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Abstract

Interaction can be seen as a composition of perspectives: the integration of perceptions,
intentions, and actions on the environment two or more agents share. For an interaction to be
effective, each agent must be prone to “sharedness”: being situated in a common environment,
able to read what others express about their perspective, and ready to adjust one’s own
perspective accordingly. In this sense, effective interaction is supported by perceiving the
environment jointly with others, a capability that in this research is called Shared Perception.
Nonetheless, perception is a complex process that brings the observer receiving sensory
inputs from the external world and interpreting them based on its own, previous experiences,
predictions, and intentions. In addition, social interaction itself contributes to shaping what is
perceived: others’ attention, perspective, actions, and internal states may also be incorporated
into perception. Thus, Shared perception reflects the observer’s ability to integrate these
three sources of information: the environment, the self, and other agents.

If Shared Perception is essential among humans, it is equally crucial for interaction
with robots, which need social and cognitive abilities to interact with humans naturally
and successfully. This research deals with Shared Perception within the context of Social
Human-Robot Interaction (HRI) and involves an interdisciplinary approach. The two general
axes of the thesis are the investigation of human perception while interacting with robots
and the modeling of robot’s perception while interacting with humans. Such two directions
are outlined through three specific Research Objectives, whose achievements represent the
contribution of this work. i) The formulation of a theoretical framework of Shared Perception
in HRI valid for interpreting and developing different socio-perceptual mechanisms and
abilities. ii) The investigation of Shared Perception in humans focusing on the perceptual
mechanism of Context Dependency, and therefore exploring how social interaction affects
the use of previous experience in human spatial perception. iii) The implementation of
a deep-learning model for Addressee Estimation to foster robots’ socio-perceptual skills
through the awareness of others’ behavior, as suggested in the Shared Perception framework.

To achieve the first Research Objective, several human socio-perceptual mechanisms are
presented and interpreted in a unified account. This exposition parallels mechanisms elicited
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by interaction with humans and humanoid robots and aims to build a framework valid to
investigate human perception in the context of HRI. Based on the thought of D. Davidson and
conceived as the integration of information coming from the environment, the self, and other
agents, the idea of "triangulation" expresses the critical dynamics of Shared Perception. Also,
it is proposed as the functional structure to support the implementation of socio-perceptual
skills in robots. This general framework serves as a reference to fulfill the other two Research
Objectives, which explore specific aspects of Shared Perception.

For what concerns the second Research Objective, the human perceptual mechanism
of Context Dependency is investigated, for the first time, within social interaction. Human
perception is based on unconscious inference, where sensory inputs integrate with prior
information. This phenomenon helps in facing the uncertainty of the external world with
predictions built upon previous experience. To investigate the effect of social interaction
on such a mechanism, the iCub robot has been used as an experimental tool to create an
interactive scenario with a controlled setting. A user study based on psychophysical methods,
Bayesian modeling, and a neural network analysis of human results demonstrated that social
interaction influenced Context Dependency so that when interacting with a social agent,
humans rely less on their internal models and more on external stimuli. Such results are
framed in Shared Perception and contribute to revealing the integration dynamics of the three
sources of Shared Perception. The others’ presence and social behavior (other agents) affect
the balance between sensory inputs (environment) and personal history (self) in favor of the
information shared with others, that is, the environment.

The third Research Objective consists of tackling the Addressee Estimation problem, i.e.,
understanding to whom a speaker is talking, to improve the iCub social behavior in multi-party
interactions. Addressee Estimation can be considered a Shared Perception ability because
it is achieved by using sensory information from the environment, internal representations
of the agents’ position, and, more importantly, the understanding of others’ behavior. An
architecture for Addressee Estimation is thus designed considering the integration process of
Shared Perception (environment, self, other agents) and partially implemented with respect to
the third element: the awareness of others’ behavior. To achieve this, a hybrid deep-learning
(CNN+LSTM) model is developed to estimate the speaker-robot relative placement of the
addressee based on the non-verbal behavior of the speaker. Addressee Estimation abilities
based on Shared Perception dynamics are aimed at improving multi-party HRI. Making
robots aware of other agents’ behavior towards the environment is the first crucial step for
incorporating such information into the robot’s perception and modeling Shared Perception.



Table of contents

List of figures x

List of tables xix

1 Introduction 1
1.1 The interaction between humans and robots as the motivation of the research 1
1.2 The circle between investigating humans and implementing robots . . . . . 2

1.2.1 Pursuing research on humans to develop human-aware robots . . . 2
1.2.2 Pursuing the development of robots to deepen knowledge of humans 3

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Humans and Robots: two different observers, one general framework . . . . 4
1.5 The structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Shared Perception: a human-centered approach to HRI . . . . . . . . . . . 7

2 A theoretical framework for Shared Perception in HRI 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The research context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Social Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Cognitive Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 A shared field of interest . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The process of perception: from senses to the phenomenal object . . . . . . 15
2.3.1 The organization of sensations . . . . . . . . . . . . . . . . . . . . 16
2.3.2 The influence of experience . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 The action-perception cycle . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 The phenomenological approach to perception . . . . . . . . . . . 19

2.4 Perception and social cognition . . . . . . . . . . . . . . . . . . . . . . . . 20



Table of contents vii

2.4.1 Integration of the other’s attention . . . . . . . . . . . . . . . . . . 20
2.4.2 Integration of the other’s perspective . . . . . . . . . . . . . . . . . 22
2.4.3 Integration of the other’s actions . . . . . . . . . . . . . . . . . . . 24
2.4.4 Integration of the others’ (attributed) inner states . . . . . . . . . . 26

2.5 Building shared perception . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 The Basal Pillars of the framework . . . . . . . . . . . . . . . . . . 28

2.5.1.1 Embodiment . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1.2 Intentionality . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.1.3 Human-Awareness . . . . . . . . . . . . . . . . . . . . . 30
2.5.1.4 Hermeneutics . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1.5 Sharedness . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 The dynamic composition of Shared Perception: towards a triangulation 34
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Shared Perception and Context Dependency: a user study to investigate the
impact of a social robot on human visual perception of space 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Participants’ demographics and Ethics . . . . . . . . . . . . . . . . 41
3.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2.1 Experimental setting . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Experimental Sessions . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3.1 Individual length reproduction task . . . . . . . . . . . . 43
3.2.3.2 Length reproduction tasks with the robot . . . . . . . . . 43
3.2.3.3 Individual Length Discrimination for perceptual ability

check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Characterization of robot’s behavior for interaction design . . . . . 44
3.2.5 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.6.1 Length Reproduction . . . . . . . . . . . . . . . . . . . 46
3.2.6.2 Gaze analysis . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.6.3 Perceptual ability check and outliers . . . . . . . . . . . 49

3.2.7 Bayesian Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Manipulation check . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Table of contents viii

3.3.2 Context Dependency and perceptual errors . . . . . . . . . . . . . 53
3.3.3 Simulation of the Bayesian Model . . . . . . . . . . . . . . . . . . 57

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Context Dependency in social interactions . . . . . . . . . . . . . . 59
3.4.2 Impact of robot’s behavior . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 A neural network analysis of Context Dependency during social interaction 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Methods and Training Procedure . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 The computational model . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Training the model to replicate human data . . . . . . . . . . . . . 71

4.2.2.1 S-CTRNN training . . . . . . . . . . . . . . . . . . . . . 71
4.2.2.2 Training data . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2.3 Training parameters . . . . . . . . . . . . . . . . . . . . 72
4.2.2.4 Network behavior generation . . . . . . . . . . . . . . . 72

4.2.3 Network performance . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Experiment 1: Changes in the reliance on prior and sensory information . . 76

4.3.1 Results Experiment 1A: Modifying the reliance on prior predictions 76
4.3.2 Results Experiment 1B: Modifying the reliance on sensory information 78
4.3.3 Discussion Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Experiment 2: Analysis of internal network dynamics . . . . . . . . . . . . 81
4.4.1 Results Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Discussion Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 A DL model for Addressee Estimation: a step towards an Addressee Estimation
architecture based on Shared Perception. 90
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.3 Shaping Addressee Estimation on Shared Perception . . . . . . . . 96

5.2 Exp. 1. Development of “Addressee Position Estimation” (APE) model . . 98
5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1.1 The dataset . . . . . . . . . . . . . . . . . . . . . . . . . 100



Table of contents ix

5.2.1.2 Features selection and pre-processing data pipeline . . . 101
5.2.1.3 Architecture Design . . . . . . . . . . . . . . . . . . . . 104
5.2.1.4 Training Procedure . . . . . . . . . . . . . . . . . . . . 106
5.2.1.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.2.1 Performance of the model on the Vernissage Dataset . . . 108

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2.3.1 Performance of the model . . . . . . . . . . . . . . . . . 113
5.2.3.2 Insights on the three principles for the model design:

Awareness of bodily non-verbal behavior, Temporality,
Suitability for ecological scenarios . . . . . . . . . . . . 115

5.2.3.3 Limitations and future work . . . . . . . . . . . . . . . . 117
5.3 Exp. 2. Preliminary assessment of generalizability of the model on iCub . . 118

5.3.1 Methods: dataset and procedure . . . . . . . . . . . . . . . . . . . 118
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 The design of the Shared Perception-Addressee Estimation Architecture . . 121
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6 Appendix to Chapter 5: Descriptive tables of neural network architecture . . 128

6 Conclusion 130
6.1 Achievement of Research Objectives . . . . . . . . . . . . . . . . . . . . . 130

6.1.1 RO1: Formulating a theoretical framework of Shared Perception . . 130
6.1.2 RO2: Investigating the mechanism of Context Dependency in human

visual perception of space during social interaction . . . . . . . . . 132
6.1.3 RO3: Developing a model for Addressee Estimation to foster robots’

socio-perceptual skills based on the Shared Perception framework . 133
6.2 Final Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Publications 137

References 139



List of figures

2.1 Slave Market with the Disappearing Bust of Voltaire (1940), Salvador
Dali. This painting shows the blurred relation between the phenomenal
object and the physical stimulus from which the bust of Voltaire appears.
Collection of The Dalí Museum, St. Petersburg, FL (USA); Gift of A.
Reynolds Eleanor Morse. ©Salvador Dalí. Fundació Gala-Salvador Dalí
(Artists Rights Society), 2022. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Illustrations of four laws of Gestalt. The principle of proximity affirms that
elements close to one another in time or space tend to be perceived with a
sense of togetherness rather than as singular elements. In Figure A, circles
appear as unified in two groups. Similarity states that we tend to configure
elements that share similar characteristics as a group, as it happens in Figure
B, where we can distinguish the letter A only from the different pattern of
some of the circles. The principle of closure indicates that lines tend to be
unified in seeking a single, recognizable pattern, as is evident from Figure C,
where a question mark appears from the circles. Symmetry affirms that we
tend to perceive symmetrical elements together: in Figure D, it is intuitive to
consider the group of 6 leaves as formed by three couples of symmetrical
leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Rubin’s vase illusion. Figures and ground are inherently tight together. We
either see the two white profiles of the iCub robot or the black vase: we
cannot see the two things at the same time because the ground is necessary
to see a figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Integration of the other’s attention. An example of human-robot joint
attention elicited by the human. The robot’s attention is attracted by the
other’s attention and is brought to detect the toy train on the table. . . . . . 21



List of figures xi

2.5 Integration of the other’s perspective. An example of a perspective-taking
scenario. The number is perceived differently by the two agents (either 6
or 9) but each agent is influenced by how the other perceives it (II level
perspective-taking). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Integration of the other’s action. An example of how the action of others
can be integrated and used to perceive an object. The human is giving the
stuffed green dragon gently and carefully to the robot, with two hands. A
robot endowed with social perceptual abilities should perceive the stuffed
dragon as something delicate or precious and, accordingly, use two hands to
handle it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Integration of the others’ (attributed) inner states. An illustration of
how others’ inner states can influence the observer’s perception of the en-
vironment. A social robot should infer something serious, dangerous, or
undesirable just happened on the screen thanks to understanding the other’s
inner states and attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Embodiment, graphic representation of the first pillar.. The body has
a crucial role in interaction also in HRI: a connection exists between the
observer’s and the observed agent’s body. . . . . . . . . . . . . . . . . . . 29

2.9 Intentionality, graphic representation of the second pillar. The fundamen-
tal attribute of intentionality is the reference of the agent toward the external
world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Human Awareness, graphic representation of the third pillar. The basis
for having a human-aware robot is informing the robot with models of human
behavior and mind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Hermeneutics, graphic representation of the fourth pillar. The circle
between the interpretative direction and the incremental direction forms the
human hermeneutical approach to the world. . . . . . . . . . . . . . . . . . 32

2.12 Sharedness, graphic representation of the fifth pillar. Multiple meanings
of the word "shared" are at the basis of Shared Perception. . . . . . . . . . 33



List of figures xii

2.13 Illustration of the Shared Perception dynamics. Shared Perception can be
described as the observer’s perception that emerges from the triangulation
among three sources of information: the environment, the self, and the other.
As a first step, the observer perceives the environment (arrow A in blue):
multiple elements (some of them listed on the left in blue, as described in
Section 2.3) take part in such a process, which is not only a passive reception
of stimuli because features referred to the object (environment) and the
observer (self) are integrated together. If another social agent is present
in the same environment and perceived by the observer (arrow B in blue),
the other’s intentional relation toward the environment (arrow C in red) is
obtained by the observer and integrated into the whole perceptual process. As
described in Section 2.4, the others affect the observer’s perception through
their attention, perspective, actions, or inner states (listed on the right in
red). This way, the triangulation among the observer, the other, and the
environment takes place. Either the human or the robot could play the role of
observer. The blue arrows (A and B) that represent the observer’s perception
do not move from the perceived object toward the observer but vice versa. In
this way, the active dimension of perception is underlined because perceiving
means actively contributing to the creation of the perceived object. . . . . . 35

3.1 Experimental setting for reproduction task. Figure A: Setting of exper-
imental room: (A) iCub robot’s place, (B) participant’s place, (C) experi-
menter’s desk, (D) Touchscreen. Figure B: Description of Individual length
reproduction task. Two dots are presented consecutively on a white line on a
touchscreen, showing a certain length. Participants had to keep the second
dot as a reference and to touch the screen in a third point, to reproduce the
length of the stimulus. Figure C: iCub from participants’ perspective while
touching the screen to present stimuli: images were obtained from Tobii Pro
Glasses 2 recording. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



List of figures xiii

3.2 The interaction with iCub during the reproduction task. On the left,
pictures of the robot behaving mechanically taken by an external camera
(above) and by the Tobii Pro Glasses eye tracker that participants wore during
the task (bottom). On the right the same pictures with the iCub behaving
socially. The head direction of the mechanical robot was fixed and turned
away from the participants, whereas the social robot could look at the screen
and exchange mutual gaze with participants. . . . . . . . . . . . . . . . . . 45

3.3 Illustrative plot of the data of a length reproduction task. Reproduced
lengths are plotted against the related stimuli. The regression index is cal-
culated as the difference between the slope of the linear fit of the ideal
reproductions (identity line) and the slope of the linear fit of the real data.
For each stimulus, we also measured the average bias and the coefficient of
variation of the related responses. . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Representation of Bayesian Model. (Modified by [38, 195].) Perception
(Posterior distribution) is described as a Gaussian resulting from the inte-
gration between the Likelihood distribution of the stimulus of length µL

with sensory precision of σL and the Prior distribution centered in µP with a
weight of σP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Plot of the values of Godspeed subscale–Animacy. Values are plotted for
each participant in both mechanical and social conditions. . . . . . . . . . . 52

3.6 Participants’ gaze behavior towards iCub’s face. Figure A. Bar plot of
the % of trials in which participants looked at iCub face during trials (tot
trials = 66 trials) and between one trial and another (tot intervals = 65) in the
mechanical and in the social condition. Figure B. Heatmaps of participants
gaze on three representative snapshots referred to the mechanical condition
(the one above) and to the social condition (the two below). . . . . . . . . . 53

3.7 Representation of the degree of Context Dependency in the three con-
ditions. Plots represent the slopes for each participant (thinner lines) and
on average (thicker lines), resulting from the linear fit of the reproductions
in the three conditions. The regression index is computed as the difference
between the slope of the identity line (1) and the slope of the linear fit of data. 54



List of figures xiv

3.8 Scatter plot of regression index values. To compare the regression in-
dex in the two conditions with the robot, the smaller dots represent single
participants in the mechanical and the social conditions, the largest one
represents the mean with error bars calculated from the standard error of the
two conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Boxplot of perceptual errors.. The values of perceptual errors (Bias, CV,
and RMSE) in the two conditions with the robot (mechanical and social)
are represented for each participant by circles. Perceptual errors have been
normalized for the mean stimulus presented in the task (10 cm). . . . . . . 55

3.10 Correlation Context Dependency - Anthropomorphism. Individual vari-
ations of the regression index in the two robot conditions are plotted as a
function of the variations in perceived anthropomorphism resulting from the
Godspeed questionnaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Bayesian Model simulation. Figure A shows the portioned perceptual errors
in the three conditions: large circles represent the average normalized CV
plotted against the average normalized bias with the error bars representing
the standard error; small circles are individual participants. The four curves
represent the prediction of the Bayesian model given a fixed value of σP

(0.5 cm, 1.5 cm, 2.5 cm, 3.5 cm), which represents the weight given to the
prior. Each curve has been plotted by varying σL (Weber Fraction) from 0
to 0.6. As in [38, 195], an additive fixed non-sensory motor noise of 0.12
has been added to CV. In Figure B, arrows represent the simulation of the
model for σL, starting from the empirical data of the regression index and
from the value of σP derived by the model (Figure A). In Figure B, it is also
represented the value of RMSE simulated by the Bayesian model once given
the regression index and σL and normalized for the minimal values of RMSE
related to each value of σL. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 An overview of the computational model used in the present paper. A
recurrent neural network serves as the internal model that learns to predict
future time steps of a one-dimensional trajectory whose length represents the
length of the stimuli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of figures xv

4.2 Illustrative plots of reproduced lengths against presented lengths for
original human data and model data. Lengths were calculated in the
normalized space of trajectories. Original human data (left) is compared
with the corresponding mean predictions produced by one example network
(right) for six randomly chosen participants. Lines in both plots correspond
to the regression lines extracted from the human data or the model data,
respectively. The black line shows the identity line. . . . . . . . . . . . . . 74

4.3 Comparison between original data and model data in terms of regression
index. The regression indices of the human plotted against the regression
indices of all trained networks for reproducing all training data. . . . . . . . 74

4.4 Subject-wise differences between different conditions. Differences are
compared for human data (black) and model data (magenta) for one trained
example network. Boxes indicate the mean, and 80% percentile of the data,
fliers indicate the standard deviation. Model data reproduce the main trends
of the data, but with slightly lower variability. The p-values were computed
using the results of all ten networks, i.e. on 25 samples from the human
participants, and 250 (= 10 ·25) samples from the models. . . . . . . . . . . 75

4.5 Performance of the model as a function of Hprior. Difference between
the regression index of networks produced using the 25 initial states of the
social condition with regular prior reliance (Hprior = 1) and the regression
index produced with the same initial states using increased (Hprior < 1)
prior reliance. (a) For all ten networks the median of the subject-wise
difference is displayed. Horizontal lines mark the zero line, the average
subject-wise difference in the regression index between the social and the
mechanical condition in human data, and the average subject-wise difference
in regression index between the social and the individual condition. (b)
Detailed results including all subject data for a single network. The subject-
wise differences between the behavior using social initial states of H = 1 vs.
H = x for different x values is displayed. . . . . . . . . . . . . . . . . . . . 77



List of figures xvi

4.6 Performance of the model as a function of Hsensor. Difference between the
regression index of networks produced using the 25 initial states of the social
condition with regular reliance on sensory information (Hsensor = 1) and
the regression index produced with the same initial states using decreased
(Hprior > 1) sensory reliance. (a) For all ten networks the median of the
subject-wise difference is displayed. Horizontal lines from top to bottom
mark as indicated the zero line, the average subject-wise difference in the
regression index between the social and the mechanical condition in human
data, and the average subject-wise difference in regression index between
the social and the individual condition. (b) Detailed results including all
subject data for a single network. The subject-wise differences between the
behavior using social initial states of H = 1 vs. H = x for different x values
is displayed for Hsensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Plots resulting from Principal Component Analysis. The first two prin-
cipal components of the network activation traces of one example network
(capturing 83% of the variance), at the first time step (left) and at the last
time step (right). The black symbols show the mean, ellipses the covariances
of the points of the corresponding experimental conditions. . . . . . . . . . 83

