and care for themselves. ADLs are summarized in

medicine with the acronym DEATH, which stands for “Dressing Eating Ambulat-

ing Toileting Hygiene”. ADLs are then distinguished into:

• Dressing. Ability to select and wear appropriate clothing

• Feeding. Ability to feed oneself in a self-sufficient manner

• Ambulation. Ability to move from one position to another and walk inde-

pendently

• Continence management. Ability to properly use the bathroom

• Personal hygiene. Washing, bathing or showering, oral, hair and nail

hygiene.

67



CHAPTER 5. ADL RECOGNITION 68

In addition to ADLs, Instrumental ADLs (IADLs), activities that are not es-

sential for survival, but allow people to live independently within a community, are

also often considered. I focused in particular on iADLs (Instrumental Activities

of Daily Living).

IADLs can be grouped into the following types:

• Company and social support. A fundamental parameter that evaluates

the human resources to support the person in order to improve his lifestyle.

• Transportation and spending. Ability to move or obtain groceries and

medications without help.

• Preparing meals. Ability to plan and prepare various meals, including

grocery shopping and storing food properly

• Cleaning and keeping the house in order. Ability to clean, tidy, throw

away trash, do laundry, and rearrange clothes

• Medication management. Ability to obtain prescriptions and medica-

tions and to take treatments on schedule and in the correct dosages

• Communicating with others. Ability to use communication tools such

as the telephone and generally the ability to make the home hospitable and

welcoming to visitors

• Management of finances. Ability to manage checking account, payments,

and expenses.

In this chapter, I introduce the approaches used during experimentation for

activity recognition based on a deep neural network described in section 5.1. The

proposed models were first trained on the public CAD-60 dataset in section 5.2.

I then described a deep model, in section 5.3, trained on a dataset recorded in

our lab during experiments with elderly volunteers. An approach used as part of

a collaboration with the Sheffield Hallam University to recognize the gestures of

autistic children mimicking the gestures of a robot is described in section 5.4.
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Figure 5.1: A diagram of one LSTM

5.1 The Proposed Approach

The proposed model aims to explore the combination of CNN for representation

learning and of LSTM for temporal dependencies learning, that is proposed in

applications that concern spatio-temporal classification, like in [21] for video de-

scription, and in [58] for activity recognition from wearable devices data.

While the basic RNNs suffer the vanishing/exploding gradient problem [4],

the LSTM [38] can handle this problem and learn long-term dependencies. The

LSTM can be seen as a block with an internal recurrence in addition to the outer

recurrence of the RNN. Every LSTM block is a system of gating units: the state

unit s
t (Equation 5.4), the forget gate unit f

t (Equation 5.1), the external input

gate unit gt (Equation 5.2) and the output gate unit ot (Equation 5.3). An LSTM

block receives in input the input vector x
t, the hidden vector h

t�1 and the state

vector st�1 and returns in output the state vector st (Equation 5.4) and the hidden

vector ht (Equation 5.5) (see Figure 5.1). The gate and output units are computed

using the following equations:

f
t = �(bf + U

f
x
t +W

f
h
t�1), (5.1)

g
t = tanh(bg + U

g
x
t +W

g
h
t�1), (5.2)

o
t = �(bo + U

o
x
t +W

o
h
t�1), (5.3)

s
t = f

t
s
t�1 + g

t
�(bi + U

i
x
t +W

i
h
t�1), (5.4)

h
t = tanh(st)ot, (5.5)
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Figure 5.2: An example of a CNN: LeNet introduced by Yan LeCun [45]

where �(x) = 1/(1 + e
�x) is the sigmoid activation function, tanh(x) = (ex �

e
�x)/(ex + e

�x) the hyperbolic tangent activation function, Uk, W k and b
k with

k 2 {f, i, g, o} are respectively the weight matrices and the bias vectors. The

weight matrices and bias vectors are the parameters that are trained with the

Back-Propagation Through Time (BPTT) that is a gradient-based technique for

training this type of neural networks.

Convolutional Neural Networks (CNNs) [44] (see Figure 5.2) are deep neural

networks for processing grid-like topology data (i.e., image data). Indeed, also

the skeleton data can be mapped into an image, but the proper representation

has to be investigated. A CNN can be thought of as a hierarchy of one, two or

more convolutional modules that progressively learn higher-level features followed

by one or two full connected layers that classify the extracted features. The main

characteristic of a CNN are the sparse connectivity, the parameter sharing, and

the equivariant representations. In detail, with respect to a traditional Artificial

Neural Network (ANN) that has each input node connected to each output node,

the CNN, instead, typically has sparse weights making the kernel smaller than

the input. Moreover, while the traditional neural network has a multiplication

between each element of the input and each element of the weights matrix, in the

CNN, each member of the kernel is used at every position of the 2D input grid; it

means that we learn only one set of parameters instead of different sets for every

location. Finally, the CNN has equivariance to translation, but not to scaling or

rotation. Typically, a convolutional module is composed by:

• a convolution layer that is a bank of affine transformations of input or in
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Figure 5.3: An abstract diagram of the proposed three-dimensional matrix for

human pose representation

other words a bank of convolutional filters (also called kernels) applied on

the 2D grid input;

• a detector layer that applies a non-linear activation function (typically the

rectified linear unit - RELU);

• a pooling layer that reduces the input size (therefore it reduces the number

of parameters) and improves the statistical efficiency.

The weights of the kernels in the convolutional layer are the parameters to

learn to perform the training with stochastic gradient descent. Thanks to sparse

connectivity and parameter sharing, the number of CNN’s weights is reduced

compared to the feed forward network.

Our initial aim was to automate also the extraction of the spatial features

considering all possible connections between the skeleton joints. However, I found

a reduced and concise representation that could well describe the human pose.

To be efficiently applied for action recognition, the first step is the transfor-

mation of the input data, the coordinates (xi, yi, zi) of each of the ith joint of the

human body at time t extracted by an RGB-D camera. Here, a novel representa-
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Figure 5.4: Combination of a CNN for automatic features extraction from the

skeleton representation and an LSTM

tion of the joints values is proposed. Given the vector f = [x1, y1, z1, ..., xN , yN , zN ]

of N skeleton joints, I combine these features in a three-dimensional matrix consid-

ering the spatial dependencies between the limbs. I have built a three-dimensional

matrix to be invariant to translation, rotation, and scale. This matrix is the rep-

resentation of the posture and it is the input of the CNN that can automatically

extract the spatial features. The input is composed of three matrices referring to

data related to the left arm (al)/leg (ll), the trunk (t), and the right arm (ar)/leg

(lr) of the human skeleton joints for each frame. Every considered limb is con-

stituted by three joints each. For example, in the case of the left arm, the three

joints are the left shoulder (al[0]), the left elbow (al[1]), and the left hand (al[2]).

In the case of the left leg, the three joints are the left hip (ll[0]), the left knee

(ll[1]), and the left foot (ll[2]). The same is for the right arm and leg. In the case

of the trunk, we have the head (t[0]), the neck (t[1]), and the torso (t[2]). The aim

is to recognize the spatial dependencies between the limbs. Therefore, I model the

following matrices representation:

2

6664

al[x0] al[x1] al[x2] ll[x0] ll[x1] ll[x2]

al[y0] al[y1] al[y2] ll[y0] ll[y1] ll[y2]

al[z0] al[z1] al[z2] ll[z0] ll[z1] ll[z2]

3

7775

2

6664

t[x0] t[x1] t[x2] t[x0] t[x1] t[x2]

t[y0] t[y1] t[y2] t[y0] t[y1] t[y2]

t[z0] t[z1] t[z2] t[z0] t[z1] t[z2]

3

7775
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2

6664

ar[x0] ar[x1] ar[x2] lr[x0] lr[x1] lr[x2]

ar[y0] ar[y1] ar[y2] lr[y0] lr[y1] lr[y2]

ar[z0] ar[z1] ar[z2] lr[z0] lr[z1] lr[z2]

3

7775

Figure 5.3 shows an abstract diagram to explain the disposition of the limbs in

our proposed three dimensional matrix for human pose representation and feature

extraction with the CNN. Each limb is composed of three joints and represents

the rows of the three coordinates x, y, z. From this matrices representation, CNN

learns the spatial features that involve the spatial limb correlations.

The proposed CNN is a three layers deep network (see Figure 5.4). The three

matrices representation of the posture is given as input to the first convolutional

layer. It sizes 3 ⇥ 6 ⇥ 3 and has a set of kernels of size 1 ⇥ 1 and stride 1 to

consider the spatial limb dependencies. Since the kernels size 1 ⇥ 1, the first

convolutional layer linear recombines the weights based on the input feature maps

as a parametric pooling layer. Therefore, its output sizes 3⇥ 6⇥ k1 and it is the

input of the second convolutional layer. The second layer has a set of kernels of

size 3 ⇥ 3 with stride 1. Its output sizes 3 ⇥ 6 ⇥ k2 where k2 is the number of

kernels. A max-pooling layer of size 2 ⇥ 2 with stride 2 halves the resolution of

the third layer output and its output sizes 1⇥ 3⇥ k2. The size of 2⇥ 2 instead of

the size of 3 ⇥ 2 is due to consider more information of the coordinates x and y

than the information of coordinate z. A final layer flattens the output of the third

layer concatenating the values in a vector with a length of 1 · 3 · k2.