4.8 Illustration of how the pairwise distances across participants were com-
puted from the neural activation traces. Each circle represents one trajec-
tory of 25×22 where 25 is the number of neurons and 22 is the number of
time steps. Data is split into 11 length categories and the pairwise distances
within conditions are computed for each length category individually and
later averaged, such that differences between lengths do not affect the final
measure. The final measure, thus, shows for each time step the average
distance between participants (see Figure 4.9). . . . . . . . . . . . . . . . 84

4.9 Variability between the activations of different participants in the net-
work. Mean and standard error across networks of the average pairwise
distances between the neural activation traces of the three different conditions
(see Figure 4.8). Activations were normalized to [0,1] independently for
each network beforehand. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Illustrative frames from Vernissage Dataset. Examples of multi-party HRI
data recorded from the Nao robot’s cameras. . . . . . . . . . . . . . . . . . 100



List of figures xvii

5.2 Illustration of a sequence. Aggregation of frames in a sequence of 0.8 sec.
and extraction of body poses and face images. . . . . . . . . . . . . . . . . 103

5.3 Illustration of an utterance. The utterance is partitioned into sequences of
0.8 sec. Utterances were defined as speech intervals addressed to the same
addressee and delimited by silence. Each utterance comprised at least one
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Illustration of the Deep Neural Network for Addressee Position Estima-
tion employing an intermediate fusion approach (Exp. 1a). Face images
and body pose vectors are passed separately to two blocks of convolution,
each including two 2D convolutional and one max-pooling layers. Then, the
two embeddings resulting from fully connected layers are concatenated and
sequences of 10 fused embeddings are passed to the LSTM layer. The output
is provided after two others fully connected layers and a LogSoftMax layer.
* represents LeakyReLU activation function. See Table 5.3 in Section 5.6 for
full details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Bar plots reporting performances of the Addressee Position Estimation
model. Results of the 10-fold cross-validation experiments (Exp. 1.a-b-
c-d) are provided in terms of mean and standard deviation (error bar) of
F1-scores. Performances are computed in three ways: considering one
prediction for each sequence separately (0.8 sec), considering one prediction
for each utterance, and considering the prediction of the first sequence of
each utterance (first 0.8 sec of each utterance). On the y-axis the performance
score is expressed in %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Bar plots reporting performances of the Addressee Position Estimation
model for each class. Results of the 10-fold cross-validation experiments
(Exp. 1.a-b-c-d) are provided in terms of mean and standard deviation (error
bar) of Recall, Precision and F1-score for each of the 3 classes. On the y-axis
the performance score is expressed in %. . . . . . . . . . . . . . . . . . . . 111

5.7 Bar plots reporting performances of the Addressee Position Estimation
model as a function of the duration of the utterance. Results of the 10-fold
cross-validation experiments (Exp. 1.a-b-c-d) are provided in terms of mean
and standard deviation (error bar) of F1-score according to the duration of
the utterance. Performance are computed considering the first 0.8, 1.6, and
2.4 sec. of each utterance and for utterance lasting 2.4 sec or more. On the
y-axis the performance score is expressed in %. . . . . . . . . . . . . . . . 112



List of figures xviii

5.8 Bar plots reporting performances of the binary classification model.
Results of the 10-fold cross-validation experiment (Exp. 1.e) are provided
in terms of mean and standard deviation (error bar). Sensibility, Precision,
F1-score, and Sensitivity on sequences of 0.8 sec are reported on the left. On
the right, performances in terms of overall-F1-score are computed in three
ways: : considering one prediction for each sequence separately (0.8 sec),
considering one prediction for each utterance, and considering the prediction
of the first sequence of each utterance (first 0.8 sec of each utterance). On
the y-axis the performance score is expressed in %. . . . . . . . . . . . . . 113

5.9 Examples of sequences wrongly predicted. The face images of four se-
quences are exhibited reporting the wrong prediction given by the intermediate-
fusion model (Exp. 1.a) and the ground truth (correct addressee). . . . . . . 116

5.10 Confusion Matrices. Generalizability performances of the APE model on
the dataset recorded by iCub in 4 experiments (1.a-b-c-d). Within the 3x3
matrix values represent the number of sequences, whereas Recall, Precision,
and F1-score are expressed in %. . . . . . . . . . . . . . . . . . . . . . . . 120

5.11 Shared-Perception Addressee-Estimation (SP-AE) Architecture. Mod-
ules related to perception (light blue), memory (violet), and action generation
(red) contribute to the estimation of the addressee together with the APE
module for the interpretation of others’ intentionality (yellow) and the TAI
module for triangulation (green). The modules with a continuous outline
have already been developed whereas the ones with the dashed line still need
to be so. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.12 Illustration of two possible outcomes from Triangulated Addressee Iden-
tification Module. For each example, three snapshots of iCub’s left camera
taken over time are shown together with the information about the position
of the known agents in the environment available in the spatial memory, and
the description of the robot’s behavior if it was driven by the whole SP-AE
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of tables

3.1 Manipulation check. Results from the questionnaires provided after each
task with the robot to check whether the manipulation of the robot’s behavior
was correctly perceived by participants. The fourth column reports results
from Wilcoxon Signed-Rank tests to compare the two conditions with the
robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Previous Works on Addressee Estimation Models . . . . . . . . . . . . 95
5.2 Performances of the Addressee Position Estimation model. Results of

the 10-fold cross-validation experiments (Exp. 1.a-b-c-d) are provided in
terms of mean and standard deviation of F1-score, Precision, and Recall.
Performances are computed considering each sequence separately (0.8 sec) 109

5.3 Description of the hybrid architecture (CNN + LSTM) employed in the
intermediate-fusion approach (Exp. 1.a). . . . . . . . . . . . . . . . . . 128

5.4 Description of the hybrid architecture (CNN + LSTM) employed in the
late-fusion approach (Exp. 1.b). . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Description of the hybrid architecture (CNN + LSTM) employed in the
single modality approach (Exp. 1.c-d). . . . . . . . . . . . . . . . . . . . 129



Chapter 1

Introduction

Sociality is not exclusive to humans. In the animal kingdom, many species gather and
live in groups. Yet, from an evolutionary perspective, sociality permeates human life so as
to originate unique forms of cognition as well as collaborative, prosocial, and normative
behaviors, up to the development of culture and morality [228]. The social environment
shapes even perception. The awareness of others’ attention, and perception, as well as the
comprehension of their intention, thought and belief, is combined with sensory information
received from the environment to perceive the external world. This way, the world is not
perceived individually, and perception becomes shared.

Shared Perception occurs as the result of one observer’s perceptual process in the pres-
ence of other social agents. A broader definition of ‘social agent’ allows studying Shared
Perception also within the context of human-robot interaction (HRI). This is the perspective
of the present research.

1.1 The interaction between humans and robots as the mo-
tivation of the research

Interaction can be thought of as the reciprocal action and influence established between two
entities. Since perception is highly dependent on previous experience, personal perspective,
and intentions toward the environment, humans perceive the external world differently from
each other. Despite this, they can naturally and effectively interact. In everyday actions,
passing an object or shaking hands, and even more in sports, dance, music, and complex
collaborative activities, humans are very good at coordinating with each other. Regrettably,
this is not the case in HRI. Robots still lack several abilities to autonomously interact with
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the environment [239] and are even more impaired while interacting with humans. The quest
for Shared Perception in HRI emerges here.

The situations in which embodied artificial systems are meant to interact with humans
are numerous and different. Social autonomous robots interacting with humans as social
agents represent only a part of them. Robots with social skills are developed, for instance, as
companions in Therapy and Care Homes [39]. They have been proven to be beneficial as
interactive tools to foster children’s well-being [39] and education [21], also in the case of
children with developmental disorders [194, 168]. Rehabilitation is another context where
social robots have been demonstrated to provide positive effects in terms of perceived support
and increased engagement in the rehabilitative task [20]. Socially assistive robotics may
therefore benefit human society in different ways [59], but robots are also developed to
populate other kinds of environments. Airports, banks, malls, restaurants, schools: these are
some scenarios where social cognitive and perceptual skills become crucial to autonomously
cope with human social dynamics.

Given this context, the present research is motivated by the need to improve the interactive
social abilities of robots to make them instruments and collaborators of human development
and well-being. The approach adopted for this problem is to start from perception because
the ability to interact has a crucial point in the capability to perceive the environment jointly
with others. Social interaction emerges from socially perceiving other agents and sharing
the perception of the environment with them. Moving from the capability to perceive and
interpret others’ intentional relation towards the environment, Shared Perception would lead
robots to understand their partner, augment the perception of the entire environment, and
improve the quality of their social interactions.

1.2 The circle between investigating humans and imple-
menting robots

If we aim for a natural and efficient HRI, the research should pursue two axes: deepening the
knowledge of humans and fostering the development of robots. These are the two directions
of this thesis and are tightly related, as in a circle, so that one supports the other and viceversa.

1.2.1 Pursuing research on humans to develop human-aware robots

Since humans are intentional agents rather than inanimate objects in the environment, to
interact with them, robots need a model of human cognition and mind. Informed of this,
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robots could understand human intentions, thoughts, and emotions implicitly expressed in
their behavior. Interaction among humans is aided by the fact that we are of the same nature.
Grown by interacting with other humans “like me” [144], we soon acquire social intelligence.
For this reason, only by investigating the structure of human experience and achieving an
extensive knowledge of cognitive mechanisms, it will be possible to develop human-aware
robots and inspire novel approaches to improve robotic autonomy and social abilities [70].

There is also another reason motivating the interest in investigating humans for HRI.
Interaction suggests reciprocity, and if robots should be enabled to understand humans,
then the same thing would be desirable for humans: they should be able to understand
robots. Therefore, moving forward knowledge of humans appears crucial to implementing
human-inspired artificial models and making robots not only autonomous and efficient but
also legible by humans [196].

1.2.2 Pursuing the development of robots to deepen knowledge of hu-
mans

Investigating human cognition provides inspiration for developing autonomous artificial
systems. However, it is also true that implementing cognitive, artificial systems may provide
novel, different insights to deepen knowledge of human experience. From this perspective,
HRI is revealed as an interdisciplinary field of study. Multiple disciplines offer results and
models that shine a light on human cognition and perception, but the research needs to
be pursued. For instance, for what concerns the study of cognition during the interaction,
only in the last decades, psychology, cognitive, and neuro-sciences are moving from an
individual, passive approach toward a real interactive context [91, 24]. To study social
cognition, humans need to be tested while interacting with other social agents. However,
interaction with other humans does not always ensure the controlled and repeatable measures
that cognitive and neuroscience require. The use of videos or virtual onscreen agents is not an
optimal solution. Videos lose the possibility of reciprocity, making humans passive subjects,
whereas virtual reality alters the natural environment of the interaction where cognition is
normally exercised. HRI can help in solving this problem by providing a valuable interactive,
embodied, and controlled setting employing humanoid robots as experimental tools [198].
Another possibility in this direction is offered by computational modeling of theories and
reproducing cognitive phenomena. Also, the development of robots can be pursued with the
same aim: fostering the knowledge of embodied cognition through the implementation of
humanoid platforms (see, for instance, [147]).
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1.3 Research Objectives

Connections between investigating human cognition and implementing cognitive embodied
artificial agents become therefore evident in the form of a self-perpetuating circle: one
direction sustaining the other. Human cognition inspires the development of robots and this
latter may lead to extending the knowledge of human experience. From a general perspective,
this work keeps the same overall orientation, but it focuses on the topic of Shared Perception
and targets three specific Research Objectives (RO).

• RO1: Formulating a theoretical framework of Shared Perception. This objec-
tive consists of theorizing a general account of Shared Perception starting from a
phenomenological perspective and pre-existent literature about human perception in
social interaction and by structuring the theoretical account to be functional for robots’
development.

• RO2: Investigating the mechanism of Context Dependency in human visual per-
ception of space during social interaction. With this aim, this research deepens the
study of one aspect of Shared Perception in humans by analyzing the impact of interac-
tion with a social agent on a specific perceptual mechanism (Context Dependency) by
using a humanoid robot to provide a controlled, embodied set-up.

• RO3: Developing a model for Addressee Estimation to foster robots’ socio-
perceptual skills based on the Shared Perception framework. This objective
is made concrete by designing and implementing a deep-learning model to make the
robot able to estimate the position of an utterance’s addressee with respect to the
speaker starting from visual information related to the speaker’s non-verbal behavior.

1.4 Humans and Robots: two different observers, one gen-
eral framework

If we generally consider Shared Perception as the observer’s perception during social interac-
tion, previous literature in HRI already addressed the topic either from the perspective of a
human observer or from a robot’s one.

In the first case, for instance, user studies employing HRI settings proved that social
robots affect human perception. Robots could trigger phenomena such as perspective-taking
[258, 128, 254], joint attention (for a review see [35]), or attribution of mental states (for
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a review, see [224]). Similar mechanisms have been proven to be effective in establishing
common ground between the two partners and helping humans in solving a collaborative
task (e.g., see [139]).

Symmetrically, research strived to develop social robots endowing them with human-
aware perceptual skills that, in a broad sense, could be considered related to Shared Perception.
For instance, given the significant amount of information conveyed by gaze, the ability
to compute the visual focus of attention has been implemented in robots with different
techniques (e.g., see [201, 165]). Moreover, Waldhart et al. [242] developed a model for
real-world HRI settings by employing a perspective-taking approach to improve the robot’s
ability to provide route directions. Robots endowed with perspective-taking abilities have
been proven to be capable of enhancing human performance in an HRI collaborating task [53].
Intention reading is another ability that, for instance, Vinanzi et al. [241] developed, starting
from human body posture and eye gaze direction to disambiguate goals in a collaborative
task.

Considering the various perceptual phenomena and abilities connected to perception
during social interaction, the present research addresses the topic starting from a third point
of view: a framework for Shared Perception valid for both kinds of observers. The approach
underlying the entire research proposes to tackle Shared Perception in HRI by theorizing a
general account of Shared Perception, inspired by human social cognition, but functionally
valid for the development of social robots. From this perspective, Shared perception is
defined in Chapter 2 by introducing the concept of triangulation, inspired by D. Davidson
[46]. With this concept, Shared Perception is outlined as the ability to integrate three
different sources of information: perceptions of the external world (environment), internal
models of reality (self), and perceptions of others as revealing their intentional relation
toward the environment (others). The integration of three elements, i.e., the triangulation,
is the dynamics of Shared Perception. Thanks to it, the observer can achieve an augmented
perception of the environment not only by balancing sensory information (environment) with
previous experiences (self) but also through the information from other agents that, therefore,
becomes co-subjects in the observer’s perception.

1.5 The structure of the thesis

Pursuing the first Research Objective (RO1), Chapter 2 aims to outline a theoretical frame-
work for Shared Perception. Findings from empirical research on humans and several theories
about perception are integrated together in view of a unified account of Shared Perception,
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whose function is to provide a general overview and theoretical structure to interpret different
human perceptual phenomena related to Shared Perception. Moreover, the framework is
outlined to suggest a structure for implementing software architectures for social robots.

If Chapter 2 approaches Shared Perception from a general and theoretical perspective,
Chapters 3 and 4 direct the focus on a precise human perceptual phenomenon. Context
dependency is a well-known perceptual mechanism that had been studied only in individual
scenarios. In line with the second Research Objective (RO2), the aim of these two chapters is
thus to assess how interacting with a social agent (specifically a social humanoid robot) affects
visual perception of space according to this particular phenomenon. Chapter 3 and 4 report
two studies analyzing the same effect with different methodologies. Chapter 3 describes the
procedure and results of a user study that reproduces the state-of-the-art setting to investigate
Context Dependency in human perception but introducing an interactive scenario with a
humanoid robot. Psychophysical methods, Bayesian modeling, HRI design, gaze analysis,
and questionnaires have been applied to investigate this phenomenon. Chapter 4 aims
to extend this research from a different angle. The phenomenon of Context Dependency
can be interpreted in line with the predictive coding theory. Therefore, in this study, the
participants’ perceptual data recorded in the above-mentioned user study have been used
to train an artificial neural network designed on predictive coding theory, to compare and
deepen previous findings with a computational approach.

Chapter 5 targets the third Research Objective and tackles the implementation of Shared
Perception for a selected socio-perceptual skill for robots: Addressee Estimation. As a
comprehensive structure of perception during interaction, which can be referable to many
different situations, Shared Perception is not implemented directly. Rather, the design of
the model of Addressee Estimation is inspired by the Shared Perception framework as it
is defined in Chapter 2. Addressee estimation, which is the ability to understand to whom
a person is talking, is a crucial skill for social robots. Shared Perception can support such
implementation so that it may enhance the robot’s abilities to understand others, perceive the
environment, and engage in more natural interactions.

For what concerns connections among parts, the framework of Chapter 2 serves as a basis
to deepen the empirical investigation of a specific perceptual phenomenon (see Chapters 3
and 4) and to inspire the implementation of an interactive perceptual skill for social robots
(see Chapter 5).
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1.6 Shared Perception: a human-centered approach to HRI

If Shared Perception occurs in the eyes of the observer, which integrates different sources of
perceptual information, its impact informs the entire interaction. From the individual per-
spective of the observer, Shared Perception could be thought of as an augmented perception.
Thanks to perceiving, understanding, and integrating others’ intentional relation toward the
environment, the observer acquires additional viewpoints on it. As a result, a double, parallel,
benefit is gained by the observer: enhanced awareness of others and enhanced awareness of
the environment. Moreover, an additional advantage may be achievable from the perspective
of the whole interaction. If both agents engage in Shared Perception, that would strengthen
the relationship between the two parties and boost the interaction in being more natural and
effective.

In fact, in HRI Shared Perception is a fundamental condition for the interaction to be
enhanced, but still not sufficient. Beyond social perceptual skills, robots also need abilities to
socially express their internal state. Without this, it would be difficult for humans to engage
in Shared Perception with robots. In this research, this point is partially taken into account
in Chapters 3 and 4, where the social behaviors of the iCub robot are varied in order to
elicit Shared Perception in humans. However, this is a vast field of research that is mainly
connected with robots’ expressive abilities and with the idea of explainability in HRI through
social cues [243].

Inspired by human cognition and aimed at improving interaction with humans, the present
research examines Shared Perception with a human-centered approach from beginning to
end. To make robots collaborators more than tools [192], the interaction with them needs
to be designed on a human scale. Only this way, the user-friendliness, effectiveness, and
fluidity of the interaction may be enhanced [196].



Chapter 2

A theoretical framework for Shared
Perception in HRI

2.1 Introduction

To give a first formulation, Shared Perception can be thought of as the social ability of one
observer to perceive the world by integrating information coming from the environment, the
self, and other agents: more specifically, perceptions of the external world (environment),
internal models of reality (self), and perceptions of others as revealing their intentional
relation toward the environment (other agents). Starting from Human-Robot interaction, this
chapter aims to outline a theoretical framework to understand what Shared Perception is in
humans and offers a formal structure for its implementation in human-robot interaction.

In humans, Shared Perception is a socio-cognitive capability based on understanding
others as different intentional agents. It has its ontogenetic roots in the social abilities
acquired by children in their first months of life [226, 149]. Outlining a framework of Shared
Perception for human-robot HRI entails that there are two agents of different natures from
which Shared Perception should be considered: the human and the robot.

From this perspective, the steps followed to outline the theoretical framework will be the
definition of the research context (see Section 2.2); the description of the perceptual process
(see Section 2.3); the outline of the impact sociality has on human perception (see Section
2.4); the exposition of the basal pillars and the dynamic structure of shared perception (see
Section 2.5.
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2.2 The research context

The present research emerges at the intersection of three different areas of robotics: Cognitive
Robotics, Social Robotics, and Human-Robot interaction. While these domains have distinct
objectives and definitions, they share several aspects. Before considering their connections,
it is worth examining them alone.

2.2.1 Human-Robot Interaction

As a general concept,"interaction” can designate the reciprocal action established be-
tween two entities, which affect each other. For instance, it may express the relationship
between two living organisms or between an organism and the environment. It can also be
linked to how humans relate to several technological artifacts, such as robots. In this case,
reciprocity does not always occur. So, for such a relation to be considered "interaction", it is
crucial the human at least believes the relation is reciprocal.

The interaction may be designed in different ways, depending on the channel of the
interaction, which could be physical, spatial, verbal, or non-verbal.

Physical human-robot interaction refers to force-sensitive systems that adaptively and
physically interact with humans in the physical world [89]. Robots for physical rehabilitation,
wearable assistive robots, co-bots, or touch-based responsive robots all fall within this
group. In these cases, the physical interaction is made possible by an exchange of forces or
physiological electric impulses.

In spatial HRI [16], the channel of the interaction is related to the position the two agents
hold in the environment. In this case, the reciprocal influence may imply avoiding others
as obstacles or for safety reasons, or, on the contrary, a relation of guide-follower in the
environment. Interactions based on human social proxemics are also included in this group.

Rather than being distinguished by the overt or implicit nature of communication, verbal
and non-verbal interaction is classified by the code through which an addresser communi-
cates a message to their addressee. Addresser, addressee, message, and code are four core
elements composing the structure of communication according to Jakobson [105]. Given this
preliminary context, and although verbal and non-verbal channels are strictly interlinked, they
can be thought of as if verbal communication expresses its message through the syntax of a
language. Conversely, non-verbal interactions convey messages through facial expressions,
body movements, and proxemics [16]. Even para-verbal communication falls within the
latter group for the meaning expressed by speed, pitch, inflection, and tone of voice.
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2.2.2 Social Robotics

The focus on interaction recalls the theme of sociality. Nevertheless, it is worth noticing that
not all interactions between humans and robots are designed at a social level. To clarify what
Social Robotics investigates, it is necessary to consider what actually makes an interaction
social. For instance, the interaction through the spatial channel is not social if the robot
treats the human as a mere obstacle but may result social if the robot’s behavior is driven,
for instance, by proxemic reasons [156]. Hence, the interaction can be termed social
according to the extent the machine is designed to interact with humans based on their
social nature. But to do so, it is essential to understand how humans perceive robots in terms
of their appearance and behavior. Taking as an example a physical human-robot interaction
aimed at wrist rehabilitation, the mere exchange of forces between the machine and the
human does not have any social connotation. Not even if the robot additionally displays
performance measures to assist the human in the task. It may become social if the robot’s
appearance or behavior while communicating such indicators were designed following the
cognitive/affective social nature of humans: encouragement, empathy, threat, reward, etc.,
therefore, producing a sense of engagement in the human [20].

To concentrate on the human perspective on interaction, a large part of research in social
robotics focuses on studying how humans perceive robots, in terms of pure appearance and
behavior. For example, several studies have demonstrated a correlation between the level of
anthropomorphism of a robot and its acceptance by humans, which revealed the phenomenon
of Uncanny Valley: the acceptance of the robot grows along with its human-likeness, up to a
certain point, where the acceptance dramatically decrease if the robot is too anthropomorphic
[152]. Other studies focused on the color of the robots [211], on their perceived gender [37],
racial bias [2], or on how much they seem to convey agency, competence, intelligence, etc.
[164]. Questionnaires often represent a suitable method to evaluate the human perception of
robots. Still, the application of cognitive and neuroscience allowed going deeper into such
investigation [248]. For instance, fMRI has shown that human neural correlates of vitality
form recognition (gentle or rude arm movements) are the same in the case of perception
of humans’ or robots’ actions [51]. Neural responses evidenced by hemodynamic signals
through fNIRS have been used by [115] to determine the impact of human-robot eye contact
on human social processing and quantify human social engagement with robots.

Another branch of social robotics is concerned with the robots’ shape and behavior design.
Taking inspiration from research on humans, the objective is to make robots appear more
human-like, or closer to human expectations, preferences, and needs, but without entering the
uncanny valley. Generally, the design of robots is strongly task-dependent. Androids [102],
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such as Sophia and Geminoid HI-2, or half-bust robots, like Furhat [4], are more conceived
as conversational robots, whereas Paro or Qoobo are designed with animal-like qualities for
therapeutic companionship for older adults [203]. Nao, Kaspar, or Kiwi, are designed for
child-robot interaction, sometimes specifically for assistance and companionship for autistic
children [168, 21].

The aim of social robotics does not end with the design of the appearance and behavior
of robots and how they are perceived by humans. It proceeds towards the implementation of
socially interacting devices that can benefit human society in different ways [59]. Since one
main worldwide issue is the high proportion of older adults, with a longer life expectancy
and a strong impact on the quality of life caused by neurodegenerative diseases, social
robots have been considered a possible solution. For instance, they have been proposed
as companions for older adults with cognitive impairments, as service robots in elderly
care (see [39] for a review), or as a tool for dementia screening to assess elderly people’s
cognitive functioning via social interaction [237]. Focusing on another age range, robots
have been employed as a tool to foster children’s well-being with different aims: emotional
support after receiving a diagnosis, for dealing with disease, during the stay in hospitals,
and distraction during medical procedures (see [39] for a review). Education is another
field where robots demonstrated to be more effective than other more traditional learning
technologies [21]. For instance, affective personalization was employed for 4-6 years old
children to boost their engagement with the social robot and outcomes in early literacy
education [166]. Verbal encouragement strategies used by a socially interactive robotic tutor
enhanced children’s learning of math [27]. A socially assistive child-robot interaction setting
has been designed and proved effective in treating and improving severe dysgraphia [75].
Robots have been proven to be effective also in enhancing children’s group dynamics by
assisting inclusive processes [231, 79] . Eventually, robots have been demonstrated to be
beneficial for children with autism spectrum disorder, to improve their social skills like joint
attention in groups [194], enhance their performances in imitation tasks and use of language,
and reduce repetitive and stereotyped behaviors [168].

2.2.3 Cognitive Robotics

As [193] pointed out the word cognitive has its etymological root in the concept of knowing,
which among all living beings represents the most evolved way of interaction of an organism
with the environment. Generally speaking, it is the passage from the sensory-based receptions
of stimuli to their organization, realized through abstraction and allowing goal-based actions
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toward the environment. Cognition relates, therefore, to the interaction of an organism with
the environment aimed at adaptation and, as an ultimate end, at staying alive. Moving the
idea of cognition to a generic autonomous system, either an organism or an artificial one,
cognition could be defined as “the process by which an autonomous system perceives its
environment, learns from experience, anticipates the outcome of events, acts to pursue
goals and adapts to changing circumstances” [238].

Within this framework, the aim of cognitive robotics is the development of artificial
models to provide robots with the ability to interact with the environment, learn, and adapt.
To do this, a fundamental methodological issue concerns the degree of inspiration from
natural systems. It can be argued that, since cognitive abilities primarily belong to the
biological realm, every artificial cognitive model is somehow inspired by a biological system.
Nevertheless, this does not mean that the implementation of such skills is biologically inspired
as well. Most of them are based on engineering and heuristic principles, or are hybrid models,
partly engineering/heuristic partly biology-inspired, [124].

In the case of biology-inspired models, other issues arise, related to what model is taken
as inspiration. Not only human cognitive models are exploited: biomimetic robots inspired by
animal behaviors represent an extensive field of research [72]. Also, among human-modeled
robotics, it is worth considering which theory of cognition is used, what level of abstraction
the model refers to (e.g., macroscopic vs microscopic representation), and which role is
played by the body [238].

These issues define three features of cognitive robotics as a branch of research:

1. The crucial role of interdisciplinarity. Cognitive robotics is, therefore, at the cross-
roads of many different disciplines, so its aims are achievable only within a respectful
and fruitful dialogue [31]. There is no single science approaching the study of cog-
nition. Cognitive- and neuro-sciences, biology, chemistry, psychology, physiology,
medicine, and philosophy all deal with it. Still, for the development and implemen-
tation of artificial models of cognition, other disciplines are also needed: at least,
informatics, electronic-, mechanical-, and bio- engineering.

2. The distinctiveness introduced by the role of the body. Robots differ from other
artificial systems primarily because of them being embodied. More precisely, for a
cognitive embodied system, the embodiment does not only mean being implemented in
physical form, a feature that belongs to most technological systems. It requires an active
role of the body in the cognitive processes and the interaction with the environment
[170]. In this way, for the artificial cognitive system, the body becomes the means for
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grounded cognition, where processes linked to perception, action, learning, abstraction,
self-awareness, etc. are all shaped based on the system’s body.

3. The inspiration circle between biological and artificial cognition. Cognitive robotics
is driven by a double motivation. The practical one is the building of artificial embodied
cognitive systems; the principled one is gaining a better understanding of cognition
[193]. Between the two levels, inspiration is a two-way process. The implemented
robotic model is inspired by the biological one. Conversely, once implemented, the
former may result in additional insights for the improvement of the biological model
and a stronger theory of what cognition is.

Implementing an artificial cognitive system involves the development of modules for
single processes and abilities (for instance, related to perception, motor control, decision-
making, learning, meta-cognition, etc.) and, concurrently, the connection between all these
modules. The software framework that integrates all these elements is called cognitive
architecture [193]. More than one hundred cognitive architectures have been developed,
each following different theoretical assumptions, methodology, structure, and technology
[255]. As a possible taxonomy, cognitive architectures can be distinguished according to the
type of information processing [54]. For instance, symbolic architectures base knowledge
representation on symbols often organized along a set of if-then rules. By design, they are
effective in planning and reasoning but lack flexibility [124]. Examples of this approach
are ACT-R [181] or Soar [127] architectures. Instead of basing knowledge on symbolic
entities, emergent models try to simulate processes of human cognition from the bottom
up with artificial neural networks [255]. This allows the architecture to solve the problems
of the symbolic approach, although losing transparency [124]. Examples are HTM and
DAC. To address the issues of the two techniques, hybrid architectures seek to combine both
approaches (as an example, see Clarion [218]).

Guided by the attempt to address the need for autonomy, adaptivity, and flexibility, and
achieve greater biological realism, Vernon et al. [239] proposed a developmental approach
for cognitive architectures in embodied robotic systems. Inspired by the emergentism of
Maturana & Varela [140], this perspective is grounded on a concept of cognition that is not
static, but under continual development, with a specific focus on cognitive development in
infancy and childhood. Moreover, the authors propose this approach as a solution to facilitate
meaningful social interaction between cognitive robots and humans, which is in the same
direction as the present framework.
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2.2.4 A shared field of interest

Although the perspectives of the three above-mentioned research areas are oriented in
different directions, it appears evident that Human-Robot Interaction, Social Robotics, and
Cognitive Robotics partially share their field of interest. The present research originates at
their intersection. The interaction becomes the context of the research whereas the social
and cognitive aspects modulate the relation between robots and humans. In this way, the
interaction is built and studied according to the social dimension and cognitive frame in
which the robot is developed. For humans, social interaction has been proposed as the
default mode of the brain [90] and the base for the development of high forms of cognitive
representations, enabling for instance metaphors, dialogic and reflective thinking [227].
Following this idea, social interaction should be considered equally fundamental when it
comes to the implementation of artificial cognitive agents. Robots operating in human-
populated, and thus social, environments need social skills. Furthermore, their cognitive
processes (perception, action, decision-making, reasoning, etc.) should be shaped and
strengthened based on social interactions. The intersection among the three branches can
also be seen from another perspective. Social interaction has been defined as “two or more
autonomous agents co-regulating their coupling with the effect that their autonomy is not
destroyed, and their relational dynamics acquire an autonomy of their own” [47]. Following
the same authors, social interaction is qualitatively defined by the engagement between the
two agents [47]. In this respect, sociality and cognition improve human-robot interactions.
The social dimension of the coupling offers a better mutual understanding between the agents,
which may culminate in engagement, a parameter that is crucial to measure to evaluate
human-robot interaction [5]. Moreover, advanced cognitive skills enable factual autonomy
for robots, and the stronger the robot’s autonomy, the greater the level of mutuality with
the human. Three elements, therefore, delimit the context where the framework of Shared
Perception rises:

1. Interaction: reciprocal influence between two or more social/cognitive agents sharing
the same environment.

2. Sociality: relational modality based on the cognitive/affective social nature of humans.
It is enabled by the way agents perceive each other and enables mutual understanding
and engagement.

3. Cognition: the process that allows agents to perceive, make inferences, predict, act,
adapt to the environment, and interact with each other.
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2.3 The process of perception: from senses to the phenome-
nal object

The present paragraph does not aim to provide an exhaustive examination of all the accounts,
paradigms, and theories of perception. Rather, it intends to briefly offer an overview of the
perceptual process and, afterward, present perception from a phenomenological perspective.
One of the points where most theories of perception agree is that there is a difference between
the object as it exists in the physical world and the phenomenal object, as it is perceived by
the observer. Perception is the process that, gives unity and significance to sensory stimuli
and is thus responsible for the constitution of the phenomenal object. The difference between
phenomenal and physical objects appears with visual illusions. For instance, there are cases
where the phenomenal object is not perceived although the physical stimulus is given. On the
contrary, in other cases, the phenomenal object appears without its physical correspondence
being present (see Figure 2.1).

Figure 2.1 Slave Market with the Disappearing Bust of Voltaire (1940), Salvador Dali.
This painting shows the blurred relation between the phenomenal object and the physical
stimulus from which the bust of Voltaire appears. Collection of The Dalí Museum, St.
Petersburg, FL (USA); Gift of A. Reynolds Eleanor Morse. ©Salvador Dalí. Fundació
Gala-Salvador Dalí (Artists Rights Society), 2022.
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As in a movement from sensory receptors toward the organization and unity of the
phenomenal object, stimuli are processed in different directions. In the bottom-up direction,
sensory stimuli are processed to recognize the fundamental components and properties of
the object (e.g., regarding vision, colors, elementary shapes, and size). On the contrary,
top-down processing is guided by previous experience, motivations, expectations, learning,
etc. The context in which the physical object appears is an example of expectation exerting
its influence on the phenomenal object. The two movements, bottom-up and top-down, are
coordinated, integrated, and together lead to the constitution of the phenomenal object: the
object as we perceive it.

2.3.1 The organization of sensations

Although the bottom-up and the top-down processes run together, the theory of Gestalt, which
dates back to the first decades of the XX century, asserts the view of the overall shape (Gestalt)
is prominent with respect to one of the single elements composing an object. According
to Gestalt theory, the phenomenal object is not the result of the association of elementary
sensations. Sensations appear as organized in a configuration, or pattern. Following this
perspective, the top-down processing led by the shape guides the bottom-up composition of
the object rather than the opposite.

Figure 2.2 Illustrations of four laws of Gestalt. The principle of proximity affirms
that elements close to one another in time or space tend to be perceived with a sense of
togetherness rather than as singular elements. In Figure A, circles appear as unified in two
groups. Similarity states that we tend to configure elements that share similar characteristics
as a group, as it happens in Figure B, where we can distinguish the letter A only from
the different pattern of some of the circles. The principle of closure indicates that lines
tend to be unified in seeking a single, recognizable pattern, as is evident from Figure C,
where a question mark appears from the circles. Symmetry affirms that we tend to perceive
symmetrical elements together: in Figure D, it is intuitive to consider the group of 6 leaves
as formed by three couples of symmetrical leaves.
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Over the years, many principles of how information is organized have been identified.
Some of them have already been proposed by the first exponents of the current, such as
Köhler [121], Koffka [125], and Wertheimer [247]. For instance, the principle of proximity,
similarity, closure, and symmetry, are represented and explained in Figure 2.2. One of the
effects of these principles is related to the integration and segregation of information that
underlies the difference between ground and figure. In Gestalt theory, Figure and Ground
always go together since there is no one term without the other [188], an idea that is clearly
visible, for instance, from the face-vase visual illusion in Figure 2.3.

Figure 2.3 Rubin’s vase illusion. Figures and ground are inherently tight together. We
either see the two white profiles of the iCub robot or the black vase: we cannot see the two
things at the same time because the ground is necessary to see a figure.

2.3.2 The influence of experience

A different perspective is by H. Helmholtz, who theorized elementary sensations are synthe-
sized in the perception of objects through association. From this perspective, he formulated
the concept of “unconscious inference’” to recall the role of previous experience in generating
perception from sensation [92]. In this case, the term “unconscious” does not refer to an
innate or inaccessible level of the mental functions but to the automaticity of a process of
which we are not consciously aware [232].

The idea of unconscious inference has been recently evoked to explain the integration
of previous experience with sensory stimuli leading to the effect of “central tendency”
[38, 113, 195]. This phenomenon, also known with the name of “regression to the mean” or
“context dependency”, dates back to Hollingworth, who in 1910 wrote: “Judgments of time,
weight, force, brightness, extent of movement, length, area, size of angles, have all shown
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the same tendency to gravitate toward a mean magnitude, the result being that stimuli above
that point in the objective scale were underestimated and stimuli below overestimated" [93].
According to recent literature, the experience gained from exposure to previous stimuli is
integrated with sensory information of the current stimulus and leads to the final perception:
a process that, following a Bayesian account, can be described as an inference of previous
experience [109, 38, 169]. This perspective is also in line with another theory of perception
taking inspiration from Helmholtz: predictive coding. From this perspective, the inferential
process is led by the prediction of the upcoming stimulus, which reflects previous experience,
on the sensory information of the upcoming stimulus [202]. According to predictive coding,
the brain functions as a prediction machine that continuously tends to match upcoming
sensory information with expectations of the external world. These predictions operate in a
top-down direction, and the resulting perception is ruled by a mechanism of minimization of
the prediction error [40, 41].

2.3.3 The action-perception cycle

Rather than merely being passive observers, we continuously perceive the environment
and act accordingly on it. Even more, our actions shape the way we perceive the world.
The methods we employ to face our daily interactions with the world involve our bodies
in a combination of perception and action [236]. Since childhood, our bodily experience
has been the background of every learning process [58, 138]. For newborns and children,
the development of action functionality impacts the acquisition of better perceptual skills.
For instance, in the first two years of life auditory localization skills, and specifically the
minimum audible angle necessary to localize a sound, improve more rapidly the more control
infants acquire over their head movements [22]. From the same developmental perspective,
the more precise children’s motor control over hands and fingers, the more difficult objects’
properties they can discriminate, e.g., size, texture, temperature, weight, shape, etc. [29].

“Active inference” is a theory that explains the strict relation between perception and
action with the same approach of Predictive coding. A brain is a predictive machine aimed at
reducing prediction errors. Hence, to achieve its aim, its first solution is to find the prediction
fitting better reality, whereas the second is to perform actions that make predictions come
true [41, 67, 171]. Following this account, “perceptual and motor systems should not be
regarded as separate but instead as a single active inference machine that tries to predict its
sensory inputs in all domains” [1].
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2.3.4 The phenomenological approach to perception

The perceptual organization of sensations, the role of previous experience in modifying
perception, and the reciprocal influence and relation between perception and action highlight
the difference between physical and phenomenal objects. From another approach, not
empirical but phenomenological, the issue of the perceptual object is addressed differently.
By defining perception as an intentional act, Husserl underlines that

1. perceiving means always perceiving something

2. the perceived object is the same despite the different conditions and perspectives in
which it may appear, that is, despite the different sensations of it.

For perception to be an intentional act means therefore that what is perceived is the object
constituted (apperceived) from the sensations in which it appears and that perception keeps a
direct reference toward the object. Following an example of Husserl, I can see a box, not my
sensations [97].

Merleau-Ponty is another phenomenologist who devoted a significant part of his research
to perception. He advanced the thought of Husserl bringing attention to the issue of the body.
The intentional relation to what we perceive is realized through the body, which is not a mere
instrument we can divest. As humans, we can act upon the world and perceive it, only as
being a body. The body is our anchor to the world and being a body means not only that
we are in space and time. Rather, we inhabit space and time. Motor experience is our way
to get access to the world, that is, to the objects we perceive [146], and body schema is the
non-conscious constant organization responsible for our body’s operative performance in the
environment [71].

A further step in the phenomenological research on perception was made by Richir. He
focused specifically on the process that brings toward the perception of something. For Richir,
the perceived object becomes present to the subject after a process in which its meaning is
fixed and constituted, that is, takes a defined form. The process has its original roots in a
flow, which Richir called “phantasia”: a flow of appearances that occur before any semantic
fixation of meaning. The first fixation of meaning happens with a second stream of images,
memories, bodily affections, and predictions that, eventually, contribute to the constitution of
the meaning of the object [179].

As a result of this analysis, considering the phenomenological approach and the findings
from the different perceptual and cognitive accounts above-mentioned, it is possible to
provide an operational description of the perceptual process. It can be defined as the process
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that starts from sensations and brings to the constitution of a defined perceptual object
under the influence of attention, memory, motor schema, emotions, predictions, and other
representations. The concept of Shared Perception, as presented at the beginning of this
chapter (the ability to integrate perceptions of the environment, internal models of reality,
and perceptions of others), fits with the definition of the perceptual process. From a Shared
Perception perspective, representations of the world, the self, and others are integrated
together in the process, producing a unique perceptual object which condenses the meaning
of its founding representations.