The features extracted by the CNN are the input of the LSTM to identify the

temporal dependencies of the change of the postures during the instance sequence.

Hence, the LSTM layer takes as input a sequence of CNN output accumulating

the temporal dependencies between each frame of the video. The LSTM input is

a feature vector that contains the concatenation of the weight matrix. The LSTM

is composed of a single layer and a number of neurons equal to the number of the

feature vector extracted from the CNN. A full-connected layer with a softmax ac-

tivation function classifies the activities performed in the video from the extracted

features of the LSTM. The softmax function outputs a vector that represents the
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probability distribution of a list of classes. It is usually used as the final layer

of classifiers based on artificial neural networks. Given a feature vector x, the

softmax function is as follows:

�(x)i = e
xi/

KX

j=1

e
xj = 1

5.2 Testing with dataset CAD-60

In this paragraph, I first introduce the dataset used for the experimental evalua-

tion. Then, I describe the configuration of the proposed models and the results.

Specifically, I compared the CNN-LSTM model based on our 3D skeleton repre-

sentation with an architecture composed only by an LSTM layer to highlight the

possible contribution of using CNN and the proposed joint matrix representation

in accounting for spatial dependencies. Moreover, I will discuss our results in

comparison to other state-of-the-art approaches tested on the same dataset.
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5.2.1 Dataset

Our project aims at recognizing the ADL to monitor the daily activities of elderly

people. In this direction, I use the Cornell Activity Dataset (CAD-60) for train-

ing and testing the deep networks. The CAD-60 [81] is composed of 60 RGB-D

videos captured by a Microsoft Kinect, with twelve activities performed in five

environments. These videos are accomplished by four subjects, two males and two

females, with one left-handed. The 12 labeled activities are: rinsing mouth, brush-

ing teeth, wearing contact lenses, talking on the phone, drinking water, opening

pill container, cooking (chopping), cooking (stirring), talking on couch, relaxing

on couch, writing on whiteboard, working on computer. The CAD-60 dataset has

two more activities (random and still) which are used together for classification

assessment on testing sets. The 5 environments are office, kitchen, bedroom, bath-

room, and living room. The dataset is made up of RGB and depth images, and

the tracked skeleton. 15 skeleton information is extracted for each frame. The

total number of videos is 68: 17 videos for each user.

I decided to use a temporal sliding window for considering all the contiguous

frames, unlike [82] where they used a deep learning approach by selecting one

frame every six frames of the videos to reduce redundancy and complexity. The

smallest video of the CAD-60 is of 147 frames, therefore, I have set the instances

of 140 frames (e.g., I obtain 8 instances with a video of 147 frames). Thus, the

input sequence to the CNN-LSTM and LSTM models sizes 140 frames. Further

considerations on the choice of the 140 frames window size can be found in the

results of the CNN-LSTM model. In all model configurations, the validation set

is 33% of the training set.

Table 5.1 shows the frequency distribution of the instances extracted from the

CAD-60 dataset with 140 frames for each instance. In Table 5.1, I considered

the environment and the activity class performed by each user. Note that the

numbers of the instance are not balanced between the 13 activities. In particular,

the “random + still” activity has a number proportional to the sum of the other

activities for classification assessment.
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5.2.2 Data Pre-processing

The number of skeleton joints tracked in CAD-60 is 15. 11 joints have both

joint orientation and joint position while 4 joints have only the joint position. I

considered only the joint positions of the 15 joints. To train our model on 140 frame

instances, a temporal sliding window was applied. For each 140 frame instance, I

have performed three pre-process steps for the coordinates of the skeleton joints

as follows:

1. Symmetrization. Since in the dataset, there is one left-handed person,

for each subject, I also considered mirrored skeleton data. To mirror the

skeleton sequences, I took the opposite values of the x coordinate that are

on the horizontal axis. In other words, the point coordinates J = (x, y, z)

become Jnew = (�x, y, z). This step doubles the number of dataset instances.

2. Translation. I set the midpoint between the points of the torso, left and

right shoulder, left and right hand as the origin of the coordinates system.

Once the midpoint was calculated, it was subtracted from the coordinates of

the joints to have the midpoint as the center of the skeleton pose. For exam-

ple, if I have a joint J = (x, y, z) and the midpoint is Jmid = (xmid, ymid, zmid),

the new joint will be

Jnew = (x� xmid, y � ymid, z � zmid)

.

3. Normalization. I compute the mean and the standard deviation for each

instance to normalize the translated data on a new origin using the standard

score: Jnew = (J � µ)/�. The new coordinates are calculated following the

previous formula applied to each coordinate (x, y, z). For each coordinate c

(x, y, z), the following equation applies on all the elements i of each sequence:

Jnewci
=

8
><

>:

(Jci � µc)/�c, if �c 6= 0

0, otherwise
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where µc is the mean of the whole 140 frame sequence on the c coordinate

while �c is the standard deviation of the whole 140 frame sequence on the c

coordinate.

5.2.3 Model Settings

The settings of the deep models have an important role in the gradient conver-

gence, preventing over-fitting on this tiny dataset. I used the Glorot normal ini-

tializer [31], also called Xavier normal initializer for the initialization of the LSTM

weights for each deep model. The experiments showed that the deep models per-

formed well with a dropout set at 0.25 after the max-pooling layer of the CNN

and at 0.5 on the LSTM layer. Dropout [3] is a regularization technique to reduce

overfitting in an artificial neural network by randomly pruning weights in an iter-

ative process that leads to model improvement at each step of the process. CNN

has 32 kernels in the two convolutional layers for a reduction of the number of

parameters.

The CNN-LSTM model is compared with an LSTM model. The latter model

is the same as the CNN-LSTM model without the CNN level. To make the com-

parison, I left the same LSTM layer configuration for both models. Both models

receive an input sequence of human poses. Thus, in the LSTM model, we have

consecutively a single LSTM layer, that extracts the temporal dependencies from

the features vector f = [x1, y1, z1, ..., xN , yN , zN ] of N skeleton joints represent-

ing the human pose (without considering the spatial dependencies with a CNN),

and a full-connected layer with a softmax activation function, that classifies the

activities.

5.2.4 Implementation Details

I used the API of Keras library that is designed to simplify the development of

the neural network. Originally developed on top of Tensorflow, now it is part of

the Tensorflow library with the Tensorflow version 2.0. During the experiments,

I ran the training and the testing on Keras version 1.2.2 with Tensorflow version
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0.12.0.

5.2.5 Classification Results

Two different settings are considered in the original work on CAD-60 [79]: “New

Person” and “Have Seen” settings. The most considered experimental setting in all

the research works on CAD-60 is the “New Person” to guarantee the generalization

of the classifier. The “New Person” setting is defined as a “Leave One Out (LOO)”

cross-validation that is, the training set consists of three of the four people and

the test set consists of the fourth one. In the “Have Seen” setting, the model is

trained with half of the testing subject’s data and the other half is included in the

tests. In literature, the CAD-60 is split according to the considered environment.

The final results are the average precision and recall among all the environments.

Tables 5.8 and 5.7 show the classification precision and recall of the proposed

CNN-LSTM model in comparison with the LSTM model for each environment

and for both the “New Person” and the “Have Seen” setting. First, we notice that

the test set results of the CNN-LSTM model is better than the LSTM model and

they are similar in both the settings, but with slightly better performance in the

Have Seen setting.

Both models are expected to suffer from overfitting with a small training set.

Especially in cases where there are a small number of training examples, the

model may adapt to features that are specific only to the training set; therefore,

in the presence of overfitting, the performance of the prediction on the training

data will increase, while the performance in the test set will be worse. Hence,

overfitting on data could have an impact more on the “Have Seen” setting, leading

to better results, since training and testing are both obtained from the same

subjects. Indeed, since performance in the “New Person” setting is very similar to

the Have Seen case, we can consider overfitting as marginal.

From now on, we will make considerations only on the “New Person” setting.
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LSTM Results

In the Living Room (97.4% and 96.8%) and the Kitchen (96.4% and 95.3%) en-

vironments, using the LSTM model, I achieved the best results in the “New Per-

son” setting (see Tables 5.8 and 5.7) thanks to the recognition of the activity

temporal patterns. Whereas, the worst results are achieved in the Office envi-

ronment (91.63% and 89.49%). “Relaxing on couch” and “talking on couch” are

discriminated at 100%, perhaps for the stationary character of the activities, while

the LSTM model has difficulty in the disambiguation of “talking on phone” and

“drinking water” in the Living Room and Office environment probably due to their

similarities. For “writing on whiteboard”, the LSTM model predicts “talking on

phone” in the 20.6% of cases or “random + still” in the 3.6% of cases, thus its

accuracy is lower than “talking on phone” accuracy.