2.4 Perception and social cognition

When perceiving others, we tend to integrate into our perception their behavior toward the
environment: that is their intentional relation to it. The first aim of this section is to describe
some of those mechanisms and social abilities that are involved in the process of Shared
Perception. Moll & Meltzoff [149] propose that Joint-attention, Perspective-taking, and
Theory of Mind attribution are linked in child growth, as distinct stages of ontogenetic
development. Albeit their ontogenetic connection, they represent distinct social abilities,
involving different aspects of cognition. For this reason, they will be discussed separately in
this Section. As a second aim, this Section wants to show that similar effects can be elicited
in humans during interaction both with other humans and with robots.

2.4.1 Integration of the other’s attention

Butterworth [30] defined “Gaze following” as “looking where someone else is looking”, an
ability that represents a primary step toward the development of higher social skills, such as
“Joint attention”. With respect to the former, the latter can be thought of as the co-orientation
established in triadic interactions, which are interactions among the self, another agent, and a
third element. More specifically, in Joint attention, an agent is oriented by the other’s gaze
toward a third entity (might it be an object, an event, or a person) with the mutual knowledge
that the other is being attentive to the same entity (see Figure 2.4) [62, 229].

Mundy et al. [153] suggested infants’ joint attention behaviors should be distinguished
into two groups: responses to others’ cues or spontaneous initiations. While the responding
joint attention behavior is also present in Chimpanzees, different is the case for initiating
behaviors, which seems unique for the human species [229]. At a neural level, the difference
seems to be paralleled by two different neural systems [154]. The first would be in common
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Figure 2.4 Integration of the other’s attention. An example of human-robot joint attention
elicited by the human. The robot’s attention is attracted by the other’s attention and is brought
to detect the toy train on the table.

with primates, the second, which integrates internal monitoring of one’s own motor control
and goal-directed behaviors and external monitoring of others, would be exclusive of humans
and develop starting between 4 and 6 months of age [154]. Studies highlighted the range
between 9 and 15 months as a crucial age for the development of Joint attention behaviors
[229]. At the 9th month, infants start understanding other individuals as intentional agents,
i.e., pursuing goals, and thus engaging in triadic interactions. Afterward, starting from 10-11
months, they start showing correct inhibition of responding behavior when the caregiver
looks at objects with closed eyes, revealing sufficient awareness of the referential intent
of the caregivers’ gaze [25]. Following Carpenter et al. [34], the development of joint
attention abilities covers two steps. The first is to “understand that others have some kind of
psychological stance that is different from our own”. Whereas the second is to understand
what their psychological stance consists of.

Social robots can establish indirect communication based on joint attention with their
human partners. An experiment with a stuffed-toy robot revealed that the gazing behavior
of the robot was effective in gaining the partners’ interest and drew them to look at the
same objects as the robot [256]. Following this perspective, the recent focus on social
cognition and effects induced by intersubjectivity calls for ecological experimental set-ups
[24] and social robots might meet this need [35]. Social robots ensure both experimental
validity and ecological settings. They have been used as tools to elicit and study joint
attention mechanisms (for a review, see [35]). The study and improvement of joint attention
mechanisms in children with ASD [244, 6] represents one research area in which they have
been employed. Although humans demonstrate to follow the gaze of robots, some differences
still occur between engaging in joint attention with other humans or robots (for a review, see
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[3]). Even so, this disparity has been demonstrated as strongly dependent on the sociality,
behavior, and appearance of the robot [3]. When interacting with a robot, infants of 18
months who had already seen the robot behaving socially, were more prone to follow its gaze
than those who has not had that experience [145]. Furthermore, it has been demonstrated
that for a humanoid social robot to establish joint attention, it is essential to establish eye
contact with the partner previously [122].

2.4.2 Integration of the other’s perspective

Perspective-taking generally refers to the ability to grasp the thoughts, perceptions, and
intentions of others. In this sense, it is theoretically grounded on Piaget’s research about the
development of children’s ability to coordinate different perspectives [174]. In visual and
spatial perspective-taking, the phenomenon has been defined as the ability to represent the
others’ viewpoint (i.e., what/how they see things) or where things are located with respect
to others [219]. Furthermore, to investigate the nature of cognitive mechanisms leading to
these representations, an important distinction has been made between Levels 1 and 2 of
perspective taking [63, 64], where Level 1 refers to what others represent and Level 2 to how
they represent it. Therefore, regarding visual perspective taking (VPT), Level 1 involves what
another person sees, whereas Level 2 how they see it. As a further distinction between the
two levels, Apperly & Butterfill [7] suggest that Level 1 results from an implicit mentalizing
system that develops early and processes visual information automatically and fast. On the
contrary, Level 2 would be led by a more complex, later developed, and flexible system.

A classical experimental scenario to measure Level 1 VPT involves the Dot perspective
task. Participants are usually seated in front of a screen, and the task consists of counting
the number of dots in the scene where also an avatar is present. VPT is demonstrated
by the confounding factor of the avatar’s perspective, which leads participants to respond
slower in case it differs from their own. Different results are provoked by variations in the
tasks, e.g., explicit/implicit indications to follow the avatar’s perspective, occluded view for
avatars, or directional objects (arrows) with no agency replacing avatars. As a consequence,
a debate was raised concerning whether VPT was triggered by automatic, stimulus-driven
mentalizing processes (e.g., [220, 68]), or sub-mentalizing, attention-orienting mechanisms
(e.g., [42, 73]).

To propose another approach, O’Grady et al. [163] explain apparent irreconcilable
previous findings as a result of a different experimental design. Providing further evidence to
the literature, they reject directional orienting and automatic stimulus-driven mechanisms
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as hypothetical processes underlying perspective-taking. Rather, they suggest VPT level 1
effects could be explained by spontaneous, involuntary cognitive processes dependent on
attention and, more specifically, on how much the avatar’s perspective is salient. The research
of Zhao et al. [257] might be interpreted in line with this account. Authors investigated Level
2 VPT with the use of numbers (e.g., 6 and 9) that could be read differently according to
the perspective of the subject or a second agent in the scene (see Figure for an illustration
2.5). They found that VPT effects are dependent on the strength of the trigger revealing
others’ perspectives: in ascending order the mere presence, the object-directed gaze, and the
goal-directed action toward the object.

Figure 2.5 Integration of the other’s perspective. An example of a perspective-taking
scenario. The number is perceived differently by the two agents (either 6 or 9) but each agent
is influenced by how the other perceives it (II level perspective-taking).

A similar experiment has been carried out to investigate whether a robot (Nao or Baxter)
may elicit VPT effects like those elicited by humans [258]. As in the previous study [257],
authors noted that goal-directed actions provoke stronger effects than object-directed gaze
and simple presence in the scene. Furthermore, the effect is increased if the stimulus shown
to participants consists of a video rather than a picture and is not different between the two
robots employed in the study, although never reaching the level of human-human interaction.

Applied developmental research employed social robots to strengthen perspective-taking
abilities in children with typical development [254, 253]. For instance, children with typical
development were asked to guide a Cozmo robot considering its point of view, a task
that consisted of improving their Level-2 Spatial perspective-taking skill [254]. The study
demonstrated that the more children carried on in the task, the fewer were their errors in
guiding the robot. In another study, children’s task consisted of instructing a NAO robot
to perform different game actions [253]. Although starting using an egocentric perspective,
children learned to change perspective and used the robot’s one, in particular, after the robot
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failed the first actions. As for joint attention, social robots have also been used to enhance
the social abilities of children with ASD, through the development of VPT. With the aim of
aiding children to see the world from the robot’s perspective. After creating an experimental
protocol with different interactive games and pre and post-assessment tests [250], Kaspar
robot has been used to aid children see the world from its perspective, with beneficial effects
on their VPT abilities [128].

2.4.3 Integration of the other’s actions

Besides others’ attention or perspective on the environment, also their actions toward it
may affect one’s perception. As humans, we are able to interpret others’ inner states from
how they behave. Others’ actions toward an object may reveal their intentions, beliefs, and
affective states about it, as well as some of its properties (see Figure 2.6). For instance, Kaiser
et al. [112] demonstrated that 5 to 7 years old children were already able to extract relative
weight information from merely observing videos in which an actor was lifting and carrying
a box. The perception of an actor grasping an object improves the accuracy of judgments
about the object’s size [85]. Evidence of others’ actions influencing an observer’s perception
of the environment also comes from studies related to the ecological account of affordances
[78]. According to the theory of affordances, humans do not perceive objects starting from
their physical properties, e.g., color, texture, shape, and weight, but for their functionality and
affordability to use, i.e., using a term coined by Gibson, for their affordances. Interestingly,
this functional perception of the environment may also be directed to others’ affordances (for
a review see [44]), so humans perceive the environment by scaling its features to the action
capabilities of other actors [215].

The ability to understand other’s actions finds a neuro-physiological explanation in the
mirror neuron system, a cerebral organization of neurons that activates both when one is
performing an action or when they are merely seeing others performing the same action
[183, 182]. In this way, the mirror neuron system contributes to action understanding by
activating one’s motor representation [61], implicitly mapping others’ actions onto one’s
motor schema. Interestingly, it has been demonstrated that the mirror neuron system is not
only involved in action understanding from the perspective of action recognition, i.e., what
action is performed. It also activates providing information about actors’ intentions, i.e., why
the action is performed, grasping a cup either to drink or to clean [99]; and about the action’s
vitality form, i.e., how it is performed, passing a cup either rudely or gently [50, 49].
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Figure 2.6 Integration of the other’s action. An example of how the action of others
can be integrated and used to perceive an object. The human is giving the stuffed green
dragon gently and carefully to the robot, with two hands. A robot endowed with social
perceptual abilities should perceive the stuffed dragon as something delicate or precious and,
accordingly, use two hands to handle it.

The investigation of human cognition with humanoid robots led to interesting results
about the influence of robots’ actions on human perception-action processes. For instance,
results from Kaiser et al. [112] about weight information extraction from human motion have
been reproduced by Sciutti et al. [197]. In the latter paper, human participants’ performances
in inferring the weight of an object from either human actor’s or robot’s lifting actions were
comparable. Another study investigating humans reading hidden agents’ intentions and
object properties from robot’s action is by Lastrico et al. [131]. Here, a humanoid iCub
and a Baxter robot were recorded while grasping, lifting, and handing to participants an
object to communicate a careful or not-careful movement with velocity profiles replicating
humans’ kinematics [74]. The authors found that the different robot’s motions were correctly
perceived by participants and, furthermore, elicited motor adaptation in subsequent object
manipulations.

From a neurobiological perspective, robots’ actions have been demonstrated to trigger
mirror neuron systems like humans [76]. Similar evidence was also found from EEG
measurement, both in the case of actions object-directed or not-object-directed [160]. Not
only, but human brain activations triggered by robotic movements replicating gentle and rude
action styles did not differ from those triggered by human motion with the same vitality form
[51].
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2.4.4 Integration of the others’ (attributed) inner states

Bottom-up processes are not the only way to come up with action understanding. On the
contrary, it has been argued that even in the case of simple sensory stimuli, these models
are not sufficient and require a top-down component [10, 40]. The other way for action
understanding and behavior interpretation consists of mentalization, a cognitive ability that
leads humans to attribute inner states to others. From a developmental point of view, this
capability has been hypothesized to originate from more primitive social skills. Early, in
the first months of life, a process bringing newborns from understanding that other persons
are ‘like me’ to the development of social cognitive skills starts [144]. From the ninth
month, infants start considering others as other intentional agents, an understanding they
will gradually develop over the years [226]. Social development has its foundation also
in the human-unique motivation of sharing psychological states with others. This typical
tendency leads children gradually share behavior, emotions, goals, and perceptions and thus
collaborate with others [229].

Gradual progress brings infants from joint attention capabilities to perspective-taking
[149]. In early childhood, this process reaches a critical step. The children start distinguishing
their mental states from those of others, avoiding the mere egocentric attribution of their
mental states, hence ascribing mental states to others [149, 226], a capability defined as
“Theory of Mind” [175]. More specifically, it refers to the ascription of others’ inner states
such as beliefs, intentions, desires, attitudes, and feelings about a target reference (see Figure
2.7).

Figure 2.7 Integration of the others’ (attributed) inner states. An illustration of how
others’ inner states can influence the observer’s perception of the environment. A social
robot should infer something serious, dangerous, or undesirable just happened on the screen
thanks to understanding the other’s inner states and attention.
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Attribution of inner states has been hypothesized to act as a top-down modulator of per-
ception/action processes (for a review, see [223, 10]). For instance, it has been demonstrated
that inferences about others’ intentions (reaching or withdrawing) are incorporated into the
perception of the action movement (disappearance of the movement) and that such inferences
are due to explicit knowledge about the actor’s intention and implicit information from action
kinematics [96].

The automatic tendency to follow another’s gaze is also modulated by Theory of Mind. In
one experiment, participants watched videos of people believing to interact with them. People
in videos wore a pair of glasses which were always identical, but in one condition participants
were told that glasses allowed vision whereas in another condition they did not. In spite of
an identical bottom-up stimulus, the attribution of “seeing” or “not-seeing” mental states
affected the automatic response to gaze-following [222]. Attribution of mental states also
affects the perception/action mechanisms. The same action was differently processed and
hence automatically imitated when believed to be intentionally or unintentionally performed
[134]. Therefore, these findings suggest that inner states attributed to others due to their
behavior, action or contextual information have a role not only when collaborating with them
but also in the perception of the environment shared with them.

The research on mental states attribution to robots by humans produced extensive results
over the years (for a review, see [224]). In general, it has been demonstrated that humans
ascribe internal states to robots. However, as Banks [12] shows, humans tend to implicitly
mentalize robots if their behaviors are coherent with those expressed by humans. Moreover,
the implicit ascription does not always correspond to the explicit one. Lee et al. [132]
demonstrated that adapting the robot’s nonverbal behavior to the participant’s internal states
led the participant to ascribe mental states to the robot.

Regarding the impact of inner states attribution on perception-action processes, it has
been demonstrated that the ascription of mental states to humans and robots affected the
bottom-up mechanism of gaze cueing. Independently of whether the trial face belonged to
a human or a robot, the gaze cueing effect resulted larger if participants believed the gaze
was controlled by a human [249]. Similar evidence resulted from using the event-related
potential (ERP) technique. This revealed that even at a neurobiological level human attention
was influenced by the human or the robotic gaze only if it was believed to be guided by a
human mind, hence if internal states were ascribed to the other agent [251].
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2.5 Building shared perception

The research context (Section 2.2), the description of the perceptual process (Section 2.3), and
the outline of social mechanisms involved in perception (Section 2.4) provide the foundation
for an account of Shared Perception, but to complete the framework and outline the structure
of Shared Perception another step is needed. To this aim, Section 2.5.1 define the core pillars
of the framework. Thereafter, in Section 2.5.2 the structure of Shared Perception is specified
as triangulated dynamics among three elements: the self (of the observer), the other, and the
environment.

Pillars give stability, define the skeleton of architectural structures, and allow the con-
struction of buildings. The same function is performed by the core elements listed here:
Embodiment (2.5.1.1), Intentionality (2.5.1.2), Human-Awareness (2.5.1.3), Hermeneutics
(2.5.1.4), and Sharedness (2.5.1.5). These fundamentals let Shared Perception emerges
between the (at least) two agents (observer and other) and the external world (environment).
The pillars and the structure of Shared Perception are outlined inspired by human perception.
For this reason, this framework could be considered a simplified, functional model of the
human perceptual process during social interaction. Since it is contextualized within HRI,
the role of "observer" and "other" are envisaged so that they can be applied either to robots
or humans.

2.5.1 The Basal Pillars of the framework

2.5.1.1 Embodiment

A noticeable difference exists between perceiving the environment and perceiving other
agents: the others are not mere objects in the environment. They are animated bodies situated
in the environment. At least for humans, this means that the body cannot be worn and
abandoned [146]. But this is also true for robots, in that the body identifies that robot (see
Figure 2.8). In addition, the meaning of embodiment is not only associated with the agent’s
identity. Being a body also indicates that the body is the means, the center, and the basis
of experience [146]. The body allows therefore to experience the world and is the direct
expression of internal states. Internal states appear through the body and on the body, which
does not mean they are entirely revealed on the bodily surface. Rather, their emergence and
expression are embodied. The embodiment becomes the means that makes any interaction
possible because the observer can understand others only through their body.
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Figure 2.8 Embodiment, graphic representation of the first pillar.. The body has a crucial
role in interaction also in HRI: a connection exists between the observer’s and the observed
agent’s body.

A second factor shows the difference between the perception of the environment and
others. In both cases, our senses receive numerous impressions, but the observer’s body
participates in perception differently. A deep connection exists between the body of others
and the one of the observer: a connection which is clearly shown by neurobiological evidence
of the mirror neuron system [183, 182]. Others’ movements, actions, and even bodily
reactions are received with sight, hearing, and touch but experienced by passing through the
observer’s body schema, which reflects and interprets others’ bodily experiences.

2.5.1.2 Intentionality

Intentionality is the property of internal states for their being directed toward an object (see
Figure 2.9). It is the aspect of aboutness that acts such as perceptions, intentions, beliefs,
desires, imaginations all have: that of being perceptions, beliefs, desires, imaginations
of something. From a phenomenological perspective [97], it is worth noticing that the
intentional aspect of perception implies that the object the observer perceives is not the
mental image of the object present in the world, but the real object, although perceived in
a defined modality: i.e., from a specific perspective, through a unique body, based on a
personal previous experience, with a certain affective state, etc. This entails

1. that when interacting with others, the observer can refer to the same environment the
others perceive, although from a different perspective;

2. that the observer can understand and integrate the way others relate to the environment;
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Figure 2.9 Intentionality, graphic representation of the second pillar. The fundamental
attribute of intentionality is the reference of the agent toward the external world.

3. that in reciprocal interactions and shared perceptions the observer and the others can
create a common ground and jointly act upon the same environment.

Tomasello described the latter as shared intentionality: “the ability to participate with others
in collaborative activities with shared goals and intentions” [229]. Only by having a shared
goal that keeps the same aboutness, i.e., directed toward the same object, engaging in joint
actions becomes possible.

2.5.1.3 Human-Awareness

Human awareness can be termed as the consideration the robot needs to have for humans
while interacting with them. This implies that, whatever role it holds, whether observer or
other, the interactive abilities of the robot should be designed according to human interactive
skills (see Figure 2.10). Hence, in the case of a robot "observer", it is crucial to endow
the robot with perceptual abilities to understand humans by keeping track of non-verbal
behaviors, inferring emotional states, and recognizing their gestures. Conversely, in the case
of a robot in the role of "others", human awareness involves rather the consideration the robot
should exhibit in expressing in a human-like, clear fashion its internal states. The robot’s
behavior should be understandable by human eyes, and its inner states comprehensible so
that humans might easily achieve Shared Perception with robots as partners.

One of the requirements for Shared Perception to emerge is the development of human-
aware robots: robots capable of reading human covert inner states and expressing their own
covert inner state. These abilities would humanize the interaction between humans and
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Figure 2.10 Human Awareness, graphic representation of the third pillar. The basis
for having a human-aware robot is informing the robot with models of human behavior and
mind.

robots, making it more natural and enhancing its fulfillment [196]. Therefore, although in
human-robot interaction the term agent awareness may be seen as more inclusive, speaking
about human awareness might be more correct because these skills are inspired by human
cognition and interaction and because it is the robot that needs to be humanized instead
of the human being robotized. Only if robots are developed to be aware of humans it will
be possible to foster natural HRI and make robots truly human-friendly, cooperative, and
assistive tools.

2.5.1.4 Hermeneutics

Hermeneutics can be conceived as the art of understanding, realized via interpretation [69].
In that, perception is a hermeneutical process because what we received from the senses is
experienced only as already interpreted. A pure sensory datum is never given to experience,
but necessarily appears situated in a context. The description of the perceptual process (see
Section 2.3) and the influence of sociality (see Section 2.4) shine a light on how interpretation
might occur in the Shared Perception process. Sensations are experienced insofar as they are
perceived as unified, contextualized on previous sensory history, transformed by predictions,
colored by affective states, interpreted based on others’ attention, perspectives, actions, or
inner states.

There is a wide range of active contextual information. For the sake of simplicity, the
interpretative process within Shared Perception can be summarized in three general contexts.
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Figure 2.11 Hermeneutics, graphic representation of the fourth pillar. The circle between
the interpretative direction and the incremental direction forms the human hermeneutical
approach to the world.

1. Environmental properties, including those related to time, space, and objects situated
in it.

2. Social properties connected to others, including personality, appearance, behavioral
coherence, social role, and the number of agents.

3. Self-properties, including previous perceptual history, affective states, and predictions.

Another element pointed out by hermeneutics is the circular nature of interpretation. If
each sensation is experienced based on a context, it is also true that contexts are generated
by accumulating and associating experiences. Contexts allow us to interpret sensations and
experience them. Conversely, they rise from experiences. This interdependent relation can be
figured as a circle between context and experience. Taken into our perspective, the repetition
of similar events turns into the uniformity of a context that can therefore be known and
restricted from experience. In addition, multiple perceptions can be gathered and grasped just
because they stand in the background of the same interpretative context. It becomes clear that
perception requires both elements: a context to interpret single phenomena (interpretative
direction) and the process of learning from experiences to develop a deeper understanding of
contexts or the comprehension of novel ones (incremental direction) (see Figure 2.11).

2.5.1.5 Sharedness

The idea of Sharedness, which forms the basis of Shared Perception, may have different
connotations and nuances of meaning. Taking inspiration from previous literature that
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Figure 2.12 Sharedness, graphic representation of the fifth pillar. Multiple meanings of
the word "shared" are at the basis of Shared Perception.

deepened this topic [32, 56], the present framework is grounded on four different senses of
the term ‘shared’ (see Figure 2.12).

1. The first meaning concerns the idea of disclosure and communication. From this
perspective, something shared needs to be actively, albeit not necessarily consciously,
communicated by the others to the observer.

2. The second connotation refers to something being partitioned, i.e., something that can
be divided into different components, each belonging to someone. In this sense, the
parties (observer and others) share something because each keeps an element of it.

3. The third nuance expresses the agreement and consensus reached by all parties over
what is shared. In this sense, what is shared is the common ground whereon the parties
can communicate and interact.

4. A fourth meaning implies the emotional sphere of experiencing and feeling the com-

monality of inner states with others. From this perspective, all the parties are aware of
sharing inner states with others and, accordingly, a closer connection and influence
among them is established.

Although the concept of Sharedness comprises different shades, the interactive process
in which Shared Perception takes place often allows their integration. By disclosing inner
states through their behavior (1st meaning), the parties achieve a common ground on the
environment (3rd meaning). Concurrently, a full common ground is never given. Hence the
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presence of different agents with different points of view represents the intersubjective per-
ception of the environment, partitioned into different perspectives (2nd meaning). Eventually,
the commonalities achieved through Shared Perception may be experienced by the parties
and have a positive impact on their engagement (4th meaning).

2.5.2 The dynamic composition of Shared Perception: towards a trian-
gulation

The factors outlined thus far apply to describe the process of Shared Perception. The
contextualization in socio-cognitive HRI defines the actors of the frameworks: humans and
social robots. Although Shared Perception does not ideally limit the number of actors, for the
sake of simplicity it is possible to reduce the field to one "observer" and one "other": roles that
can be interchangeably interpreted by the human or the robot. Still, to compose the structure
of Shared Perception, a third element is required: the environment. Besides the above-
mentioned meanings of "sharedness", here we encounter yet another crucial connotation of
this word underlying all the others. A "shared" environment is the ground zero of Shared
Perception: the environment that the observer and the other share. In this sense, "sharing"
does not imply, but enables the interaction among agents. As the third element of Shared
Perception, the environment generically represents the place where the two agents are, but the
term can be used to represent any third element that is present or happens in the environment,
might it be an object, an event, or a third agent.

Shared Perception is therefore founded on three elements, The observer, the other, and
the environment, each playing a different role. Respectively, the subject, the co-subject, and
the object of Shared Perception. From a dynamic point of view, Shared Perception is thus
composed (see Figure 2.13 for illustration). While the observer perceives the environment, it
concurrently perceives the other. The embodied nature of the two agents and the consequent
mind attribution to the other drive the observer to get the intentional relation of the other
toward the environment and integrate it with its own intentional relation toward it. In this
way, the other starts from being perceived by the observer and turns out to be a co-subject of
Shared Perception or, in other terms, the observer’s perception of the environment results to
be triangulated with the other.

Shared Perception can be therefore seen as a triangled integration of information: from
the world (environment), the self (observer), and other agents (other). The description of the
perceptual process (see Section 2.3) shines a light on how we integrate elements related to
the objects and the self. In addition, others can represent another source of information, as
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Figure 2.13 Illustration of the Shared Perception dynamics. Shared Perception can be
described as the observer’s perception that emerges from the triangulation among three
sources of information: the environment, the self, and the other. As a first step, the observer
perceives the environment (arrow A in blue): multiple elements (some of them listed on
the left in blue, as described in Section 2.3) take part in such a process, which is not only
a passive reception of stimuli because features referred to the object (environment) and
the observer (self) are integrated together. If another social agent is present in the same
environment and perceived by the observer (arrow B in blue), the other’s intentional relation
toward the environment (arrow C in red) is obtained by the observer and integrated into
the whole perceptual process. As described in Section 2.4, the others affect the observer’s
perception through their attention, perspective, actions, or inner states (listed on the right in
red). This way, the triangulation among the observer, the other, and the environment takes
place. Either the human or the robot could play the role of observer. The blue arrows (A and
B) that represent the observer’s perception do not move from the perceived object toward the
observer but vice versa. In this way, the active dimension of perception is underlined because
perceiving means actively contributing to the creation of the perceived object.

illustrated by the four components of others’ behavior that we integrate into the perceptual
process (see Section 2.4).

The idea of triangulation is inspired by the philosopher D. Davidson [46], according to
whom three varieties of knowledge are interdependent: knowledge of the world, of one’s
mind, and of others’ minds. Two principles rule the knowledge of other minds: the Principle
of Coherence and the Principle of Correspondence. For the former, the observer tends to
attribute logical consistency to the other’s mind. For the latter, it tends to assume that the
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other reacts to the world likewise itself. Hence, the knowledge of others appears strictly
intertwined with the knowledge of the world. It requires a constant comparison with the
world shared with them. Secondly, as it becomes clearer when considering child development,
knowledge of the cause and the content of our thoughts becomes possible only after sharing
the reaction to external stimuli with others. The knowledge of others is intertwined with the
knowledge of one’s mind as well. Knowledge about the propositional content of our thoughts
is not possible without the other two forms because propositional thought is made possible
by communication and reference to the external world. Alongside, the knowledge of others
requires the knowledge of one’s propositional thought because one can attribute thought to
others only by matching their behavior with its own propositional thought.

Inspired by the interdependency of these three varieties of knowledge, the Shared Percep-
tion dynamics can be expressed along the same core directions: the self, the environment,
and the other. As a result, through this triangulation Shared Perception produces three effects
in which all these three terms are involved.

1. Self. Subjective awareness of the environment is enhanced by others. Integrating
at least one of the four components (attention, perspective, action, mental states) of
others into the perception of the environment produces in the observer an augmented
knowledge of the environment in terms of features, objects, elements, and aspects
not yet discovered or understood. In this sense, a shared (communicated) perception
produces an augmented understanding of the environment.

2. Environment. The environment is perceived as common ground between the self and
the other. The integration and the comparison between the observer’s and the other’s
intentional relation toward the environment allow the two interactants to perceive the
environment from a common viewpoint and, therefore, to meaningfully communicate
and effectively collaborate. A shared (common) perception produces a successful
interaction.

3. Other. Understanding others is adjusted and enhanced based on previous experience
and environmental conditions. Following the Principle of Coherence, previous expe-
rience with one person can be used by the observer to understand their behavior in
a subsequent interaction. Following the Principle of Correspondence, the observer’s
personal experience with the environment can be used to assume the other’s experi-
ence toward it. Taken together, if the other enhances the observer’s perception of the
environment, it is also true that the observer understands the other through its own pre-
vious experience and through the other’s intentional relation toward the environment.
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Interacting with the shared (same) environment and having shared (common) feelings
toward it produces a deeper comprehension of others.

2.6 Conclusion

It appears that Shared Perception is a core component of human relations but, if we aim for
robots to be able to interact naturally with humans, its role should be equally important also
in HRI.

From the perspective of the robot’s observer, the interpretation of humans’ behavior
and the understanding of their intentional relation toward the environment may represent a
possible way to enhance the robot’s awareness of the environment. As well as for humans,
the ability to integrate others into perception entails several benefits. Perception is augmented
because objects not yet detected, aspects not yet understood, or events not properly interpreted
may become so. Moreover, if perceiving others improves perceiving the environment, then
also the opposite direction is true for the triangulation principle. A better perception of the
environment, as a retroactive effect, may produce a deeper understanding of others. Moreover,
thanks to this process a common ground emerges between the observer and other agents,
which is the only way for meaningful and effective interaction.

The same benefits may result from the perspective of a human observer because the
process of Shared Perception is allowed and elicited by the robot’s body, likewise the humans’.
Thanks to its body, the robot is able to express its intentional relation toward the environment,
and the human observer can understand it: the process of Shared Perception can start.

The present framework presented Shared Perception, showed its crucial role in human-
Robot interaction, outlined the elements needed for its emergence in humans and for its
development in robots, described the mechanisms of the process, listed the factors and
components that need to be integrated, and eventually, exposed its effects on the interaction.
In the context of Human-robot interaction, this framework could guide experimental research
to investigate humans’ perception while interacting with robots and, from an opposite
perspective, direct the development of robots’ socio-perceptual skills inspired by Shared
Perception.



Chapter 3

Shared Perception and Context
Dependency: a user study to investigate
the impact of a social robot on human
visual perception of space

3.1 Introduction

Human perception integrates sensory information and predictions about the external world, a
phenomenon that Helmholtz described in terms of unconscious inference [92]. Thus, sensory
inputs are influenced by the previous experience organized along internal models acting
as priors. A large body of research established that these two sources of information are
integrated through Bayesian principles in many tasks, such as perception of an object (for
a review, see [117]), visual speed [246, 214], time intervals [109, 38, 113, 184], categories
[98], lengths [195], and spatial localization [18]. The use of priors improves the reliability of
perception, reducing the overall noise, and is often considered to reflect a statistically optimal
computation [202]. The influence of priors increases in the presence of low reliability of
sensory input to cope with the uncertainty of the external world. For instance, this happens
when the noise is due to an increased vagueness of the sensory information [18] or in people
with lower perceptual acuity [38].

The phenomenon of Context Dependency, which had already been described by [93]
with the name of Central Tendency, has been modeled in terms of Bayesian prior integration
[109, 38, 195, 113, 184]. When exposed to a series of stimuli of the same type, the perception
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of one stimulus is affected by the stimuli perceived before, so their reproduction tends to
gravitate toward their arithmetic mean. Therefore, perception is affected by the previous
experience, built throughout the exposition of the entire series of stimuli. Such experience acts
as an internal predictive model, a prior, on the incoming stimuli to reduce the variability of
responses. Albeit at the expense of accuracy, prior influence produces an increased precision,
resulting in a minor perceptual error as an overall effect. Nonetheless, this beneficial effect
on individual perception could hinder the efficacy of an interaction. Relying on previous
personal experience could cause misalignment with another agent having a different prior
history, preventing, for instance, effective coordination.

Social interactions require establishing a common ground with the partner [225]. Without
it, interactants would make nonsense of any verbal or non-verbal communication, causing
misunderstandings, ambiguities, lack of coordination, or perceptual mistakes. Even though
different people might experience different perceptions of the same environment – opposite
perspectives or the most varied emotional states – they commonly succeed in interacting with
others by bridging these differences. How is this achieved when the difference between two
individuals’ perceptions stems from different prior histories?

In this study1, we address the question of the role of internal predictive models on
perception in a shared environment. Do humans maximize individual perceptual stability
using internal priors, or do they align perception with the partner to facilitate coordination by
limiting the reliance on individual priors?

Social interactions shape several human perceptual and cognitive processes. From first
months of life, selective attention is influenced by the direction of the partner’s gaze [14]. This
is the basis of an ontogenetic process that will lead to other interactive behaviors [229]. For
instance, the ability to take the perspective of another person [191, 88, 13] seems to have its
origins in this developmental process [149]. Furthermore, sociality impacts gaze movements
[178], memory processes and information encoding at different levels [204, 205, 178, 57]. It
affects the processes of perception-action underlying joint-action (e.g. the Joint Simon Effect
[120, 199]), and influences the perception of space [150, 151]. Therefore, we believe that a
social context could significantly shape also basic perceptual mechanisms, such as Context
Dependency.

To address this kind of question, which explores the concept of Shared Perception, it is
necessary to move the investigation from an individual, passive approach to an interactive
shared context. To this aim, we propose to employ a humanoid robot as an experimental
tool to investigate how perceptual mechanisms change during social interaction. Cognitive

1The outcomes of this work have been published in [141, 142].
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science research studying the influence of a social context on perception may benefit from the
use of embodied artificial agents such as robots [198]. Such complex sensory-motor devices
allow for generating controlled and precise actions in a repeatable manner. That enables the
experimenter to replicate the rigorous control of stimuli traditionally adopted in the standard
perceptual investigations within an interactive setting. This approach grants a degree of
reproducibility of the (social and non-social) stimuli, which human actors cannot guarantee.
Robots ensure an ecological layout to experimental settings thanks to their embodied presence
in the shared physical space, instead of the virtual presence of an agent shown on a screen.

Extensive evidence shows the feasibility of the approach, demonstrating that robotic
platforms can evoke social effects on humans, similar to those observed in human-human
interactions. For instance, a robot can establish joint attention with users and elicit inferences
about the intended referent [209]. Its behavior induces the same brain processes as if it
was provoked by a human agent [123]. It has also been shown that robots elicit the same
cognitive mechanisms of visual perspective-taking (VPT) that usually are elicited by human
agents. The human partner spontaneously takes the visual perspective of the robot on a
shared target, primarily when the robot directs its gaze or performs a reaching action toward
it [258]. Moreover, Joint Simon Effect has also been found during interaction with robots
[212, 216], suggesting that humans implicitly represent robots’ actions as other humans’
ones during joint actions. For other effects induced by robots, similar to those elicited by
humans see Section 2.4.

Starting from this perspective, the present user study investigated the impact of social
interaction on the perceptual processes of prior integration. Participants have been asked to
perform a perceptual task – estimating the length of a stimulus – in a social and non-social
scenario. The study aimed to assess whether human perceptual performances change and
whether participants followed the prediction of a Bayesian model of Context Dependency.
To achieve this, we employed a humanoid robot as a stimulus demonstrator to keep the same
stimulation and just manipulate the context making it either social or non-social.

3.2 Methods

The present research was conducted to evaluate if space perception changes when the
perceptual task is not performed in isolation but with another agent. More specifically, the
objective consisted of understanding whether, during social interaction, human perception
complies with the same principles of optimization it follows in individual scenarios [38, 195].
To this aim, we designed a user study to explore how the perceptual phenomenon of Context



3.2 Methods 41

Dependency is affected by interaction with a humanoid robot acting as a mechanical or social
agent, depending on the experimental session.

3.2.1 Participants’ demographics and Ethics

The experiment involved 30 participants (15 F, 15 M) over the age range of 19-46 years
(M=28, SD=6). 37% of them had already been exposed to interaction with the robot employed
for the research (iCub). Nobody was aware of the purpose of the study. Due to technical
problems, 3 participants could not finish the experiment, whereas other 2 participants had
been excluded as outliers (see Section 3.2.6.3) so that in the end the sample was composed
of 25 participants (13 F, 12 M). All of them signed a written informed consent before the
experiment and received an honorarium previously agreed of 15C for their time. The research
had been approved by the regional ethical committee (Comitato Etico Regione Liguria).

3.2.2 Procedure

The study consisted of a reproduction task and involved three counterbalanced within-subject
conditions. In two of them, the participants interacted with the robot, whereas another one
was performed individually. The experiment lasted approximately 90 minutes. Participants
had been previously informed of the duration of the experiment.

3.2.2.1 Experimental setting

Participants performed all the tasks in the same experimental room where they sat at 50
cm from a touchscreen placed on a base 75 cm tall. During the task performed with the
robot, the robot was placed on a fixed platform at 20 cm on the other side of the touchscreen,
whereas during the individual session, it was hidden behind a curtain. Figure 3.1.A-C reports
a schema of the experimental room. Another curtain hid the experimenter’s station with a
table and the computers connected to the touchscreen and to the robot. Blinds were closed
and the room was lit up with artificial light in order to ensure the same lighting conditions
for all participants.

In this study, we assessed how prior influence is altered when perceiving stimuli provided
by another agent. To this aim, we needed an agent who acted as stimuli demonstrator reliably
and consistently with all participants. We thereby employed the humanoid robot iCub [147],
which is capable both to show a social behavior and to generate controlled and precise actions
to replicate the rigorous protocol adopted in standard perceptual studies. The behavior of
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Figure 3.1 Experimental setting for reproduction task. Figure A: Setting of experimental
room: (A) iCub robot’s place, (B) participant’s place, (C) experimenter’s desk, (D) Touch-
screen. Figure B: Description of Individual length reproduction task. Two dots are presented
consecutively on a white line on a touchscreen, showing a certain length. Participants had
to keep the second dot as a reference and to touch the screen in a third point, to reproduce
the length of the stimulus. Figure C: iCub from participants’ perspective while touching the
screen to present stimuli: images were obtained from Tobii Pro Glasses 2 recording.

iCub was controlled to perform humanlike minimum jerk movements with an average hand
speed of about 0.1 m/s. Specifically, the robot iCub presented the stimuli to participants by
touching the screen and moving its torso and right arm according to models of biological
motion.

A widescreen LCD Touchscreen Monitor ELO 2002L 20-inch was employed with a
resolution of 1920x1080 px for an active area of 436.9mm x 240.7mm, at a frequency of
60Hz and Response Time of 0.02 sec. The monitor was positioned horizontally: it showed
the stimuli to participants and recorded both the touches of the robot and the responses of
participants. It was programmed with MATLAB 2019a with Psychophysics Toolbox Version
3 (PTB-3) and controlled by a Windows 10 pc. To record participants’ gaze information
during the interaction with iCub, we asked them to wear a Tobii Pro Glasses 2 (100 Hz gaze
sampling frequency).

3.2.3 Experimental Sessions

To test the experimental hypotheses, we set up different sessions. An individual task of length
reproduction served as a baseline to assess participants’ level of Context Dependency. The
other two sessions were performed with the robot acting differently, as a mechanical or social
agent, to determine how social interaction affects Context Dependency in perception.
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3.2.3.1 Individual length reproduction task

In the individual length reproduction session, the participant’s task was to reproduce the
lengths indicated by two dots presented on the screen by touching the screen on a third point
(see Figure3.1.B). Specifically, the reproduced distance between the second dot and the point
touched by participants – should be equal to the presented length. The stimuli were presented
as two consecutive red circles of 1 cm diameter lasting 0.6 s each and appearing with an
interval of 2 s. The first dot was presented at a variable distance from the left border of the
screen (0.5–3.5 cm, randomly selected). The second dot was shown at the right of the first
one, at a distance of 11 different lengths from 6 cm to 14 cm with a difference of 0.8 cm
each. Each distance was presented 6 times, randomly, for a total of 66 trials with additional 3
practice trials. After the response, another equal red disk appeared at the touched point, but
no feedback was provided about the accuracy of the response.

3.2.3.2 Length reproduction tasks with the robot

In the two main sessions of the experiment, participants interacted with the humanoid robot
iCub. iCub acted as a stimulus demonstrator touching the screen in the two endpoints of
the lengths (see Figure 3.1.C). Participants’ task was the same as in the individual length
reproduction task (see Figure 3.1.B). The touchscreen did not show any light in the points
where iCub or the participants touched. The robot was programmed to present the same
stimuli as in the individual task. Whereas participants’ task was the same in both conditions,
the behavior of the robot changed from one condition to the other. Indeed, for a correct
evaluation of the impact of sociality on perception, it was necessary to compare two conditions
where the very same sensory inputs were presented as stimuli, and only the nature of the
presenter (social vs mechanical) was manipulated. In this case, the stimuli were always
provided by the robot’s finger indicating two points on the touchscreen, with the very same
kinematics in two different conditions, "Social" and "Mechanical".