Table 5.2: State-of-the-art results on CAD-60 dataset
“New Person”

Algorithm Precision Recall

Zhu W. et al. [86] 93.2% 84.6%

Faria D.R. et al. [29] 91.1% 91.9%

Shan J. et al. [78] 93.8% 94.5%

Parisi G.I. et al. [61] 91.9% 90.2%

Cipitelli E. et al. [12] 93.9% 93.5%

Khaire P. et al. [41] 93.1% 90.0%

Liu T. et al. [48] 97.97% 95.75%

Our LSTM 95.07% 96.46%

Our CNN-LSTM 97.00% 98.00%

CNN-LSTM Results

Considering the CNN-LSTM model, we have an improvement in the results com-

pared to the LSTM model results. This is particularly evident in the Office envi-

ronment. The lowest results are obtained in the Kitchen that, as previously dis-
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cussed, has activities with periodic patterns as chopping. The CNN-LSTM model

behaves better where the LSTM gets worse. We can see in Table 5.4 that the

CNN-LSTM model has better results in precision in the Bathroom environment

with the “random + still” (71.4% vs 94.0%), and in the Bedroom and the Kitchen

environments with the “opening container” (82.3% vs 94.0% in the Bedroom and

80.7% vs 85.5% in the Kitchen). There are also different results in the Office envi-

ronment in precision and recall respectively for the “talking on the phone” (78.2%

and 96.3% vs 80.5% and 95.5%) and “writing on whiteboard” (89.4% and 75.7%

vs 94.3% and 85.3%).

The overall activity confusion matrix, presented in Figure 5.5, shows the results

in the “New Person” setting with the CNN-LSTM model. We can see that “cooking

(stirring)”, “drinking water”, “random + still”, “rising mouth with water”, “writing

on whiteboard” have lower accuracy than the other activities considering only the

140 frames as an instance.

Thanks to the representation of the skeleton with a 3D matrix, the results

obtained with the CNN-LSTM model improves in comparison with LSTM. To

evaluate the impact of the proposed approach, different combinations of input

matrix have been texted leading to lower performance. For example, by inverting

the left leg with the right arm, so to have in the first matrix the two arms, and in

the last one the two legs, we got 92.74% of precision and 92.30% of recall against

95.40% and 94.38% of the proposed 3D matrix representation.

5.2.6 Statistical Hypothesis Test

In general, the model that best predicts unseen data might be the model with the

maximum accuracy or minimum error for classification or regression problems.

We can trust the model selected with the maximum accuracy or minimum error

by applying a statistical hypothesis test. I applied the McNemar’s test to check

if the slightest differences we have between the CNN-LSTM model (97.00% of

precision and 98.00% of recall) and the LSTM model (95.07% of precision and

96.46% of recall) are significant. The function takes the contingency table as an
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Table 5.3: Results of our approach using different frame window on CAD-60

dataset with “New Person” setting
“New Person”

Model Precision Recall

LSTM on 50 frames 91.21% 89.13%

LSTM on 100 frames 93.08% 91.55%

LSTM on 140 frames 95.10% 93.88%

CNN-LSTM on 50 frames 90.02% 88.89%

CNN-LSTM on 100 frames 92.22% 90.54%

CNN-LSTM on 140 frames 95.40% 94.38%

argument and returns the calculated test statistic and p-value. The McNemar’s

test strongly confirmed that the CNN-LSTM model was significantly better than

the LSTM model (�2 = 136026, p� value < 0.0001) at a 95% confidence interval.

In short, the results of the CNN-LSTM models were statistically significant at a

significance level of 0.05.

5.2.7 Window Size Results

Let us now consider the possible impact on performance of the instances’ window

size. In order to do so, I made additional experimentation considering other frame

windows: 50 and 100 frames. The results are shown in Table 5.3. With respect

to 140 frames, as expected, considering fewer frames yields a decrease in perfor-

mance (precision and recall). However, in view of the application of the proposed

approach in real settings, fewer frames can still be considered since achieving good

performance.

5.2.8 Comparison with the SoA

The CNN-LSTM model achieves, in the average, 95.4% and 94.4% on precision

and recall. In Table 5.2, I reported our average results with respect to other

approaches in the literature. I must emphasize the fact that I get such results
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Figure 5.5: Overall activity confusion matrix in “New Person” setting with the

CNN-LSTM model on 140 frames window

considering instances of 140 frames, while all the other works, reported in Table

5.2, considered the activity recognition on the entire videos. The shortest video

is of 147 frames while the longest video is of 1961 frames. The average number of

frames is about 1181 frames with 595 for standard deviation. Hence, our approach

achieves a better performance with respect to all the other cases only considering

small video sequences and skeleton data only. The only exception is the work of

[48].

Applying the proposed model on the entire videos with the “New Person”

setting, I obtained 96.46% of recall and 95.07% of precision with the LSTM model

and I obtained 98.00% of recall and 97.00% of precision with the CNN-LSTM

model reaching such state-of-the-art results in activity recognition on the CAD-60

dataset. Such results are obtained with a sliding window of 140 frames applied

to each video, and by considering, for each classification result, only the output

with an accuracy greater than 80%. The result of a classification process is then

the most recognized activity. For example, on a video of the activity “drinking

water” formed by 1448 instances of 140 frames I considered only the results of

classifications with a probability greater than 80%. I obtained 1291 instances that

are classified as “drinking water”, 12 as “random + still” and 41 as “talking on
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the phone”. The predicted activity is therefore “drinking water” as it has been

predicted more times over the entire video.

The comparison is made on the state of the art applied to the CAD-60 dataset.

The classification in these SoA works is performed on the entire frame sequence

of each video using manual features extraction and classic machine learning al-

gorithm. The latter essentially involves the extraction of the characteristic poses

of an activity using mainly clustering to select the significant poses that best de-

scribe the activity performed. I want to emphasize instead that the results I have

obtained on the single instances are not comparable with the other works. On

the contrary, the results obtained by applying the sliding window on the entire

video are comparable. Moreover, as a difference of the SoA, we have carried out

an automatic extraction of the features that is the basis of the potential of deep

learning models. However, a pre-processing phase, which does not include feature

selection, is necessary to train and run neural network models.

On average, only 4% of the frames for each video were discarded due to lower

accuracy. Only two videos, regarding the third user, were not correctly recognized.

Respectively, in the Kitchen environment, the “cooking (stirring)” activity was

classified as “cooking (chopping)” and, in the Office environment, the “writing on

whiteboard” activity was classified as “talking on the phone”. I must emphasize

that the third user is left-handed and the “cooking (stirring)” and the “cooking

(chopping)” as the “writing on whiteboard” and the “talking on the phone” are

very similar if we consider the movement of the human skeleton.

Considering the confusion matrix reported in Figure 5.5, we can observe that,

although on average some activities have a lower recognition rate, I reached 98%

of recall and 97% of precision on the entire videos with 140 frames sliding window

approach. In this case, I supposed that some instances, i.e., sub-sequences of the

videos, are the most likely to provide relevant information to correctly identify an

activity while others are not. Indeed, this issue has to be taken into account when

performing online recognition on sequences with a small number of frames.
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5.2.9 Real Settings Configuration

The UPA4SAR project aimed at assisting and monitoring elderly people in their

homes. Hence, we conducted the experimentation in real houses of the partici-

pants. 7 patients participated in the trials interacting with the robot for 2 weeks

each. The experiments were performed by the robot in full autonomy, without

the presence of an operator. For privacy and security reasons, it was not possi-

ble to save any video or audio and the robot had no internet access during the

experimentation.

For training the network, we collected data from real patients during prelimi-

nary experiments in a laboratory resembling a house environment. The considered

activities were, “talking and relaxing on the couch”, “watching tv”, “working on

PC”, “ironing”, “making coffee”, and “talking on the phone”.

The robotic system used for experimentation consisted of a Sanbot robot and

an Intel NUC (Intel NUC 8i7BEH2, Intel Core i7-8559U 4,5 GHz, 16 GB RAM,

250 GB SSD) for the execution of artificial intelligence algorithms that required

computing power. During the daily experiments, a Workflow Manager, running

on the Intel NUC, planned and scheduled the activities to be performed by the

robot.

Among the activities, at particular times during the day, the robot was re-

quested to monitor the user activity in order to check whether a specific activity

was being performed by the user or not. This request was followed by the user

search. The robot searching for the user positioned itself in front of the user and,

once identified the user through facial recognition, the robot recorded 10 seconds

of video, sending the frames to the Intel NUC to extract the skeleton poses. From

the extracted skeleton poses, I applied a sliding window of 140 frames and I clas-

sified the activity performed on each instance. The recognized activity is the one

with the highest number of recognitions from the ones with the confidence greater

than 80%. In case the recognized activity was not the one “expected” the robot

performed the recognition process three times leading eventually to a dialogue

with the user in the case of mismatch.
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The running time for a single 140 frames classification was about 0.015 seconds

on the Intel Core i7-8559U 4.5GHz, while 2.42 seconds for processing the whole

10 seconds of data. Classification data cannot be reported because for privacy

reasons videos were not saved and so it was not possible to get a ground truth.

5.3 Testing with our sampled dataset

In this section, I introduce the dataset recorded during some laboratory experi-

ments described in [68] [27]. Next, I describe the proposed classifier model and

the results obtained. The analysis of the experiments is concerned with how to

approach the users and monitor their behavior. The intent of these works is to

monitor the user and prevent the robot from distracting the user from the task

at hand. During the experiments, I recorded videos from both environmental

cameras and the robot’s camera.

5.3.1 Dataset

Our goal is to recognize ADLs to monitor the daily activities of elderly people.

Thus, we want to use only the robot’s camera to reduce the intrusiveness of envi-

ronmental cameras and the costs involved. In the first analysis, I created models

of daily activity classifiers by training them on a public dataset such as CAD-60.

The CAD-60 dataset was recorded using the Microsoft Kinect, a depth camera,

allowing 15 joints of the 3D skeleton to be extracted. The robot used during

experimentation is Pepper from SoftBank Robotics. The 2D camera placed on

Pepper’s top head recorded 10-second videos with a resolution of 320x240px and a

framerate of 30 fps. Even with a low resolution it is possible to extract the joints

of the human skeleton. Since the recorded videos from the front camera do not

have the depth information, I estimated the skeleton joints with OpenPose [8].

The number of skeleton extracted is 36. The number of sequences related to the

activity videos are 242. For each sequence I associated the following attributes:

file name, activity, distance of observation, angle of the robot approach, number
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Figure 5.6: Some sampled activities: talking on the phone (up), watching TV

(center), ironing and making coffee (bottom).

of gazes, average duration, number of pose changes. The activities recorded in

our dataset are working on PC, talking on the phone, watching TV, making a cof-

fee, ironing, talking on couch with another person correspondingly labeled as PC,

phone, TV, coffee, iron, couch (Figure 5.6). Trials were performed on a sample of

21 Italian senior volunteers (males = 12, females = 9), with an age between 53

and 82 years (M = 61.0, SD = 7.6) and years of education ranging from 8 to 18

(M = 12.5, SD = 3.6). Each participant had no prior experience interacting with

robots.

5.3.2 Data Pre-processing

The number of skeleton joints tracked in our dataset is 36. Each joint is represented

by (x,y) coordinates defined in pixels, which indicate the position of the point

within the video frame image. The sliding time window applied on the videos is

140 frames. I choose this width according to previous experiments performed on
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the CAD-60 dataset in [28]. For each instance consisting of 140 video frames, I

applied a normalization on the coordinates according to the following equations:

xnew = x/width� 0.5

ynew = y/height� 0.5

where (x,y) are the coordinates of the joints while width and height are the

width and height of the image resolution respectively.

5.3.3 Model Settings

The proposed classification model consists of a one-layer deep network. This layer

consists of an LSTM, a deep neural network capable of automatically extracting

features from a temporal sequence. The number of units set for the LSTM layer is

72. The classification layer is instead constituted by a full-connected network with

6 nodes corresponding to the 6 classes. The activation function is softmax. The

calculated error for gradient descent is the categorical crossentropy. I used the

optimization algorithm RMSprop in order to converge more quickly the training

of the network. RMSProp (Root Mean Square Propagation) is a method in which

each parameter (or weight) is updated based on the learning rate. First the current

mean is calculated in terms of the root mean square,

v(w, t) = �v(w, t� 1) + (1� �)(rQi(w))
2

where, � is the forgetting factor. And the parameters are updated as,

w = w � ⌘p
v(w, t)

rQi(w)

5.3.4 Implementation Details

For the development of the classifier based on a deep neural network I used the

API of the Keras library which is now part of the Tensorflow library. The version

of Tensorflow used is version 2.2.0.
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5.3.5 Classification Results

Unlike the previous experimentation described in section 5.2, the activities in

our dataset were not evaluated based on the environment where that activity is

performed, but are classified together using a single model. The setting applied for

the classification of these 6 activities is the “New Person” as in the original work

on CAD-60 [79]. This setting is none other than the “Leave One Out (LOO)”, i.e.,

each set, consisting of the activities performed by a single person, is used once as a

test set while the remaining sets constitute the training set. Figure 5.7 shows the

confusion matrix based on the results obtained with 21 training epochs. The labels

“PC”, “phone”, “TV”, “coffee”, “iron”, “couch” correspond to the following activities,

respectively: working on PC, talking on the phone, watching TV, making a coffee,

ironing, talking on couch. We can see that “PC” and “couch” are recognized with

an accuracy that exceeds 90%. The activity “TV” is exchanged in 18% of the cases

with “couch”. Conversely, the “couch” activity is identified as “TV” in 10% of the

cases. This result is very feasible since they are very similar and since talking on

the couch and watching TV are both activities performed on the couch. A similar

reasoning can be done for the activities “coffee” and “phone”. In fact “coffee” is

classified in the 24% as “phone”. Other relevant misclassifications we have for the

activity “iron” which is interpreted by the classifier as “phone” in 12% of the cases

and as couch in 10% of the cases. Although the challenge of classifying these

activities performed daily at home is very difficult, often due to the difficulty of

disambiguating very similar activities, we can be satisfied with the result. Overall,

the average accuracy obtained is 82% which results as a good accuracy.

5.4 Additional Application about Robot Gesture

Imitation performed by autistic children

The deep network-based method discussed so far for activity recognition is easily

applied to gesture recognition as well. This section describes my work abroad car-

ried out in collaboration with Sheffield Hallam University. We envision a gesture
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Figure 5.7: Normalized confusion matrix of the classification results on our dataset.

The label activities are PC, phone, TV, coffee, iron, couch corresponding respec-

tively to working on PC, talking on the phone, watching TV, making a coffee,

ironing, talking on couch with another person.

recognition method based on deep neural networks. We wanted to identify the

success or failure of the robot gesture imitation performed by the children. The

aim of the proposed approach is to automatic extract the human skeleton pose

of a video sequence and to automatic extract the temporal features between the

different poses. Then, the resulted features are classified by a full-connected layer.

In literature there are many works that involves the gesture recognition with

OpenPose, manual feature selection and classical machine learning algorithm. In

[75], the authors extracted the human pose using OpenPose and recognizing the

gestures with Dynamic Time Warping (DTM) and One-Nearest-Neighbor (1NN)

from the time-series. Other works use instead more devices to better identify

gestures with deep networks. In [50], they obtained 3D skeletal joint coordinates

from 2D skeleton extraction with OpenPose and the depth from a Microsoft Kinect

2. Then, the 3D coordinates are used to detect the gesture using a CNN classifier.

This system was employed for real-time human-robot interaction. Our intent is

to reduce the number of devices yielding the built-in camera of NAO robot and
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to recognize the child gestures from a sequence of 2D poses with a deep neural

networks.

5.4.1 Proposed Method

The proposed method is divided into three steps. In the first step, each frame is

computed by OpenPose [8] that is a real-time pose estimator. OpenPose returns

the human pose in a reasonable time which depends on the computational power,

extracting the pose from the image by a deep network based on the CNNs. See for

instance Figure 5.8. Nevertheless, OpenPose was able to extract the human joints

even if they are lacking. After gathering data from each video, transformed in

human pose sequences with 18 joints, I normalized data according to the following

equations that are applied for each joint (X, Y ) assuming that the image centre is

the origin (0, 0):

X = bX + 0.5 ⇤ widthe;Y = bY + 0.5 ⇤ heighte

where width and height are the image dimensions of the video.

In the second step, the human poses extracted from each video frame is given as

input to a deep model based on LSTMs like in [28]. This model automatic extracts

the temporal features of the poses sequence. I used 84 and 66 units respectively

for the first and the second LSTM layer for “Already Seen” setting while 80 and 64

units for “Leave Child Out” and “Interleave” settings. The number of epochs was

300 to train the different models. The kernel initializer was the Xavier uniform

initializer and the optimization algorithm for gradient descent was Adam.

The final step consists in classifying the gestures by a full-connected layer.

During the experiments, 207 videos of about 1.10 minute and about 10 fps were

recorded for six children. The gestures are four: “kiss”, “clap the hands”, “greeting”,

“raise the arms”. I also added a “failure” class to label the imitation failures.

Then I trained our model with different configurations using a sliding window

approach with one and two steps. We can also find a step approach in [56] and

in [28] where the authors combine the results with different steps, considering
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Figure 5.8: The frame video shows a child with his skeleton joints recognized by

OpenPose [8].

different temporal scales, in contrast to us who do not combine the different steps.

I used a sliding window of 5, 10, 15, 20, 25 sequence frames. The input of the

model is composed by a sequence of human skeleton joints normalized according to

the image dimensions and the label of the gesture performed by the robot (“kiss”,

“clap the hands”, “greeting”, “raise the arms”). The output is one of the four gesture

labels or the label “failure” in case the child fails to imitate the robot.

The deep model based on LSTMs is composed by two LSTM layers that take in

input the pose sequence. The features extracted from the sequence is concatenates

with the gesture label encoded using the one-hot-encoding process that which

refers to the gesture performed by the robot.

5.4.2 Settings

Three evaluation settings are proposed to assess the results of our approach: Al-

ready Seen, proposed [80] as "have seen", in which the training data is composed

by five children and a half of the sixth child’s data that is taken randomly; the

test data is the remaining of the sixth child’s data; Leave Child Out: the model

was trained on five children and tested on the sixth; in literature we can find the

same configuration named as “new person” or “leave-one-out crossvalidation” [80];

Interleave, similar to the “Leave Child Out” setting, but the gestures of different

children were interleaved to take into account the significantly different quality

and efficacy of the gesture executions.
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5.4.3 Comparison with classical ML methods

I compared the type of approach proposed with classical machine learning methods

using Weka. I have tested these algorithms both with and without normalization.