3.2.3.3 Individual Length Discrimination for perceptual ability check

Beyond the three reproduction sessions, an additional length discrimination task aimed to
test the perceptual acuity of the participants in order to find possible outliers. Three red disks
of 1 cm diameter appeared for 0.4 s in sequence with an interval of 1.5 s on a white straight
line crossing the screen at its central height. After stimulus disappearance, subjects had to
judge whether the longest segment was the first, delimited by the first and the second disk,
or the second one, delimited by the second and the third disk, by typing respectively “1” or
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“2” on a keyboard located between them and the touchscreen. Participants performed this
task for 66 trials. One of the two distances (standard) always measured 10 cm, while the
other (comparison) changed from trial to trial according to a QUEST adaptive procedure
[245]. This design represents a very simple measure of length discrimination, where priors
do not influence performance. The proportion of times in which the comparison interval
was judged longer than the standard was plotted as a function of comparison amplitude
and fit by a cumulative Gaussian distribution. The standard deviation of the fitted Gaussian
represents the perceptual threshold, which is the minimal difference between two lengths
that the participant can reliably distinguish.

3.2.4 Characterization of robot’s behavior for interaction design

Since the research aimed to study the perceptual alteration induced by sociality with the aid
of a robotic stimuli demonstrator, we decided to differentiate as much as possible the way
participants perceived the robot in the two conditions. Implicit behavioral and verbal cues
of the robot were therefore combined with explicit priming of participants about the robot’s
intentionality and skills.

In the social condition, iCub acted as an interactive social agent2. Its left eye camera
was turned on to track participants’ faces and establish mutual gaze before starting the task,
after its end, and between one trial and another, to give an implicit idea of turn-taking (see
Figure 3.2). To enhance the impression of animacy, for the entire duration of the interactive
condition, the eyelids were blinking. Moreover, iCub showed emotions with its facial LEDs:
it mostly smiled with a friendly expression, unless while touching the screen, when it was
programmed to appear focused on the task. Through the iKinGazeCtrl Module [187], iCub
also exhibited natural oculomotor coordination with its hand by directing its gaze in advance
toward the point it was going to touch. Before starting the practice trials, iCub welcomed
participants and explained to them the task (in italian): "Hi, I’m iCub! Now, we will play

together. I will touch the screen twice, and you will touch the screen a third time to replicate

the distance. Are you ready?". Then after 1/3 and 2/3 of trials, the robot incited participants
with these words: "Well done! Keep it up!" and "Come on, there are only a few more trials

left, keep focused". Finally, at the end of the task: "Thank you for having played with me! It

has taken a bit of a long time, but you are helping us a lot! See you next time". During the
speech, the mouth-LEDs simulated the lips movement in coordination with the words iCub
was saying.

2I wish to thank Alexander Mois Aroyo for his help in programming the iCub’s behaviors
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Figure 3.2 The interaction with iCub during the reproduction task. On the left, pictures
of the robot behaving mechanically taken by an external camera (above) and by the Tobii Pro
Glasses eye tracker that participants wore during the task (bottom). On the right the same
pictures with the iCub behaving socially. The head direction of the mechanical robot was
fixed and turned away from the participants, whereas the social robot could look at the screen
and exchange mutual gaze with participants.

Conversely, in the mechanical condition, iCub acted as a mechanical agent without
showing any social features. To this aim, iCub head joints were fixed so that its head
was turned away from the participants (see Figure 3.2). This behavior was designed to
show that the robot had no awareness of the environment or the task. Also, face-LEDs
were static, so the robot appeared without emotions, and the robot did not talk. The only
parts that were moved were the joints of the torso and the right arm, like a robotic arm.
To strengthen the differentiation of the two conditions, the experimenter diversified the
introductory explanation of the task when talking about the robot. Outside the experimental
room, in the social condition, the researcher introduced the session in this way: "Now

iCub is fully working, with its social intelligence on. Its cameras are switched on to look

at you and the screen. It will be showing you two positions on the touch screen. Please



3.2 Methods 46

reproduce the distance between these two points by pressing the touchscreen in a third one

at an equal distance from the last shown by the robot". Conversely, before starting the task,
participants were instructed with these words by the experimenter: "In this session, iCub’s

social intelligence is turned off. The computer is just driving its hand motions in a predefined

pattern. It will be touching two positions on the touch screen. Please, reproduce the distance

between these two points by pressing the touchscreen in a third one at an equal distance from

the last one".

3.2.5 Questionnaires

We collected data from a set of questionnaires through Google Forms. The first questionnaire
was compiled before coming in the laboratory and included some questions about participants’
previous experience with robots, the Italian version of TIPI test on participants’ personality
[36], the Autism-spectrum Quotient test (AQ test) [15, 189] to measure the degree to which
adults with normal intelligence have the traits associated with the autistic spectrum, and the
NARS questionnaire, to evaluate the attitudes of participants towards robots [221].

Another set of questionnaires was submitted after each session with the robot to check
the manipulation effect of the robot’s behavior and explicit priming. To this aim, once
participants ended each task with the robot, they were asked to go out of the room and fill a
form of questions online. On this occasion, we delivered the Inclusion of Other in Self-scale
(IOS) questionnaire [8] to assess how close to iCub participants felt during the task; the
Godspeed questionnaires with the sub-scales Anthropomorphism, Animacy, Likeability, and
Perceived Intelligence [17] and the subscales Mind experience and Mind agency of a Mind
perception test [87, 60]. We proposed all of them on a 7-points Likert scale.

At the end of the experiment, a final questionnaire for debriefing was provided to partici-
pants to collect their opinions and feedback about the tasks and the behavior of iCub.

3.2.6 Data Analysis

3.2.6.1 Length Reproduction

To investigate the phenomenon of Context Dependency, we analyzed the reproduced lengths
following a well-established approach [38, 195]. The influence of prior experience on
sensory stimuli, which occurs as the integration of different kinds of information, can also be
interpreted as the dependence of perception on its context. For instance, in visual perception
of space, perception of a visual stimulus is affected by distances experienced before, which
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cause a perceptual bias. The overall effect resulting from such integration is thereby a
regression of all perceived stimuli toward the mean of the presented stimuli, which act as
prior built during the exposition to all the set of stimuli. In this way, the long distances are
perceived as shorter than they are and vice versa. Regression Index is a direct measure of the
degree of Context Dependency: it is computed as the difference in slope between the identity
line (stimuli-correct responses) and the best linear fit of the reproduced values plotted against
the related stimulus (see Figure 3.3). The index varies from 0 (no regression) to 1 (complete
regression). Specifically, in our study, the stimuli were presented to participants so that their
arithmetic mean was 10 cm.

Figure 3.3 Illustrative plot of the data of a length reproduction task. Reproduced lengths
are plotted against the related stimuli. The regression index is calculated as the difference
between the slope of the linear fit of the ideal reproductions (identity line) and the slope of
the linear fit of the real data. For each stimulus, we also measured the average bias and the
coefficient of variation of the related responses.

The present research also aimed to assess and model the perceptual errors associated with
the phenomenon of Context Dependency, hence we portioned the total error of responses
into two parts: the bias and the coefficient of variation (CV) that respectively measured
participants’ accuracy and precision. First, a constant bias was removed from each n-th
response of each i-th stimulus (Ri,n) by subtracting the average response of all trials (Rc) and
summing the length of the average stimulus (S̄).
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Ri,n
′ = Ri,n −Rc + S̄ (3.1)

Then, for each i-th stimulus, we measured bias as the difference between the average
response for that stimulus (RMi) and the stimulus (SM), in absolute value, normalized for the
average stimulus of the entire session (S̄). In the robot sessions, since motor noise caused a
slight imprecision in the stimuli demonstration, we used the average stimulus presented by
iCub for each of the 11 lengths (SMi).

BIASi =
|RMi −SMi|

S̄
(3.2)

The CV of responses to each stimulus was calculated from the standard deviation of the
responses to that stimulus, again normalized for the average stimulus of the entire session S̄.

CVi =

√
∑(Ri

′−R̄i
′)2

N
S̄

(3.3)

Finally, the normalized total error is calculated for each stimulus as the root-mean-square
error (RMSE) from the bias and the CV

RMSEi =
√

BIAS2
i +CV 2

i (3.4)

Statistical analyses of the data related to perceptual errors in the three conditions were
conducted using the Linear Mixed Models in R with the following libraries [126, 135].

3.2.6.2 Gaze analysis

To assess possible variations in the way participants visually interacted with the robot in the
two conditions, we analyzed data of participants’ gaze gathered through a gaze-tracker, the
Tobii Pro Glasses 2, during the task performed with iCub. This information also served as
an additional behavioral check of the manipulation of iCub’s social features to understand
whether the robot was also recognized implicitly by participants. The number of times
participants looked at iCub’s face during the experiment served as a measure of participants’
involvement during the interaction. To extract these data, we first obtained the images of
the iCub’s face from Tobii recordings. Then, we trained the software of the gaze-tracker
(Tobii Pro Lab) to recognize the face of iCub as a region of interest in the recordings to
check whether participants’ looks stopped on the robot’s face (see Figure 3.6.B). This way,
we counted the percentage of times in which participants looked at iCub’s face during each
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session. We assessed such a percentage by counting the number of trials in which iCub’s
face was looked at at least once. Specifically, the measure was taken for two kinds of time
intervals: the interval between the first and the second touch of iCub (during trials) and the
interval between the second touch of iCub and the first one of the subsequent trials (between
trials).

We conducted statistical analyses to compare participants’ gaze data in the two tasks
with the robot with Jamovi 1.6.1 [106]. Data have been extracted using Tobii Pro Lab
Software and Python with Pandas Data Analysis Library. Due to technical problems with the
device and because some of the participants wore their glasses, we could analyze only 15
participants from our sample.

3.2.6.3 Perceptual ability check and outliers

We organized a perceptual task of length discrimination to assess whether participants were
able to perceive the visual stimuli reliably or whether all their performances should be
discarded (See Section 3.2.3.3). Specifically, we decided not to analyze participants who
revealed not being able to discriminate a distance smaller than 4 cm, which was the difference
between the mean stimulus of the reproduction task and the extreme ones.

We also decided to exclude participants whose performance in the reproduction tasks
exceeded the average performance of all participants of at least 2.5 times the SD of the
sample. We removed two participants from the sample after this last screening.

3.2.7 Bayesian Modeling

Context Dependency is a perceptual phenomenon that can be explained as the integration
between sensory information (each current stimulus) and priors (built on the stimuli already
perceived). Previous research demonstrated that such phenomenon can be described in a
Bayesian fashion and follow Bayesian principles of optimality [109, 38, 195, 113]. Specif-
ically, although leading to inferior accuracy in the outcome of the perceptual process, the
influence of priors enhances precision – and the overall total error – by reducing the variability
of the responses.

The present research aims therefore to analyze the influence of priors on visual perception
of space by connecting with previous studies and, for the first time, to assess the effect of
sociality on Context Dependency with a Bayesian approach.

In this perspective, following the approach proposed by [38], the perceived length of a
stimulus (Posterior) can be modeled as a Gaussian defined by µR and σR, and resulting from
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the product of other two Gaussians (see Figure 3.4): 1) the current noisy sensation of the
stimulus length, represented by the Likelihood, and 2) the Prior, which is an estimate of the
series of stimuli previously perceived.

Figure 3.4 Representation of Bayesian Model. (Modified by [38, 195].) Perception
(Posterior distribution) is described as a Gaussian resulting from the integration between the
Likelihood distribution of the stimulus of length µL with sensory precision of σL and the
Prior distribution centered in µP with a weight of σP.

For each stimulus, the Likelihood function is modeled as a Gaussian centered on the
actual length of the stimulus (µL) with standard deviation (σL) corresponding to the sensory
precision of each participant. The Prior is modeled as a Gaussian distribution with the
mean (µP), corresponding to the average stimulus of the series, and an amplitude (σP) that
represents the weight given to the prior during perception. Thus, according to the model,
given a fixed prior width, the observers’ response is derived as a function of their sensory
precision: the better it is (i.e., the narrower the likelihood distribution is), the nearer the
response will be to the sensory information. Conversely, the worse observers’ sensory
estimate is, the closer their response will move towards the prior.

Given these premises, according to Bayes’ rule, the mean and the standard deviation of
the posterior distribution can be respectively calculated as

µR = µL −
σ2

L(µL −µP)

σ2
L +σ2

P
(3.5)

σ
2
R =VAR =

σ2
Lσ2

P

σ2
L +σ2

P
(3.6)

From Eq. 3.6 it should be noted that by construction σR is smaller both than σL and σP,
evidencing the enhanced precision provided by the optimal integration. On the other side,
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considering a series of stimuli of length Si, the bias for a specific stimulus can be calculated
using Eq. 3.2 and 3.5.

BIASSi =
σ2

L(Si − S̄)
σ2

L +σ2
P

(3.7)

Whereas, considering all the series, the bias would result as

BIAS =
σ2

L

√
∑i(Si−S̄)2

N

σ2
L +σ2

P
(3.8)

From Eq. 3.6 and 3.8, the total error of the observer can be therefore calculated with 3.4.
From the data obtained in the three reproduction tasks, it has been possible to model

the perception of participants, compare our results with the previsions of the model, and
understand how social interaction impacts on the use of prior knowledge.

The analyses and the simulation of the Bayesian Model were conducted with MATLAB
2020A.

3.3 Results

This study was founded on the primary hypothesis that interaction with a social agent plays a
role in how humans perceive space. We aimed to assess whether interactive scenarios impact
human integration of visual information with prior and, if it happens, how error parameters
of perception, namely, accuracy and precision, are affected.

3.3.1 Manipulation check

From the questionnaires completed after each interaction with the robot, we could verify
whether iCub’s behaviors in the "mechanical" and "social" conditions were effectively
perceived as significantly different. Table 3.1 reports all the scores of the scales provided
in the questionnaires and the statistical results from Wilcoxon Signed-Rank tests. When
iCub behaved socially, it was perceived as significantly more anthropomorphic, animate
(see Figure 3.5), intelligent, and likable. In addition, in that condition, participants more
extensively attributed to him a mind and experience. Finally, they also felt closer to him.

Behavioral measures of gaze collected through the Tobii Pro Glasses 2 confirmed that
participants recognized the diverse behavior of iCub also implicitly, not only when asked
through questionnaires (see Figure 3.6.A). They looked at the face of the robot significantly
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Table 3.1 Manipulation check. Results from the questionnaires provided after each task with
the robot to check whether the manipulation of the robot’s behavior was correctly perceived
by participants. The fourth column reports results from Wilcoxon Signed-Rank tests to
compare the two conditions with the robot.

Feature Mechanical Social W. S-R. test
Anthropomorphism (5-35) M=12.8, SD=4.81 M=19.2, SD=5.97 Z=-3.78, p.001
Animacy (5-35) M=13.0, SD=5.41 M=21.7, SD=5.31 Z=-4.38, p.001
Likeability (5-35) M=22.0, SD=7.18 M=28.8, SD=21.6 Z=-3.72, p.001
Perceived Intelligence (5.35) M=21.6, SD=4.98 M=24.6, SD=3.79 Z=-3.18, p.005
Mind experience (4-28) M=7.04, SD=4.74 M=12.4, SD=7.66 Z=-3.55, p.001
Mind Agency (4-28) M=11.9, SD=5.49 M=16.7, SD=6.97 Z=-3.57, p.001
Inclusion of other in the
self-scale (IOS) (1-7) M=2.84, SD=1.52 M=4.44, SD=1.42 Z=-4.09, p.001

more often in the social condition than in the mechanical one, both during trials, i.e. in the
time interval between the first and the second touch of iCub (about 36% vs 8% of trials,
Wilcoxon Signed-rank test: Z=120, p<0.001), and between trials, that is in the time interval
between the second touch of iCub and the first one of the subsequent trial (about 44% vs
13% of trials, Wilcoxon Signed-Rank test Z=117, p=0.001).

Figure 3.5 Plot of the values of Godspeed subscale–Animacy. Values are plotted for each
participant in both mechanical and social conditions.
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Figure 3.6 Participants’ gaze behavior towards iCub’s face. Figure A. Bar plot of the % of
trials in which participants looked at iCub face during trials (tot trials = 66 trials) and between
one trial and another (tot intervals = 65) in the mechanical and in the social condition. Figure
B. Heatmaps of participants gaze on three representative snapshots referred to the mechanical
condition (the one above) and to the social condition (the two below).

3.3.2 Context Dependency and perceptual errors

The main goal of this study was to understand the implication of a social scenario towards the
use of priors in perception and to attempt a description of it using the Bayesian Model that, up
to now, had been employed to describe perception only in individual scenarios [38, 195, 113].
Participants exhibited a significant degree of Context Dependency (regression to the mean)
in the individual condition, with an average regression index of 0.446 (SD=0.133), signifi-
cantly larger than 0 (one-sample t-test, t(24)=16.8, p<0.001, Cohen’s d=3.36). Participants’
perception was influenced by prior knowledge, leading to overestimating the shorter stimuli
and underestimating the larger ones (see Figure 3.7).

In the two conditions with the robots, participants still showed a Context Dependency
phenomenon (M=0.263, SD=0.175, one-sample t-test, t(24)=7.86, p<0.001, Cohen’s d=1.57),
although to a significantly lower degree, as proved in a paired sample t-test between the
individual condition and the average values of the two robot conditions (t(24)= 4.65, p<0.001,
Cohen’s d=0.93). This general decrease can be partially due to the difference in the type
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Figure 3.7 Representation of the degree of Context Dependency in the three conditions.
Plots represent the slopes for each participant (thinner lines) and on average (thicker lines),
resulting from the linear fit of the reproductions in the three conditions. The regression index
is computed as the difference between the slope of the identity line (1) and the slope of the
linear fit of data.

Figure 3.8 Scatter plot of regression index values. To compare the regression index in the
two conditions with the robot, the smaller dots represent single participants in the mechanical
and the social conditions, the largest one represents the mean with error bars calculated from
the standard error of the two conditions.

of stimulation. In the individual condition, just two red disks represented the extremes of
the length to be reproduced; whereas in sessions with the robot the whole arm motion was
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visible, hence providing richer information. According to the Bayesian models described in
[109], the presence of less sensory noise would yield a lower central tendency.

Considering the two sessions with the robot separately, participants exhibited a sig-
nificantly lower degree of Context Dependency in the social-robot condition than in the
mechanical one (mech: M=0.292, SD=0.183; soc M=0.234, SD=0.165), notwithstanding the
sensory stimuli to be reproduced in the two conditions were identical (see Figure 3.7 and 3.8).
A paired t-test comparing the two robot conditions revealed a significantly lower regression
index in the social one (t(24)=2.92, p=0.007, Cohen’s d=0.584). Therefore, results indicate
that on average participants exhibited less central tendency when they were involved in an
interactive context than when they were playing alone with a computer or with a mechanical
device showing them the stimuli.

Figure 3.9 Boxplot of perceptual errors.. The values of perceptual errors (Bias, CV, and
RMSE) in the two conditions with the robot (mechanical and social) are represented for
each participant by circles. Perceptual errors have been normalized for the mean stimulus
presented in the task (10 cm).

To verify whether previous experience interacting with iCub impacted the results, we
divided all participants into two groups (if they had already performed experiments with iCub
or not). A Mixed Model ANOVA with “condition” as within factor and “previous experience”
as between factor did not reveal any significant effect of previous experience (F(1,23)=0.34,
p=0.57) on the significant variation of regression index between conditions.
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To deepen the understanding of the influence of social interaction on perception, we also
analyzed the errors of reproductions, evaluating accuracy (bias), precision (CV), and total
error (RMSE), as described in Section 3.2.6.1 (see Figure 3.9 and 3.11.A). We ran three
Linear Mixed Effect Models, with the average error (bias, CV or RMSE) for each of the
11 stimuli as a dependent variable and the condition (Individual, Mechanical, Social) as a
predictor. Furthermore, we applied random effects to the intercept at subject and stimulus
levels. The random effect at the subject level has been applied to adjust for each subject’s
baseline level of error and model intra-subject correlation of repeated measurements. The
random effect at the stimulus level served to model inter-stimulus variability in the error
parameters. Random effects were submitted to the model in this order.

Firstly, we assessed the shift of both the sessions performed with the robot from the pure
individual condition. We found a significant decrease of the bias both in the mechanical
condition (Mechanical – Individual: B= -0.019, t=-3.74, p<0.001) and in the social one
(Social – Individual: B= -0.033, t=-6.53, p<0.001). Such a difference could be partially
attributed to the richer information of the stimulus in the conditions with the robot. With
regards to the CV, it was not found any significant variation, neither with the mechanical robot
(Mechanical – Individual: B= 0.0005, t=0.818, p<0.414), nor with the social one (Social –
Individual: B= -0.00006, t=-0.099, p<0.921). Conversely, the RMSE was found significantly
lower in the social condition (Social – Individual: B= -0.007, t=-3.525, p<0.001), but not in
the mechanical one (Mechanical – Individual: B= -0.022, t=-1.112, p=0.266).