The results show a general improvement in accuracy without normalization with

respect to frame resolution. The pose sequences have been processed to extract the

5 most significant poses. I applied K-means, a clustering algorithm, to search for

5 clusters. Then I identified the 5 centroids that represent the 5 most significant

poses that identify the sequence of the gesture. The 5 poses extracted for each

instance are the samples of our ML classifier training dataset. I used the following

classification algorithms which are models of supervised learning to compare our

proposed approach:

• Bayesian Network is a probabilistic model that represents a set of stochastic

variables with their conditional dependencies using a DAG (direct acyclic

graph);

• HMM (Hidden Markov Model) is a Markov chain in which states are not

directly observable and is widely used in the recognition of the time pattern

of time series;

• Naive Bayes is a simplified Bayesian classifier that assumes assumptions of

independence of characteristics;

• SVM (Support Vector Machine) is a model that represents data as points

in space, mapping them in order to define the belonging of each data to a

class;

• J48 is the implementation in Weka of the C4.5 algorithm, based on decision

trees;

• Random Forest is a classifier obtained from the aggregation of multiple ran-

dom decision trees;

• Random Tree is based on random decision trees.
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5.4.4 Results

Table 5.4: Accuracy results for the three settings with a step of 1 frame using our

method
Timestep Setting Accuracy (%) Mean (%)

5 AlreadySeen 94.56

93.015 Interleave 92.49

5 LeaveChildOut 91.99

10 AlreadySeen 92.70

91.4210 Interleave 91.42

10 LeaveChildOut 90.14

15 AlreadySeen 92.27

90.1615 Interleave 88.85

15 LeaveChildOut 89.35

20 AlreadySeen 92.27

90.1120 Interleave 88.85

20 LeaveChildOut 89.21

25 AlreadySeen 90.27

88.5425 Interleave 87.13

25 LeaveChildOut 88.21

Three different settings, two different steps and five different timesteps are

tested using our deep model obtaining the results showed in Table 5.4. I would

like to emphasise the best results (see Tables 5.4 and 5.5) with a timestep of

5 and in general the tendency to overcome the 90.00% of accuracy. I want to

underline the worst accuracy with “Interleave” and timestep 25 that is 87.13% of

accuracy with step 1 and 87.06 of accuracy with step 2. The results gradually

rise decreasing the timestep. Indeed, we have the best accuracy results in the

setting “Already Seen” with 94.56% and 94.13% for step 1 and 2. I tested our

system on a NVIDIA Jetson TX2 to explore the performance of our method in

real-time gesture recognition, which can be used to personalise the intervention
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Table 5.5: Accuracy results for the three settings with a step of 2 frames using

our method
Timestep Setting Accuracy (%) Mean (%)

5 AlreadySeen 94.13

92.495 Interleave 91.92

5 LeaveChildOut 91.42

10 AlreadySeen 94.56

92.1310 Interleave 91.49

10 LeaveChildOut 90.35

15 AlreadySeen 93.42

91.1615 Interleave 90.78

15 LeaveChildOut 89.28

20 AlreadySeen 91.85

90.1120 Interleave 89.49

20 LeaveChildOut 88.99

25 AlreadySeen 92.99

89.4425 Interleave 87.06

25 LeaveChildOut 88.28

with automatic adjustments to the children performance. The execution time on

1000 frames of OpenPose takes on average 0.13 ± 0.01 sec on each frame while

our model takes on average 0.03 ± 0.00 sec on an entire sequence of 25 frames. I

used the Mobilenet network in OpenPose algorithm to decrease the computational

time on the Jetson TX2. I compared our method with classical machine learning

algorithm. The classifier used are the following: SVM (Support Vector Machine),

Bayesan Network, HMM (Hidden Markov Model), J48, Random Forest, Random

Tree. The results of the SVM and the HMM algorithms are identical while in

general all the other algorithms, except the Random Forest, have statistically

worse results than the SVM and HMM algorithms at a significance level of 0.05.

The Random Forest algorithm performs better than the SVM and the HMM only

in the “AlreadySeen” setting. In short, our deep model have statistically better



CHAPTER 5. ADL RECOGNITION 96

Table 5.6: Accuracy results for the three settings with ML methods
Classifier Setting Accuracy (%) Mean (%)

SVM

AlreadySeen 66.38

65,67Interleave 63.64

LeaveChildOut 66.99

Bayesian Network

AlreadySeen 33.90

33,34Interleave 32.55

LeaveChildOut 33.56

HMM

AlreadySeen 66.38

65,67Interleave 63.64

LeaveChildOut 66.99

Naive Bayes

AlreadySeen 29.08

27,12Interleave 26.29

LeaveChildOut 25.98

J48

AlreadySeen 62.84

58,53Interleave 56.89

LeaveChildOut 55.85

Random Forest

AlreadySeen 72.03

66,24Interleave 62.15

LeaveChildOut 64.55

Random Tree

AlreadySeen 61.41

53,96Interleave 48.80

LeaveChildOut 51.67

results than all the tested machine learning algorithms at significance level of 0.05.

One of the additional information we have is the behaviour of the robot that the

child must imitate. In the final results I have noticed that they improve slightly by

adding this information to the 5 poses extracted from the sequence of the gesture.

5.4.5 Discussion

A fundamental issue in the pose recognition was the motion of the NAO when per-

forming gestures. Consequently, the video recorded by camera fixed on its forehead

was unstable and made the recognition of the children gestures very challenging.

Moreover the only device used in the experiment was the built-in camera of NAO
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robot that has a low resolution (320 x 240) and a low frame-rate (10 fps) since the

children are more comfortable with only the robot and without other cameras like

Microsoft Kinect. In conclusion, I can say that the greatest difficulty was the lack

of depth information since NAO is equipped with 2D camera and the occlusions

due to movements of robot camera and child (depending of the level of ASD and

ID). Small robotic platforms that are being used for robot-assisted therapy have

usually limited sensors on-board, the actual resolution and frame-rate of NAO is

are usually restricted to 320x240 and 10 fps due the limited computing capacity

of the main processor and memory resources. Moreover, especially in the case

of ID, children are unlikely to adhere to any imposed constraint like those typ-

ically required to maximize algorithm performance. Therefore, the challenge is

to estimate the child’s visual attention directly from the robot cameras, possibly

without the need of external devices, such as high-resolution cameras and/or Mi-

crosoft Kinects (or equivalent), which can definitely increase the performance, but

at the same time limit the portability of the system and make more difficult its

actual integration within the standard therapeutic environment. The 2D poses of

the children was extracted with OpenPose algorithm to deal the lack of the depth

information. Another issue faced is that the dataset is unbalanced since it has

multiple instances of children failures: the sum of gesture on the testset is about

half of failures number. Although the results of the deep model with 1 step and

5 timestep are slightly better, in general the 2 step behaves well with the various

timesteps. This is useful because in production stage the 2 step model can reduce

the calculation time for the gesture prediction during the evaluation of children’s

imitation tasks, using an embedded AI computing device like the NVIDIA Jetson

TX2 that has good performance and low power consumption. In particular, it

will not be necessary to apply OpenPose to every frame, but every two frames,

reducing by half the calculation time with acceptable prediction results. Finally,

it is clear that the deep model has exceeded the results of the machine learning

algorithms proposed for comparison.
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Table 5.7: Precision (P) and Recall (R) of the LSTM and CNN-LSTM models on

sequences of 140 frames for “Have Seen” setting on 140 frames window
Have Seen

LSTM CNN-LSTM

Location Activity P (%) R (%) P (%) R (%)

brushing teeth 96.6 100.0 100.0 99.8

random + still 91.8 91.2 93.3 93.5

Bathroom rinsing mouth 92.8 84.4 95.8 88.0

wearing lens 95.5 97.3 88.8 94.0

Average 93.6 92.4 94.9 93.9

drinking water 96.7 89.9 95.8 93.0

opening pill container 93.1 99.2 89.4 100.0

Bedroom random + still 99.5 90.8 99.8 95.2

talking on phone 88.7 99.5 90.3 95.9

Average 95.2 92.8 96.1 95.11

cooking (chopping) 80.0 100.0 87.5 100.0

cooking (stirring) 96.8 66.4 99.7 77.1

Kitchen drinking water 92.5 100.0 95.3 99.4

opening container 83.3 99.0 87.3 99.2

random + still 100.0 90.1 98.9 94.5

Average 92.9 89.9 95.3 93.7

drinking water 90.4 99.1 98.9 97.8

random + still 99.7 91.9 100.0 97.7

Living room relaxing on couch 99.8 100.0 100.0 84.8

talking on couch 100.0 99.5 100.0 100.0

talking on phone 92.4 97.9 88.4 99.7

Average 97.4 96.7 98.4 96.4

drinking water 92.4 90.8 97.8 83.6

random + still 100.0 84.3 99.1 91.2

Office talking on phone 73.7 99.2 89.1 98.7

working on computer 98.8 100.0 100.0 100.0

writing on whiteboard 65.2 76.7 90.5 100.0

Average 87.9 88.3 95.7 94.27

Overall Average 93.3 92.0 96.1 94.7
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Table 5.8: Precision (P) and Recall (R) of the LSTM and CNN-LSTM models on

sequences of 140 frames for “New Person” setting on 140 frames window
New Person

LSTM CNN-LSTM

Location Activity P (%) R (%) P (%) R (%)

brushing teeth 96.8 100.0 100.0 98.7

random + still 71.4 90.5 94.0 93.4

Bathroom rinsing mouth 93.9 92.3 94.6 87.7

wearing lens 89.7 98.9 89.9 98.0

Average 94.9 94.1 94.9 93.9

drinking water 94.7 97.5 94.9 90.7

opening pill container 82.3 97.3 94.0 96.9

Bedroom random + still 99.5 91.1 99.5 96.9

talking on phone 91.2 95.6 89.3 94.4

Average 95.2 93.9 95.9 94.7

cooking (chopping) 95.4 74.3 88.8 94.5

cooking (stirring) 98.8 94.4 91.1 74.8

Kitchen drinking water 94.9 100.0 99.1 99.7

opening container 80.7 92.4 85.5 95.5

random + still 98.2 91.5 95.3 94.7

Average 96.4 95.3 93.1 91.6

drinking water 91.7 95.2 99.8 93.1

random + still 100.0 93.1 99.0 98.5

Living room relaxing on couch 100.0 100.0 100.0 100.0

talking on couch 100.0 100.0 100.0 100.0

talking on phone 91.0 98.1 92.5 99.2

Average 97.4 96.8 98.7 98.5

drinking water 91.7 93.5 95.0 90.5

random + still 97.2 87.3 97.8 93.9

Office talking on phone 78.2 96.3 80.5 95.5

working on computer 100.0 100.0 100.0 100.0

writing on whiteboard 89.4 75.7 94.3 85.3

Average 91.6 89.5 94.3 93.0

Overall Average 95.1 93.9 95.4 94.4



Chapter 6

Field Experimentation

In this chapter, I show and discuss the final results of the experimentation con-

ducted within the homes of elderly volunteers.

All procedures performed in studies involving human participants were in ac-

cordance with the ethical standards of the institutional and national research

committee and with the 1964 Helsinki declaration and its later amendments or

comparable ethical standards. The experimentation was approved (no. 167/18)

by the ethical committee of the University of Naples Federico II.

Multiple single-subject studies were planned to evaluate the usage of the per-

sonalized robot with respect to their acceptance, evaluation of the interaction,

and system reliability. Indeed, individual differences between subjects in terms of

cognitive impairments, but also education level, and psychological traits are big

and relevant to the phenomenon of interest, so preventing to conduct statistical

analysis that considers different individual factors in the evaluation. In any case,

recruiting a large significant number of subjects can be difficult due to possible

reluctance to be involved in such experimentation and to have an interaction with

the robot that lasts for multiple days.

100
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6.1 Collected Information

To personalize the daily assistive plans, several sessions with each participant took

place to collect detailed information.

The neurologist team runs cognitive tests to provide their cognitive profile

and classify the patient according to Subjective Memory Disorder, Mild Cogni-

tive Impairment, and Alzheimer’s Disease. They also provided their personal

data including the education level in terms of the number of years of education.

In addition, they collected information about their daily routine activities, their

medication therapy plan, their entertainment preferences.

The psychologist team runs personality tests to provide the personality profile

of each patient. For the personality profile the Neo Personality Inventory - 3

test (Neo-Pi-3) [51] measuring five personality traits Neuroticism, Extraversion,

Openness to Experience, Agreeableness, and Conscientiousness was adopted. Only

Neuroticism and Openness were considered for personalization in the project as

the traits impacting the interaction with the robot and the technology acceptance.

The scales of these traits were split into 3 ranges corresponding to a low, medium,

high value of the considered personality trait.

6.2 Experimental Procedure

The testing of the robotic system was performed in the homes of 7 elderly vol-

unteers. For each elderly person, data were collected on their cognitive abilities,

personality tests were performed, and interviews were conducted. I report the main

characteristics of each patient in the Table 6.1. The average is approximately 18

days experimentation, just over two weeks. The average age of volunteers is 72

years. The longest trial was performed with patient P6 while the shortest trial

was performed with patients P2 and P3.

Experimentation of our robotic platform took place within the homes of the

selected elderly. The daily care plan was performed every day for a number of days

defined in Table 6.1. The number of days the robotic application was performed
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Table 6.1: Overview of the participants. Acronyms: CDR (Clinical Dementia

Rating), MCI (Mild Cognitive Impairment), SSC (Systemic Sclerosis).
ID Gender Age Education Memory Impairments

1 F 84 13 Alzheimer (CDR=2)

2 M 61 5 MCI

3 F 55 8 MCI

4 M 68 8 MCI

5 F 83 18 SSC

6 M 78 8 SSC

7 M 77 13 MCI

was related to patient availability and the plan agreed with the participants. For

privacy reasons, no data such as video recordings or human skeletal tracking were

collected. Instead, a variety of data were collected such as cognitive and person-

ality tests, daily questionnaires, interviews, and data saved in log files pertaining

to the execution of workflows and services. A personalized schedule is defined

for each user that is tailored to the patient’s needs, demands, and cognitive char-

acteristics. The execution of the daily care plans is carried out by the robotic

application without any remote control within the home environment. The daily

routines that define the behavior of the robot are defined as “workflows”. Each

workflow is defined by a start time, a limit duration, and consists of an execu-

tion diagram that defines the scheduling logic for executing the services offered by

the platform. The workflow scheduler is called “Workflow Manager”. It communi-

cates via the “Workflow Middleware” with the Server programmed in Nodejs using

the “Socket.IO” library for communication. Each service is then executed by the

platform according to the directives of the “Workflow Manager” which schedules

the workflows to be launched during the day. The 5 workflows implemented for

experimentation to monitor and stimulate the patient are as follows:

• WakeUp Monitoring: verifies the patient’s awakening

• Lunch Monitoring: checks that the patient has had lunch
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• Dinner Monitoring: verifies that the patient has had dinner

• Remind Medicines: verifies that the patient has taken his medication

• Cognitive Stimulation: cognitively stimulates the patient

The maximum number of care tasks delivered daily is 8. Some care workflows

are performed multiple times during the course of the day according to the pa-

tient’s needs, such as tasks to remember medications or suggest entertainment.

Each workflow ends with either a notification or an alert. Each care task has a

validity interval to ensure temporal adherence to the care plan. A workflow, to

be effective, should not exceed the validity interval. For example, remembering

medication plays a key role in care and should be done in the allotted time other-

wise you must notify your caregivers or family members. On the other hand, for

entertainment activities, the time interval is longer to allow for different content

to be listened to or watched. Each workflow runs a set of services that are offered

by the robotic application. The Table 6.2 shows the description of each service

invoked by the “Workflow Manager”.

6.3 Scheduling and Execution of the Personalized

Daily Assistive Plan

Several log files were collected during the experimentation.These data show the

results obtained from the experimentation and allow us to evaluate the daily per-

formance of the robotic system. The 5 workflows defined for the daily care plan

of each elderly patient are defined in the table 6.3 along with the total number of

executions performed and the total number of days of execution.

In Table 6.3 some tasks have more executions than the number of days because

they were executed multiple times per day while others have 0 executions. These

tasks were not executed for several reasons:

• the task was not requested by the patient because it was unnecessary;
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Table 6.2: Services Description
Service Description

Find User It verifies the patient’s presence in the home

Check Health State It checks the patient’s health status

Suggest Cognitive It suggests to the patient an activity between game,

Activity video and music

Suggest Physical It suggests physical activity to the patient

Activity

In Room Detection It checks the presence of the patient in a room of the house

Pose Detection It checks the patient’s posture

Check Medicines It checks that the patient has taken his/her medication

Remind Medicines It reminds the patient to take his/her medication

Play Video It delivers a video that reflects the patient’s preferences

Play Game It plays a game

Play Music It plays music according to patient preferences

Alert Notice to caregivers

Notify Notification of success and failure of a given activity

Table 6.3: Number of executed workflows for each patients
Number of Days 14 11 11 17 25 25 15

Patient P1 P2 P3 P4 P5 P6 P7

WakeUp Monitoring 17 10 7 11 8 0 0

Lunch Monitoring 9 11 16 18 14 0 9

Dinner Monitoring 6 0 12 6 11 0 9

Remind Medicines 4 16 18 18 23 103 2

Cognitive Stimulation 25 10 12 27 30 107 29

Total 61 37 58 69 78 210 49

• the task cannot be performed because of infrastructural problems due to the

composition of the room, such as, for example, the presence of carpets too

high for normal robot movement or the presence of delicate furniture;
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• the task is not followed due to priority issues, such as in the case of the task

of remembering to take medicine, which has higher priority than other tasks;

this happens due to the fact that two tasks are not performed at the same

time;

• the task of remembering the medication can be performed multiple times

during the course of the day and therefore, due to the mandatory limitation

of a minimum of 8 care tasks per day, other tasks have been put on the back

burner.

In Table 6.4 it is reported the average duration of each type of assistive task

for each patient mediated on the number of days of the experimentation. The

results show that even though the corresponding workflows are composed of the

same number of microservices, their execution time differ because of the different

execution time of the FindUser microservice, as reported in Figure 6.1. This is

mainly due to two reasons: the different environments where the robot is located

required different times to locate the user, and the different number of relatives

living in the house that could be detected by the robot delaying the time necessary

to identify the patient.