Since the two robot conditions were more comparable in terms of richness of information
of the stimuli presented by the robot, we focus more specifically on the difference between
them to assess the variation caused by sociality. Thus, we directly compared the errors of the
two sessions performed with the robot with the three Linear Mixed Effect Models. Results
revealed a significant effect of the bias (Social – Mechanical: B=-0.014, t=-2.784, p=0.005)
and of the RMSE (Social – Mechanical: B=-0.015, t=-2.407, p=0.016), which resulted lower
in the social condition. No significant effect has been found for the CV (Social – Mechanical:
B= -0.005, t=-0.911, p=0.362) (see Figure 3.9).

To further understand the variation of perceptual errors we observed between the two
tasks with the robot, we also performed a statistical analysis to find whether such a variation
might be correlated with the variation participants revealed in how they perceived iCub’s
behavior in the two conditions. For this analysis, we used both the data gathered from
questionnaires and the behavioral gaze data. Results of a Spearman correlation indicated
that a significant negative association was verified between the variation in regression index
(∆regression index: social-mechanical) and the variation in the value of anthropomorphism
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Figure 3.10 Correlation Context Dependency - Anthropomorphism. Individual variations
of the regression index in the two robot conditions are plotted as a function of the variations
in perceived anthropomorphism resulting from the Godspeed questionnaire.

(anthropomorphism: social-mechanical) ascribed to iCub in the two conditions: rs(25) =
-0.446, p=0.025 (see Figure 3.10). The same correlation of anthropomorphism was also
evident with the bias (∆bias: social-mechanical): rs(25) = -0.498, p=0.011. Such a result
revealed that the robot aspect was the most critical feature of iCub that had an impact
on perceptual data. The reason is that the Anthropomorphism scale includes questions
about participants’ impressions of the robot in terms of being fake - natural, machinelike -
humanlike, unconscious - conscious, artificial - lifelike and moving rigidly – elegantly ([17]).

3.3.3 Simulation of the Bayesian Model

In Figure 3.11, data are plotted within the Bayesian framework that models Context De-
pendency as described in Section 3.2. The circles in Figure 3.11.A correspond to single
participants’ and average CV as a function of the corresponding Bias in the three conditions.

In terms of CV (precision), no difference is visible among the three conditions. On the
contrary, considering accuracy, the bias of the three conditions decreases with this order:
individual-mechanical-social condition. A similar pattern can be identified for the total error
(RMSE), which can be seen as the distance from the axes-origin. The plot then clearly
illustrates the results of the statistical analysis.

Starting from for 4 fixed values of σP (0.5 cm, 1.5 cm, 2.5 cm, and 3.5 cm) and from σL

varying between 0 and 0.6, the continuous lines in the graph represent the model predictions
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Figure 3.11 Bayesian Model simulation. Figure A shows the portioned perceptual errors in
the three conditions: large circles represent the average normalized CV plotted against the
average normalized bias with the error bars representing the standard error; small circles are
individual participants. The four curves represent the prediction of the Bayesian model given
a fixed value of σP (0.5 cm, 1.5 cm, 2.5 cm, 3.5 cm), which represents the weight given to
the prior. Each curve has been plotted by varying σL (Weber Fraction) from 0 to 0.6. As in
[38, 195], an additive fixed non-sensory motor noise of 0.12 has been added to CV. In Figure
B, arrows represent the simulation of the model for σL, starting from the empirical data of
the regression index and from the value of σP derived by the model (Figure A). In Figure B,
it is also represented the value of RMSE simulated by the Bayesian model once given the
regression index and σL and normalized for the minimal values of RMSE related to each
value of σL.

for Bias and CV derived as described in Section 3.2.7 and normalized for the average stimulus
(10 cm). As in [195], a further constant of 1.2 cm representing the non-sensory motor noise
was also added to the CV. As shown in Figure 3.11.A, the results of all three conditions are
predicted by the model with a σP of about 1.5 cm.

In Figure 3.11.B, the 4 sigmoid lines represent the model predictions about the relations
between the regression index and σL for the same 4 fixed values of σP used in Figure 3.11.A.
The background of Figure 3.11.B is color-coded to represent the different values of RMSE
predicted by the model. The model predicts the highest values of RMSE when σL is low
and the regression index is high: basically, in the case of an ideal subject who would have
excellent eyesight but nonetheless relies heavily on its previous experience. Then, RMSE
grows again when σL is high, but the observer does not regress enough to mitigate the error
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caused by the weak eyesight. The lines derived from the model lie in the minimum of the
RMSE as evidence of optimality.

We can assess where our data would lie on the model by considering the average regres-
sion indices measured in the three different conditions of the experiment as our ordinates.
Assuming that the three conditions share the same prior width (1.5 cm, as derived in Figure
3.11.A), the model would predict that the perception in the three sessions was characterized
by different σL.

As we mentioned above, σL is considered a function of the sensory threshold. Therefore,
it depends on the observer’s visual acuity or the richness of the stimuli’s sensory information.
A higher visual acuity – or more visible stimuli – corresponds to lower σL. A difference
in the nature of the stimuli is indeed present between the individual conditions and both
the robot ones. With the robot, the stimuli were provided by a gesture of the humanoid,
whereas in the individual condition, they were indicated only by the red dots appearing on
the screen. The richer sensory information associated with the robot action might therefore
explain the lower σL in the robotic conditions. Conversely, between the Mechanical and
the Social conditions, there was no difference in the sensory information since the robot’s
movement was the same in both sessions. If we were to impose an equal σL between the
Mechanical and Social conditions – given that the participant’s acuity does not change and
neither the stimuli – the model would predict a lower prior weight (higher σP) for the social
condition. However, this hypothesis would be incompatible with the measured CV and Bias
in the social condition (see Figure 3.11.A).

In summary, the switch from mechanically-generated stimuli to stimuli generated by a
social agent – though physically identical – led to a different degree of Context Dependency in
our participants. However, a model, which predicts the level of integration of prior experience
in perception by uniquely basing the estimation on the sensory acuity of the observer or, in
turn, on the physical properties of the stimulus that can affect its visibility cannot explain,
alone, the data collected.

3.4 Discussion

3.4.1 Context Dependency in social interactions

As humans, we adopt effective strategies to reliably perceive what is around us, to interpret
others’ behavior, and, as a sum of the two things, to interact and coordinate with them in
a shared environment. To do that, we not only consider the information coming from our
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senses but also build and use internal models coming from previous experiences that help us
to cope with the uncertainty of information. If we just remain at a purely perceptual level,
perception can be seen as an inferential process where previous experience influences the
percept by acting as prior toward the incoming sensory information. But how do we use such
priors when interacting with another agent? Which influence do they have on our perception,
for example, on our levels of accuracy and precision? And what such an influence can reveal
about the way humans perceive and share the environment with others? The idea underlying
this study aimed precisely to start answering these questions.

The Bayesian model defined in Section 3.2.7 has been so far used to study prior inference
mechanisms in individual contexts of perception. No parameter is present to assess the
variation that a social scenario could bring to perception. Therefore, it should be verified
whether descriptive models of individual perception can account for the change induced by
sociality and verified in the variation of perceptual errors. To achieve this, it has been used a
humanoid robot as a reproducible and controllable stimuli demonstrator. This solution could
combine the rigorous protocol adopted in standard perceptual studies with an embodied
interactive context. First, our results indicate that the perceptual phenomenon of Context
Dependency occurs even in a social-interactive context, where a social robot shows stimuli.
This means that humans employ their priors even in a social interactive context to perceive
the world around them.

The hypothesis driving this work is that the brain puts in place mechanisms that might
favor the emergence of Shared Perception, even at the expense of selecting a sub-optimal
solution, if compared with an individual strategy. Our results show that we favor accurate
estimation of a physical stimulus – if embedded in an interaction – rather than a stable,
though less veridical perception, as the one normally derived by optimization in individual
situations produced by the central tendency mechanism. In other words, in interactive
scenarios, accuracy becomes more important than robustness to perceptual noise to allow for
the successful completion of a cooperative effort. Therefore, the current perceived stimulation
(e.g. the length of a movement) becomes less biased by the stimulus history (i.e., by the
average of the lengths previously observed) and there is a minor effect of the central tendency
strategy during the interaction.

The strategy of Context Dependency is put in place by our brain to cope with the
uncertainty of sensory input and to reduce variability at the expense of accuracy [38, 195, 113].
Theoretically, the decrease in Context Dependency observed in the social robot condition
could have been associated with increased response variability. But our results show that
the interaction with the social robot kept a positive impact on perception. With the social
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robot, participants demonstrated a significantly higher accuracy (lower bias) with respect to
the interaction with the mechanical robot and to the individual condition, without having a
negative influence on precision (CV). This implies that

• participants were more focused on each current stimulus they received from the social
robot, as revealed by their higher accuracy

• participants were not distracted by its social behavior.

Even the overall error in reproduction measured by RMSE was significantly lower in the
social condition.

Theoretically, in the Bayesian model, these results could be justified as a variation of two
parameters: σL and σP. Nevertheless, as resulted from the simulation of the model with data,
the shift between the social and the mechanical condition seems not to be explained either to
an increased σL due to more visible stimuli or higher sensory acuity, either to an increase
in σP that is a weaker prior. That being the case, the descriptive model based on individual
perception does not account for the variation induced by the interaction with the social agent.
Accordingly, in a more general model of Context Dependency, it is necessary to consider that
the inferential processes of perception are a function of the social context, which could be
described as reliance on one of the two sources of information: the current stimulus shared
with the partner, or the private internal model built upon one’s own experience. Thus, the
perceptual mechanism of Context Dependency would also depend on the shared context of
perception that may bring each partner to be more attentive towards the shared reality and to
exploit less the private internal models about the world around.

This means that, given the exact same stimuli provided by the two robots, when interacting
with the social robot, the inferential processes of perception are affected in favor of higher
reliance on sensory information and a weaker dependence on the priors. Therefore, our results
suggest the social interactivity of the context represents an additional factor modulating the
integration of prior knowledge and incoming sensory stimulation.

3.4.2 Impact of robot’s behavior

The effect of robot sociality on human distraction has been studied in different tasks and
is an open question in the field of human-robot interaction. On this issue, in [116] it has
been evidenced that the social behavior of the robot negatively affected the child’s learning
with respect to mechanical behavior. Authors hypothesized this could be due to distraction
caused by the social robot or by a higher cognitive load induced by the social interaction.
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Ingle et al. [100] found that, in a perceptual load search task, humanlike or anthropomorphic
faces distracted participants in their task. In Spatola et al. [207], the authors showed that a
threatening humanoid robot, but not a social one, increased the level of participants’ attention
during the Stroop task. From these studies, it seems therefore that the sociality of the robot
might constitute a distracting factor in diverse domains.

With respect to this hypothesis, our results seem to go in a different direction. We found
that in adults the social interaction with a humanoid robot, perceived by participants as more
humanlike, likable, intelligent, and closer, did not affect human distraction, as suggested by
the fact that the variability of responses (CV) does not increase, and the total error (RMSE)
is even lower. Comparing the present study with related research on this issue, it is worth
noticing at least three elements: the role of the robot, the cognitive load of the task, and
the demographics of participants. Specifically, in the present experiment, the perceptual
task was designed to be intrinsically interactive so that the robot was not only present in the
scene as a distractor [100], or a tutor/instructor [207], but it rather had the role of stimuli
demonstrator for participants. This could explain the reason why the robot did not constitute
a distraction for participants. Moreover, our results might also be explained by the fact
that the reproduction task of this study was not cognitively or perceptually high demanding.
Lastly, the experiment was designed to be performed by a demographic of adult participants.
Context Dependency has been already studied in visual perception of space in children
[195], but only in the individual condition. Therefore, the question of whether a social robot
distracts participants’ perception is still open for this other age range.

From a comparison between the robot’s behavior in the social condition and the mechan-
ical one, the robot’s gaze seems to play a significant role. The social session was indeed
designed to establish mutual gaze with participants between one trial and another and precede
the hand moving towards the point predetermined for the touch. The ultimate purpose was to
strengthen the belief in intentional behavior in its human partners. On the contrary, when
behaving mechanically, the robot directed its gaze in a static way toward a point that diverged
both from the participant and the touchscreen. As it was viewed by Yonezawa et al. [256],
the behavior of a robot responsive to their partners’ gaze and establishing joint attention with
them enhances both a favorable feeling of the users toward the robot and the users’ belief
of a favorable feeling of the robot toward them, if this behavior is also supported by the
eye-contact reaction. Kompatsiari et al. [122] showed the positive impact of eye contact on
human engagement in the interaction with the robot. Our results concur with these findings.
The data gathered with the questionnaires highlight a substantial explicit preference for the
social robot. They are also supported by the behavioral measures of participants’ gaze. The
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social robot’s face was looked at more often both during and between trials revealing that the
eye contact established by the robot after showing the stimulus was reciprocated and created
a social context that was appreciated by participants.

As it has been explained in Section 3.2.4, we opted for explicitly priming participants
about the robot’s intentionality and social skills. Our aim was to assess the phenomenon
of Context Dependency in a social context in comparison with a non-social situation. We
then attempted to reduce the variability of participants’ beliefs about the meaning of the
robot’s “mechanical” behavior. Given the humanoid child-like shape of the robot, in fact, we
could not exclude that some participants automatically would have anthropomorphized the
robot, also interpreting the mechanical behavior not as such, but rather as social and negative
(unfriendly or apathetic). We tried to minimize this risk with a design that foresaw congruent
explicit and implicit information about the social (or non-social) nature of the interaction. It
is relevant to note that the combination of explicit priming with the implicit behavioral cues
produced a significant difference in participants’ impressions of the robot between the two
sessions, but this difference was still very variable among participants.

Results also suggest that the change in perceived “anthropomorphism” of the iCub
between the two conditions played an important role. Indeed, the more the robot was judged
as having increased its anthropomorphism in the social condition, the less the perception in
that condition was influenced by the statistical context, with respect to the mechanical one.
So it seems that the more human-like the partner was perceived to be by participants, the less
their perceptual strategy considered the previous stimuli, in favor of the current one. Since
the robot was in both conditions a humanoid platform, moving its arm and torso according to
biological motion rules, it was the combination of gazing, facial expressions, and speech,
together with the explicit experimental framing, that drove this change in judgment, with no
change in robot shape or its arm motion kinematics.

In general, it has been demonstrated that a robot can influence human attention [244],
actions [235], and cognitive mechanisms [118], only by implicit behavioral cues. Considering
these findings, we may hypothesize that the robot’s behavior might alone impact perception
as well, in particular modulating Context Dependency. However, the present work does not
allow quantifying the relative impact of the robot’s implicit cues and explicit priming. Now
that the phenomenon has been proven, it will be interesting to verify in future studies whether
either the robot’s behavior or explicit priming alone could impact participants’ perceptions.
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3.5 Conclusion

The increased anthropomorphism and social intelligence attributed by participants and
induced by all robot’s behaviors seem thus to be the cause of a change in the perceptual
schemes of the human interactant. In both conditions, the robot provides the stimulus to
the human with the same biological movement of the arm. Still, only in the social session
the perception ceases to be merely private for the human and becomes a perception of
something shared with another agent: a Shared Perception. The context of Shared Perception
influenced the entire perceptual process so the integration of priors with sensory information
was modified in favor of a major influence of the latter. It seems like the human observers
were prone to evaluate more what was currently happening. Therefore, in Shared Perception,
what was weighted more was the shared source of information of the perceptual process, i.e.
the current stimulus, rather than the private internal model, i.e. the prior. Perception becomes
shared when another perceiving agent is considered, something that in our experiment could
happen rather with the social robot than with the mechanical one. This seems to produce a
change in our perceptual mechanisms in that others’ presence or behavior affects the entire
inferential process of perception from which our percept emerges.

Perception of something that is shared among two agents may therefore become shared
itself. However, the multiple meanings related to the concept of "shared" requires clarification.
What is shared among two agents is the real object to which perception refers and can be
"shared" at least in two senses. In the first sense, two interactants can perceive the same
(shared) stimulus coming from the environment. In this case, the real object of perception
is shared because both agents perceive it simultaneously. Accordingly, perception becomes
shared because the social context affects the way one agent perceives that thing. In the second
sense, one can perceive what the other agent shows, i.e. disclosed (shared) by the other. In
this case, the object of perception of one agent is what is shared by the other through an
action, a bodily reaction, or an expression. Therefore, the observer’s perception can be called
Shared Perception because the observer, while perceiving something in the environment,
incorporates into her/his perception the other’s relation to that thing. In our study, both
interactants were looking at the screen together. Also, it was the robot that provided the
stimuli by showing the points on the touchscreen. It was, therefore, a Shared Perception in
both senses. In the first sense of "shared", this means what the participants were aware of
seeing together with the robot, whereas in the second sense, "shared" means rather what the
robot was showing in each trial. It is true that also the mechanical robot showed stimuli to
participants. However, its action was not unified to any apparent perception since it behaved
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as a mechanical arm: it was not a perceiving agent. That is the reason why in this case it
is not possible to talk about Shared Perception. Only the social robot, thus, established a
Shared Perception, a particular relation between the two social agents which significantly
affected the observers’ perception, as the results of this study demonstrate.

The idea of a Shared Perception raises how critical the ability of self-other distinction
might also be in perception. Self-other distinction refers to the ability to distinguish oth-
ers’ representations from ours and is a key mechanism in empathy and, more generally, in
understanding others [129, 210]. In this sense, the awareness that one’s perception differs
from others makes humans adopt peculiar perceptual mechanisms associated with social
interaction. The enhanced reliance on the current stimulus associated with the variation of
Context Dependency and induced by Shared Perception might be one of these social mecha-
nisms of perception. Moreover, given the connection between the use of prior knowledge
and developmental disorders proposed by [167, 172], the study of how sociality affects prior
integration into perception becomes even more compelling.

The paradigm of Shared Perception and the study of inferential mechanisms of prior inte-
gration may bring a double outgrowth. First, in human-robot interaction, Shared Perception
becomes crucial because it is a means to explore to what extent humans are affected by robots
and interact with them as social partners. Secondarily, it may promote the development
of interactive machines designed to adapt to human abilities, and, therefore, enhance the
outcome of the interaction. In several human-robot interaction scenarios, it would be indeed
desirable to improve the quality of the interaction by reducing human perceptual errors
caused by distraction, false prediction, and uncertainty of the sensory information. That
is the case of collaborative robots in industries as well as robots in rehabilitation contexts.
Both settings where gestures repetition, distraction, and uncertainty due to an occluded
visual perspective or a deficit in sensory receptors, may adversely affect human perception.
Nevertheless, interaction with social robots used to give information in public places or
help older people in clinics and domestic environments, or even more with robots employed
in developmental contexts, would be deeply enhanced if their design and behavior were
conceived based on human social skills. So, to advance toward improved collaborations
between humans and robots, it is still needed to deepen the human perceptual mechanisms
and the way they work during interactions.



Chapter 4

A neural network analysis of Context
Dependency during social interaction

4.1 Introduction

As described in Chapter 3, Context Dependency is a perceptual phenomenon revealing
how human perception integrates sensory information and predictions about the external
world. Prediction is a fundamental function of the human brain underlying various cognitive
functions [158, 157], including visual perception [28]. Learning about the world by collecting
experience helps us to process incoming visual stimuli in a more cost-effective manner, as we
can reuse previous observations to make sense of new sensations. Predictive coding [66, 213]
is a widely accepted neuro-cognitive theory that aims to explain human cognitive functions
by prediction making. It claims that perception and sensorimotor responses stem from the
brain’s ability to constantly generate predictions about its environment and the internal states
of the body. Substantial neuro-physiological evidence is consistent with the interpretation
that prediction inference happens at all levels of perception [48]. Also, most actions could
be explained as aimed at minimizing prediction error: from learning basic skills [80] to
interacting with peers [26].

The main assumption of the predictive coding theory is that humans use near-optimal
Bayesian inference, and draw their motor-sensory decisions from combining sensory informa-
tion with prior experience. They then update their prior distribution with the new information
and use the updated prior for the next prediction about the world. As described in Chapter 3,
in Bayesian inference [109], the posterior perception depends not only on the values of the
sensory inputs and priors but also on the precision of this information. Specifically, signals
with low variance (i.e. high precision) affect the posterior more strongly whereas signals
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with higher variance (i.e. a lower precision) are less taken into account (see Figure 3.4 in
Section 3.2.7). This integration of prior and sensory information, depending on the precision
of these two signals, improves the robustness to noise in the environment.