Table 6.4: Average duration for each workflow type and for each patient
Workflow P1 P2 P3 P4 P5 P6 P7

WakeUp Mon. 0:32:52 0:47:10 0:37:08 0:48:23 0:28:44 0:00:00 0:00:00

Lunch Mon. 0:40:22 1:05:21 0:49:15 0:34:13 0:25:14 0:00:00 0:42:36

Dinner Mon. 0:37:10 0:00:00 0:56:03 0:52:05 0:22:06 0:00:00 0:34:03

Remind Med. 0:31:23 0:59:28 0:41:59 0:56:50 0:27:16 0:42:13 0:48:35

Cognitive Stim. 1:05:03 1:38:48 1:05:47 1:17:37 0:52:55 0:58:47 1:01:22

The average duration of each workflow for each patient and the number of

executed workflows confirmed that the adherence of the scheduled assistive tasks

to the timing of the daily routines of patients. The adoption of the validity time

for each planned task when they are scheduled for execution allowed to avoid
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time overlapping, and hence failures, of the planned tasks, automatically managed

without requiring remote control of the robotic application.

Figure 6.1: Average execution time for the find user service

The Cognitive Stimulation task reports the most variable execution times as

reported in Figure 6.2. This is due to the different times required to play different

types of entertainments as videos, music tracks, games, documentaries.

Figure 6.2: Average execution time for the play video and play music service

The data collected on the played entertainments are also analyzed as a feed-

back when users accepted and played them, to check whether the preferences they

expressed during the interviews were valid during the experimentation, or if they

were stimulated by the presence of the robot to experience different entertain-

ments.

One of the most important assistive task to be executed with strict adher-

ence to the daily routine is the RemindMedicine. The task consists in reminding

the patient to take a medication in the case the patient forgot to do it, i.e. if

CheckMedicine reports a “no” output. In such a case the assistive task is repeated
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until either the CheckMedicine report a “yes” output, or the validity time expires

requiring an alert to be sent to the caregiver for immediate action.

For this reason, as reported in Figure 6.3, the CheckMedicine and the Re-

mindMedicine microservices are executed for a different number of times for each

user depending on their responses when they were reminded to take the medicine.

The P2 and P3 and P6 did not require a remind, while the patients P1, P4, P5

and P7 were to be reminded several times before actually taking medicines. These

differences are due to the different cognitive status of the patients (the worse the

memory impairment is the higher is the number of reminders), and the presence of

caregivers or relatives that support them when crucial tasks have to be undertaken.

Figure 6.3: Average execution time for the check medicine and remind medicine

task

Figure 6.4 shows the bar graph of the number of executions of the personalized

and random workflows. Not including P6 who requested a personalized workflow

plan, the other patients used both personalized workflows and random workflows.

Considering the feedback reported in Section 6.5, only 2 patients, P4 and P7,

reported negative feedback that did not involve the custom or random workflows,

whereas the other 5 patients were very enthusiastic about their experience with

the robot. If we look at the patients’ daily feedback, no difference can be found

between personalized and random workflows. The available data do not allow to

reach significant conclusions about the differences between the personalized and

random workflows and need to be supported by further studies on a larger number

of patients.
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Figure 6.4: Number of personalized and random workflows for each patient

6.4 Results on Acceptance

During the experimentation, subjective information on how the interaction with

the robot was perceived during the day was gathered through a very simple ques-

tionnaire, filled every day by the patient, that was asked to select one of the

three emoticons representing their satisfaction degree with the following metrics:

Sad=1, Neutral=2, Happy=3. Results showed that out of 7 patients, 4 evaluated

the interaction with an average value above 2 (neutral) and 2 below (see Table

6.5).

Table 6.5: Average value of the daily subjective evaluation for each patient
Patient ID P1 P2 P3 P4 P5 P6 P7

Average evaluation 2.8 2.3 2.1 1.5 2.8 2.7 1

Moreover, to evaluate the acceptance of the developed system with the user,

the UTAUT questionnaire was used [36]. The questionnaire has been translated

in Italian. The translation was examined at a consensus meeting, back-translated,

and approved at a second consensus meeting. A comprehension test was carried

out in a subgroup of 15 individuals.

UTAUT questionnaire aims at evaluating the user intentions to use a new tech-

nology and it consists of 41 items and explores 12 constructs: Anxiety (ANX),

Attitude (ATT), Facilitating Conditions (FC), Intention to Use (ITU), Perceived
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Adaptability (PAD), Perceived Enjoyment (PENJ), Perceived Ease of Use (PEOU),

Perceived Sociability (PS), Perceived Usefulness (PU), Social Influence (SI), Social

Presence (SP) and Trust (TR). The Likert scale to score the items ranges from 1

to 5. The SPSS software version 26 was used to analyze the data and calculate

the statistics.

Table 6.6: Cronbach’s Alpha values after removing items
Construct ↵ Construct ↵

ANX 1.0 PEOU 0.745

ATT 0.879 PS 0.816

FC - PU 0.889

ITU 0.977 SI 0.816

PAD 0.612 SP 0.876

PENJ 0.884 TRUST 0.998

First of all, we calculated the Cronbach Alpha (CA) [15] coefficient to estimate

the internal consistency of each construct. Cronbach’s alpha, ↵ (or coefficient al-

pha), measures reliability, or internal consistency. Cronbach’s alpha identifies how

closely related the elements of a test are as a group. The formula for Cronbach’s

alpha is:

↵ =
N · c̄

v̄ + (N � 1) · c̄
where N is the number of items, c̄ is the average covariance between item-pairs

amd v̄ is the average variance. For ATT, ITU, PENJ, PU, SI, TRUST we had

an ↵ considering all the items above 0.8 that indicated an high level of internal

consistency. For ANX, PAD, PEOU, PS, SP some items has been removed to

reach a sufficient reliability. FC construct was removed as not reliable.

The descriptive statistics (mean, minimum, maximum, standard deviation) for

the 12 constructs are reported in Table 6.7. For each construct, the result has

been divided with respect to the number of items for the construct. We consider a

positive perception of a participant is assumed when the construct score is greater

than 2.5, while a negative perception is when average score is lower than 2.5.
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Table 6.7: UTAUT results after the interaction with the robot
Construct Avg Std Min Max

ANX Anxiety 4.43 1.51 1.00 5.00

ATT Attitude 4.19 0.96 2.33 5.00

FC Facilitating conditions 3.43 0.79 2.50 4.50

ITU Intention to use 2.14 1.14 1.00 3.67

PAD Perceived adaptability 3.00 0.96 2.50 4.50

PENJ Perceived enjoyment 4.09 1.09 1.80 5.00

PEOU Perceived ease of use 2.64 1.14 1.00 4.00

PS Perceived sociability 3.00 1.20 1.00 4.33

PU Perceived usefulness 3.67 1.58 1.00 5.00

SI Social influence 4.14 1.11 2.00 5.00

SP Social presence 2.39 1.39 1.00 5.00

TR Trust 3.64 1.49 1.00 5.00

Table 6.8: Significant Pearson correlations between UTAUT contructs
ANX ATT ITU PENJ PS PU SI TR

ANX .781⇤

ATT .851⇤ .787⇤ .990⇤⇤

ITU .869⇤

PENJ .851⇤ .890⇤⇤ .938⇤⇤ .869⇤

PS .787⇤ .890⇤⇤ .910⇤⇤ .814⇤

PU .869⇤ .938⇤⇤ .910⇤⇤

SI .990⇤⇤ .869⇤ .814⇤

TR .781⇤

The Shapiro-Wilk test on construct values showed that the data is normally

distributed. Hence, to better understand relationships between constructs, we

calculated the Pearson’s correlations for parametric values. Once significant cor-

relations were found between variables, the regression analysis was used to confirm

the predictive role of one factor (predictor variable) to another (dependent vari-
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able). Two-tailed correlation results are reported in Table 6.8.

6.5 Patients Interviews

A crucial source of information was gathered through interactions between the re-

searchers responsible for the experimentation and the patients both via informing

telephone calls, and friendly exchange of opinions at the end of the experimen-

tal period. It was difficult to formalize the obtained information, but since these

feedback were very important to understand patients’ perceptions during the ex-

perimentation we report here the main collected results.

Only 2 patients, P4 and P7, reported negative feedbacks about the experience

with the robot mainly due to the lack of of vocal interaction, and to the expectation

that the robot could be instructed to do tasks by using its monitor, or could

move when they wanted. One of the patient declared to have skills in using the

computer and hence being able to program it and to interact with it as with

technological devices such as Alexa. In addition, the homes of these patients were

quite small and not very suitable to allow the robot to easily move, and so they

were disappointed by the few interactions due to the failures of some assistive

tasks.

The other 5 patients were all very enthusiastic about the experience with the

robot, and they all asked for a longer staying of the robot. They all declared at the

end of the experimentation that the robot became like a friend making their time

at home more pleasant, and making them feeling more occupied than usual. They

were very thrilled by the fact that the robot recognized and interacted only with

them, so making them feeling important for the robot. Above all, they appreciated

the help they received in observing their medication therapy, and the possibility

to have the entertainments they preferred (music tracks they liked that reminded

them of their past times, recipes videos for who likes cooking, sport video for who

likes sport, and so on).

In particular, the patient with the worse cognitive impairment (CDR=2) was

very reluctant at the beginning almost refusing to have the robot at the first
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sight. But when the robot started interactions everyday the attitude of the patient

changed completely, and the robot was perceived as a family person.

The patients that had the robot for longer times (P5 and P6) were the most

enthusiastic about it. This is an encouraging result since, even though supported

by few data for deriving conclusions, it may suggest that the more used the patient

becomes to the robot’s presence, the higher its acceptance could be. In fact, one

of them patient wrote an appreciation letter to the researchers thanking them for

the special experience at the end of the experimentation. The other one devel-

oped a so close relation with the robot and expressed even worries when, during

experimentation, the robot stopped for a day because it was out of charge (it was

not recharged in time) and it did not move like it happened in the previous days.

It was perceived like a real person not feeling well. The collected information

about their feelings for the robot presence is in line with the UTAUT results that

reported for these two patients an high value for the social presence construct,

that is also higher compared to the ones of the other patients.



Chapter 7

Discussion

This chapter summarizes and shows some conclusions of the research experiments

described in this thesis. Thanks to medicine and modern technologies in the field

of health, life expectancy has increased considerably. For this reason, the elderly

population has been increasing more and more and constitutes nowadays a consid-

erable percentage of the world population. A key role in improving life expectancy

can be played by technology. In particular, it can be an enabling tool for older

people. Increasingly, older people lead a daily life alone, in some cases left to

their own devices, with considerable difficulty in taking care of themselves. This

happens in cases of people with dementia and is often the trigger for dementia

due to the resulting social isolation, thus affecting their autonomy at home and

making it difficult to perform the simplest daily activities. It would take a lot

of intervention by family members or caregivers to solve this problem. One of

the most serious cases of dementia is Alzheimer’s disease, a disease that causes a

progressive loss of memory and a worsening of cognitive functions. This disease

affects both the elderly and their families who have to take care of them them-

selves or through a caregiver. In these cases, the elderly person even goes as far

as not recognizing their own family members, or even, not recognizing places, the

usefulness of objects and more. The progressive loss of short-term memory caused

by Alzheimer’s, puts the elderly person’s life at serious risk and they need contin-

uous daily monitoring. In recent years, much research has been done in the area

113
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of socially assistive robotics (SAR). It can come to help and be a good solution

to mitigate this problem, improving the lives of the elderly and his family mem-

bers. Robots can be proactive agents that can, not only monitor the elderly for

their safety, but also keep them company and stimulate them to slow down the

progressive loss of cognitive functions. This thesis illustrates a low-cost robotic

application for assisting the elderly. This work was supported by MIUR under

the PRIN2015 research project “User-centered Profiling and Adaptation for So-

cially Assistive Robotics - UPA4SAR”. The key features of the proposed robotic

application are:

• acceptance of the robotic system through adaptation of the robot’s behaviors

based on the person’s preferences and personality;

• low cost of the entire robotic platform for greater deployment in the homes

of the elderly;

• modularity, robustness and scalability through the use of libraries that man-

age an event-driven communication to invoke microservices;

• ability to monitor activities through artificial intelligence algorithms;

• complete autonomy of the robotic system to execute daily care plans based

on the person’s needs;

• entertainment and companionship through multimedia content and games

through interaction between the robot and the person;

• notification tool to remind when to perform certain activities during the day

such as taking medicine

Comparing ourselves with other state-of-the-art projects on robotics of assis-

tance for elderly people, we defined functional requirements following the char-

acteristics described above. We then devoted ourselves to the analysis and im-

plementation of a service-based robotic architecture. In particular, to make the

architecture modular and scalable, I modeled its components as microservices.
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Microservices allow the complex services offered by the system to be divided into

many simple primitive functionalities [26]. Each microservice can constitute a sin-

gle assistive action or be combined with other microservices to provide complex

functionality. Adding new services is made easy by this type of microservice-based

architecture. In addition, it is easier to customize services to the users’ needs by

invoking only those services that are needed. Nowadays, applications based on

system virtualization such as the very popular Docker and the use of development

frameworks such as Nodejs allow you to build scalable, secure and multi-tenant

cloud services [42], greatly reducing costs, as demonstrated by companies such

as Netflix, Reddit, Pinterest, and many more. In fact, many of the components

developed required the use of Docker containers due to incompatibilities with the

libraries of other components. Nodejs acted as a pivot to joust all the compo-

nents divided into microservices. Such architecture can then be easily put into

production via cloud services. However, given the fundamental requirement of

patient privacy, everything was run during experimentation on a small server, the

Intel NUC. Communication between the server and the robot was provided by

a router, disconnected from the Internet, on a secure local area network. The

communication between the user and the robot is done via an Android tablet that

displays the robot’s dialogues, either via text or voice, while the user can interact

via the tablet’s touch display. For privacy issues and to ensure security on the

data processed by the robotic system, all services work off-line without any In-

ternet connection. For this reason it has not been possible to exploit cloud-based

services for voice interaction.

Our robotic system consists of a series of modules. It can be simplified in Fig-

ure 4.1 by considering that each of the following core components has associated

complex services: “Robot”, “Smartwatch”, and “Server components” that commu-

nicate with the central node, represented by the “Nodejs Server (socket.io)”. The

central node is the main server script that runs in Nodejs and leverages commu-

nication through the Socket.IO library. Socket.IO uses an event-based protocol to

manage communication between the server and clients. Thanks to the proposed
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architecture, it is easy to add new functionalities or to transfer the entire robotic

application to other technological environments. Among the many services im-

plemented, I want to highlight the activity recognition service. This service is

fundamental for the monitoring of the elderly person in order to guarantee his

safety and verify the correct execution of a care plan. Therefore, I have created

deep neural network models to classify ADLs (Activities of Daily Living). Clas-

sifying ADLs is a particularly difficult challenge to overcome. I tested models on

the public CAD-60 dataset [81], chosen specifically for its sampled activities. I

obtained very good results and compared them to the state of the art. Because the

activities in the CAD-60 dataset do not fit all contexts and because it consists of

activities performed by young people, we recorded during laboratory experiments

the activities performed by older volunteers. The dataset obtained was used to

train a model able to recognize the following 6 activities: working on PC, talking

on the phone, watching TV, making a coffee, ironing, talking on couch with an-

other person. The results obtained are good having reached an average accuracy

of 82% with the “Leave One Out (LOO)” setting. If we look at the confusion

matrix in Figure 5.7, we see that some tasks create misclassifications due to the

fact that the movements are very similar.

Testing assistive robotics application in the real world and without the super-

vision of technicians remains a significant challenge despite the available technolo-

gies. The service-oriented adopted approach allowed to decouple the functioning

of the developed microservices from both the design and implementation of the

architecture of the complete robotic applications as well as from the collection

of user data. In such a way it possible to perform in parallel testing of the sys-

tem in the controlled environment of the University robotic laboratory, during the

development phase of the project, while completing the implementation of all nec-

essary functionalities. This was a fundamental step to improve the reliability of

the robotic application to be then deployed in not controlled home environments.

In addition, the service-oriented approach proved to be a promising way in the

direction of developing plug and play assistive applications crucial for personal-
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izing home care in an application area where both the technological and service

development progress at an incredible rate.

Most effort was devoted to guarantee the functioning of the system in a not

controlled and supervised environment without relying on any remote control since

network infrastructures may not be available in all the environments. Neverthe-

less, to have significant results from the interaction, it is necessary to obtain a

significant maturity and dependability of the developed services in particular with

respect to robot navigation and interaction capabilities. In particular, user lo-

calization in one of the more time consuming services in real home environments

when not supported by different devices, not available for the requirements of low

cost appliances and a low invasiveness and adaptability to different houses.

The technological constraints were not only due to cost and infrastructure lim-

itations, but also to privacy and security reasons. In fact, no network connection

from the house with outside was allowed, as well as no personal information from

camera was allowed to be stored. These ethical issues pose challenges in the eval-

uation of results in the wild regarding the perception of the received assistance

from the user, and the possibility to correctly evaluate the identification of the

Activity of Daily Living.

Another challenge of the adoption of long term robot-application is the neces-

sity of continuous user modeling due to both the rapid evolution of their cognitive

impairment, and consequently also of their personality profile [20]. Even though

the system design allows for the continuous adaptation of the robotics assistive

behavior, of the delivered assistive tasks, and their timing, gathering correct infor-

mation from patients may become difficult. As emerged by the opinions emerged

from the patients’ interviews, the time the robot is left at home may play a crucial

role in its perception of usefulness by the users, and in the change that may occur

in the perception over time. Of course, a study on this aspect was not undertaken

since the times for the experimentation for each patient was constrained by the

project timing and patient availability.

All collected data and their analysis suffer, as already pointed out, from the
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difficulty of finding patients with the right conditions to be enrolled in such kind

of experimentation, and from both the necessary time and technology availability.

Finally, the results on the patient’s acceptability of the robot were influenced

by the lack of the natural language understanding that was not included in the

robot functionality since it required an outside internet connection.
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