As we demonstrated, in previous research the extent to which human perception is
influenced by priors, i.e. internal predictive models about the world, changes depending on
the social context. As social agents, human perceptual processes are inherently shaped by
social interactions (for a broader exposition, see Section 2.4). Nevertheless, the nature of
behavioral changes induced by sociality and their underlying cognitive processes are still not
well-understood [101, 91, 55, 45]. The question about the underlying neural mechanisms of
a perceptual phenomenon such as Context Dependency cannot be easily answered using a
behavioral experiment since it would require an analysis of the neural activation of the human
brain – a challenging task given its complexity. However, one way to investigate the potential
underlying mechanisms of the observed behaviors is by using a computational model that
replicates the human behavioral data using a simplified neural system – an approach that is
commonly used to investigate broad behavioral phenomenons which lack clear hypotheses
applicable at a neural level [130]. Such neural network approaches, which replicate the
human behavioral data using a simplified neural system, may provide a tool for exploring the
role of various neural mechanisms on human perception and generating new hypotheses to
be tested in neuro-biological as well as psychological studies.

From this perspective, we trained an artificial neural network on the human behavioral
data from the user study reported in Chapter 3 to better understand the neural mechanisms
underlying the condition-dependent variation of reliance on the prior that were found in the
human behavior. Specifically, this study1 focused on the mechanisms that play a role in how
humans differentiate between individual and social task conditions. The neural network used
for this purpose was originally introduced in [161] and integrates a recurrent neural network
model that learns to make predictions about the world, functioning as an internal model, and
a Bayesian inference module that combines sensory input and the predictions of the internal
model based on the precision of these two signals.

Two experiments were conducted using this model. First, we manipulate the hyperparam-
eters of the model to modify the network’s reliance on sensory and prior information. This
allowed us to investigate how such alterations affect the behavioral output of the network.

1The outcomes of this work have been published in [230] in collaboration with the Interactive Intelligence
group at Delft University of Technology, the Artificial Intelligence department at Radboud University and the
International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo. In this study, I
personally contributed to recording-managing data, interpreting-discussing results, and writing the final paper. I
wish to thank Maria Tsfasman and Anja Philippsen who took care of the Methods and the Analysis, and whom
I collaborated with for the discussion.
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Secondarily, we analyzed the neural dynamics of the trained neural network to evaluate
which mechanisms the network might be using to differentiate the three conditions using its
neural encoding.

With this design, we aimed to answer the question of which neural mechanisms might
explain the change of the reliance on the prior and sensory signals found in the social
condition. Our hypothesis is inspired by the Bayesian perspective on predictive coding.
Behavioral differences may be caused by an altered precision of the sensory and the prior
signals. For example, a more precisely perceived stimulus would cause a sharper perception
and, consequently, a higher reliance on the sensory input when performing perceptual
inference.

4.2 Methods and Training Procedure

The computational model used is introduced in Section 4.2.1. Thereafter, the description of
the training procedure is provided in Section 4.2.2 and the Network performance in Section
4.2.3.

4.2.1 The computational model

The computational model used in this study is made of two components. The first one is a
stochastic continuous-time recurrent neural network (S-CTRNN) [155] that serves as the
internal model which learns to make predictions about the world. The second is a Bayesian
inference (BI) module that integrates sensory input with the priors generated by the internal
model. This network model was first presented by Oliva et al. [161] and was used to predict
how people and chimpanzees would perform a drawing completion task in Philippsen et
al. [173]. We chosed this particular model since it both follows the principles of predictive
coding and allows us to modify the precision of the model’s prior as well as the precision of
sensory perception.

The S-CTRNN network is able to recurrently predict the mean and the variance of the
next time step of a time-dependent signal, where the mean is the estimated next value and
the variance expresses the uncertainty of this estimation. As a higher variance means that the
precision of the signal is lower, and vice versa, the estimated variance may also be described
as inverse precision. Formally, given input xt , the S-CTRNN predicts the mean µprior and
the variance σ2

prior of the sensory perception of the next time step xt+1 (following standard
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conventions, we denote scalars as x and vectors as x. However, note that for this experiment,
the input dimension D=1).

The context layer consists of 25 neurons which we found to be sufficient for well learning
the 1-dimensional task. All network connections are linear mappings with weights and no
bias terms. The input is mapped to the context layer via weights ∈ R1×25, recurrent weights
are defined ∈ R25×25, and the context layer is mapped to the mean and to the variance output
unit, respectively, via a weight matrix ∈ R25×1.

To train the network to reproduce human behavior, the backpropagation through time
algorithm is used as described by Murata et al. [155]. Specifically, during training, which
proceeds in epochs, the likelihood (expressed by the output mean and variance of the network)
that resembles the human data is maximized by updating the network weights. In other
words, the prediction error, scaled by the estimated variance, is minimized.

The likelihood L that is maximized and consists of two terms L = lnLout + lnLinit . Lout is
the likelihood that the network’s estimated mean µprior and variance σ2

prior account for the
observed input x⃗:
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where T is the total number of time steps (here, T = 22), and D is the dimensionality of
the input vector (here, D = 1).

The term Linit is used as introduced in [155] and optimizes the distance between the
activations of the recurrent layer, the so-called initial states.
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where N is the number of neurons in the context layer (here, N = 25) and S is the number
of initial states that the network should differentiate (here, one initial state per condition and
per participant is used, resulting in S = 3 · 25 = 75 initial states). u0,n

(s) refers to the initial
state (e.g., neuron activation vector at time step t = 0 for the s-th initial state of the n-th
neuron). ûn is the (learnable) mean of all initial states and Vdist (set here to σ2

init = 1e7) is the
predefined variance of the initial states.

Initial states are required because the S-CTRNN is a deterministic system. Therefore,
given one set of activations of neurons of the recurrent layer and a specific input signal,
the network would, once it is trained, always produce the same output. We wanted to train
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the model to replicate the behavior of the 25 participants in the 3 different experimental
conditions in a single model, such that we could directly compare the way that different
conditions and different participants were represented in the neural system. By representing
different participants and different conditions with different initial states, the separation of
different types of behaviors within the network dynamics can be achieved automatically
during the training process. In this way, different participants and different conditions can be
represented in the network with different neural dynamics, while reusing the same neurons
and weight matrices. Specifically, the network is provided with the information of which
training trajectory belongs to which initial state during training. Using the two likelihood
terms, the network gradually differentiates the initial states during training. Linit defines
a target variance σ2

init that determines the desired variance between different initial states
(see [155] for details). Generally, a higher variance between initial states leads to a stronger
separation of the neural dynamics of different participants and conditions.

At each time-step, the output mean and variance predicted by the internal model is fed
into the Bayesian inference module where it is combined with the raw sensory input and the
corresponding precision (Figure 4.1) depending on the ratio of sensory and prior precision.
Specifically, the mean and the variance of the posterior distribution is calculated as:

σ
2
post =

(Hsensor ·σ2
sensor) · (Hprior ·σ2

prior)

(Hsensor ·σ2
sensor)+(Hprior ·σ2

prior)
, (4.3)
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)
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The distinguishing feature of this computational model is that it allowed us to manipulate
the reliance on the prior and the sensory signal via parameters Hprior and Hsensor to simulate
a stronger or weaker reliance on either the prior or the sensory input. These two parameters
function as a factor that is multiplied with the variance of the prediction σ2

prior or with the
variance that is associated with the sensory signal σ2

sensor.
During training of the network, Hprior = Hsensor = 1 is used such that the network learns

to replicate human data. These parameters can later on be changed to higher or lower values
to modify the reliance of the model on prior or sensory signals. Specifically, choosing
Hprior > 1 increases the expected variance of the prior, leading the network to rely less on
the prior. In contrast, choosing Hprior < 1 decreases the variance and causes the network
to rely more on its learned prior while performing the task. Hprior and Hsensor can be set
independently from each other to increase or decrease the precision of either prior or sensory
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Figure 4.1 An overview of the computational model used in the present paper. A
recurrent neural network serves as the internal model that learns to predict future time steps
of a one-dimensional trajectory whose length represents the length of the stimuli.

information. Both parameters affect the ratio between the precision of sensory and prior
information and, thus, have comparable effects on the model (an increase in prior precision
has similar effects as the decrease in sensory information). Still, this study investigated such
effects to understand how perception is affected, namely in how they determine the variance
of the posterior.

4.2.2 Training the model to replicate human data

The main goal of this study was to verify whether the differences between individual and
social perception between experimental conditions can be replicated by continuous modifica-
tion of one parameter (e.g, prior reliance), and whether there might be multiple mechanisms
causing behavioral differences. As a first step to investigate these issues (see Section 4.3
and 4.4), first the model had to be trained with the human behavioral data acquired in the
behavioral study reported in Chapter 3. In this section, we describe how the network was
trained and verify that the performance of the network replicates human performance with
sufficient accuracy.

4.2.2.1 S-CTRNN training

In contrast to Oliva et at. [161] and Philippsen et al. [173], where the network was trained to
directly reproduce the presented input trajectories (i.e. input equals output of the network),
we trained the network by providing the stimuli presented to human participants as input
while the output corresponds to the participants’ reproduction of these stimuli. As such the
training mimics human learning of the task as closely as possible.

The network was trained with all the data from the human experiment which involves the
data of 25 participants who performed the task in three different conditions.
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4.2.2.2 Training data

The training data were taken from the behavioral experiment described in Chapter 3. Since
the S-CTRNN model is designed to learn the next time-step of trajectories, the lengths
from the human data had to be modified into one-dimensional trajectories consisting of
multiple time-steps. Each trajectory started at location 0 and ended at the particular length of
the stimulus. Before using the data for network training, the trajectories were normalized
such that all trajectory points fall within the range [−1,1]. Hence, after normalization, all
trajectories start at −1. The representation of stimuli as a trajectory alters the setting from
the human experiment where participants just pointed at the final position, but including
intermediate points may also provide new opportunities. As we will see later in Section 4.4,
this design allowed us to look into the length reproduction task as a dynamical process.

Both the presented stimuli and the lengths reproduced by participants were converted into
multi-step trajectories in the same way. While the presented trajectories served directly as
network input, the reproduced lengths were used for the prediction error computation during
network training.

4.2.2.3 Training parameters

As motivated above, the model had different initial states for each participant and condition,
resulting in 75 = 25 · 3 initial states. These initial states were automatically determined
during training, using a high maximum initial state variance (σ2

init = 1e7) to ensure that the
neural dynamics of different conditions and participants were sufficiently separated from
each other.

The parameters Hprior and Hsensor were set to 1 during network training while the number
of neurons in the recurrent network layer was set to 25. The network was trained for 15000
epochs.

Ten networks were trained independently from each other, using different randomly
chosen sets of initial weights. By investigating the performance of a set of networks, we can
ensure that the results that we find are reliable and not caused by random effects.

4.2.2.4 Network behavior generation

Similar to the way that the human experiment was conducted, we tested the performance of
the network by providing it with trajectories of different lengths. This test set corresponded to
the data that was presented to the human participants. To generate the behavior for a specific
participant and experimental condition, the corresponding initial state of the network was
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used to initialize the activations of the recurrent network layer. Then, the network’s output,
given the input, was computed to generate the model’s behavior. From the trajectories that the
network produced in response to the presented stimuli, the reproduced lengths were computed
as the absolute difference between the start and end points of the reproduced trajectory. A
linear model was fit to the reproduced lengths in order to compute the regression index.
Additionally, the neural activation history of the recurrent layer was recorded and used for
neural representations analysis in Section 4.4. The resulting neural activation data consisted
of the activation for each neuron of the model for each time-step, trajectory, participant, and
condition.

4.2.3 Network performance

A comparison between the human behavioral data and the performance of a trained network
for six randomly chosen participants in the three different conditions is presented in Figure
4.2. The x-axis shows the presented lengths, the y-axis the length reproduced by the human
participants (left) or by the model when using the corresponding initial state (right). Lines in
the right plot show the result of the linear regression that was performed in order to calculate
the regression index.

It can be observed that the model is able to accurately replicate the mean of the human
data. Note that for generating the results in this figure only the mean without the uncertainty
was generated by the model to get a better impression of the model’s behavior. Therefore,
the variability of the human data is not replicated on the right side of Figure 4.2.

A direct comparison of the regression indices of the model behavior with the correspond-
ing regression indices of the human behavior is shown in Figure 4.3 including the data of
all ten networks. It can be observed that the model’s behavior slightly diverges from human
behavior, however, the large majority of stimulus replications accurately correspond to the
regression index of the corresponding human participant. It can also be seen that in the
individual condition, a stronger regression towards the prior is taking place than in the other
conditions in the human data as well as in the model data.

Black dots in Figure 4.4 show the subject-wise difference between individual–mechanical,
individual–social, and mechanical–social conditions, an important measure to visualize
differences between conditions also used in Chapter 3. This distance is the highest for
individual–social, indicating that the regression index is significantly higher in the individual
condition compared to the social condition. The mechanical–social difference is smaller, but
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Figure 4.2 Illustrative plots of reproduced lengths against presented lengths for orig-
inal human data and model data. Lengths were calculated in the normalized space of
trajectories. Original human data (left) is compared with the corresponding mean predictions
produced by one example network (right) for six randomly chosen participants. Lines in both
plots correspond to the regression lines extracted from the human data or the model data,
respectively. The black line shows the identity line.
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Figure 4.3 Comparison between original data and model data in terms of regression
index. The regression indices of the human plotted against the regression indices of all
trained networks for reproducing all training data.

significantly higher than zero, indicating that the regression indices of the mechanical and
the social condition lie closer together.

Purple dots in Figure 4.4 show the same analysis conducted for the model results. It can
be observed that the trends in the model behavior well replicate the human behavior, but the
variability is slightly reduced in the model data compared to the human data. Specifically,
the standard deviation of the model data is on average 7% smaller than in the human data.
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Furthermore, there is a small significant difference between the model and the human data in
the individual–mechanical condition difference.

The p-values, computed on all ten networks, are shown in Figure 4.4 in detail and were
determined using linear mixed effect models, describing the subject-wise difference by either
the conditions (e.g. individual–mechanical vs. individual social) or by the agent (i.e. human
vs. model) with the subject ID as a random effect.

Figure 4.4 Subject-wise differences between different conditions. Differences are com-
pared for human data (black) and model data (magenta) for one trained example network.
Boxes indicate the mean, and 80% percentile of the data, fliers indicate the standard deviation.
Model data reproduce the main trends of the data, but with slightly lower variability. The
p-values were computed using the results of all ten networks, i.e. on 25 samples from the
human participants, and 250 (= 10 ·25) samples from the models.

Overall, this analysis demonstrated that the model is able to replicate the important trends
that are present in human data. Based on the trained models, we conducted two sets of
analyses we call here Experiment 1 (section 4.3) and Experiment 2 (section 4.4). Experiment
1 aimed to answer the question whether it was possible to replicate the human results in
different conditions with a continuous change of one parameter in the model. In short,
Experiment 1 looked at how the model performed in the length reproduction task depending
on its prior reliance. Experiment 2 investigated how the differences between conditions were
represented in the neural activations of the network. It allowed us to look deeper into the
mechanisms behind the differences in model performance and verify whether there are other
processes at stake.
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4.3 Experiment 1: Changes in the reliance on prior and
sensory information

In the human experiment reported in Chapter 3, it was found that participants tended more
strongly towards the prior in the individual condition, and more accurately replicated the
stimuli in the social robot condition. The mechanical robot condition laid in between. This
finding suggests that there might exist a continuum between the three conditions from the
individual condition to the social condition via the mechanical condition.

The parameters Hprior and Hsensor of the computational model we are using here (see
Section 4.2.1) can be used to implement such a continuous change as they modify the ratio
to which sensory information and predictions are integrated while replicating the perceived
lengths.

In this section, we tested the hypothesis that a continuous change of Hprior or Hsensor

respectively can replicate changes in the human behavior between the individual, mechanical
robot, and social robot condition. We first modified only Hprior (Section 4.3.1); then, we
tested whether modifying Hsensor had analogous effects (Section 4.3.2).

4.3.1 Results Experiment 1A: Modifying the reliance on prior predic-
tions

In the human experiment, the weakest reliance on the prior was found in the social robot
condition. Therefore, our expectation was that when gradually increasing the model’s reliance
on the prior, a network behavior that was formerly replicating the social robot condition
would produce behavioral results which would be closer first to the mechanical robot (with
moderate increase of prior reliance) and then to individual conditions (strong increase of
prior reliance). If this hypothesis was correct, it should have been possible to find values of
Hprior such that the network behavior replicated the human behavior in the individual and
mechanical robot condition, while only using the initial states of the social robot condition.

To test this idea, in this experiment, we used only a subset of the trained network
dynamics, namely, the 25 initial states that are associated with the social robot condition.
Then, we tested whether it was possible to replicate the results of the other two conditions by
adjusting Hprior.

The network’s behavior was tested by using a wide range of values between 0.5 and
0.05 for the Hprior parameter. For each of the different values of Hprior the network behavior
was recorded. Similarly to Figure 4.4, subject-wise differences between conditions were
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computed as a measure of how well the replicated lengths fit human data. Specifically, the
difference was computed between the replicated length of the initial state of the social robot
condition with Hprior = 1, and the replicated length of the initial state of the social robot
condition with Hprior = x where x ∈ {0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.09, 0.08,
0.07, 0.06, 0.05}. These values were selected in an iterative way based on how variable the
behavior changed in a certain parameter region.

Figure 4.5a shows the median difference of all ten networks (different colors refer to
different networks). The horizontal dashed lines in Figure 4.5 indicate the subject-wise
difference between the social robot condition and the mechanical robot condition in the
human data and the difference between the social robot condition and the individual condition
in the human data. It can be observed that a stronger prior (i.e. a smaller value of Hprior)
gradually increases this ratio, that is, with the increased prior reliance the produced lengths
tend more strongly towards the mean of the data. A value of Hprior = 0.4 closely matches
the social–mechanical difference of the human data, and Hprior = 0.1 closely replicates the
social–individual difference of the human data.
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Figure 4.5 Performance of the model as a function of Hprior. Difference between the
regression index of networks produced using the 25 initial states of the social condition with
regular prior reliance (Hprior = 1) and the regression index produced with the same initial
states using increased (Hprior < 1) prior reliance. (a) For all ten networks the median of the
subject-wise difference is displayed. Horizontal lines mark the zero line, the average subject-
wise difference in the regression index between the social and the mechanical condition
in human data, and the average subject-wise difference in regression index between the
social and the individual condition. (b) Detailed results including all subject data for a single
network. The subject-wise differences between the behavior using social initial states of
H = 1 vs. H = x for different x values is displayed.

Figure 4.5b shows the subject-wise differences between conditions for a few selected
values of Hprior for the data from a single network. This plot allows us to inspect not only
the median but also the variability between different participants. It can be observed that
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although the median for Hprior = 0.4 and Hprior = 0.1 match the median of the human data,
the standard deviation is much larger in the human data. However, the further away the value
of Hprior is from the standard value of Hprior = 1, the larger the standard deviation becomes.
We tested statistically whether there is a difference between the subject-wise difference
reproduced by the model in the different conditions and the corresponding human data. For
this purpose, we used linear mixed effect models describing the subject-wise difference as
a function of the identity of the agent (i.e. whether it is human data or model data) using
the subject ID and the network ID as random effects. The subject-wise difference between
Hprior = 1 and Hprior = 0.4 and between Hprior = 1 and Hprior = 0.1 showed no significant
difference when compared to the social–mechanical difference or the social–individual
difference in human data, respectively (p > .05).

The results demonstrate that it is possible to replicate the individual and the mechanical
condition using the initial states of the social condition, i.e. we can switch from weak towards
strong prior reliance. Theoretically, we could also go into the opposite direction, trying to
modify the network behavior by moving from a strong towards a weak prior, i.e., replicate the
mechanical and the social condition, starting from the tablet condition. However, executing
the experiment showed that the subject-wise differences of the tablet condition did not change
regardless of the Hprior. Specifically, even when changing Hprior to a value close to 0, the
subject-wise difference remains the same. The reason for this finding is that the networks
were trained to replicate human data and not to replicate the actual presented stimuli. Human
subjects do not have perfect precision, thus, the human data that the network was trained
with also does not reflect the actual presented stimuli. Therefore, the network is not able to
achieve higher accuracy than the human subjects even if the attention is shifted to the sensory
signal. Demonstrating the shift from a stronger towards a weaker prior, thus, is not possible
with the current experimental design. In contrast, it is always possible to shift towards a
more strong prior as this does not require any knowledge about the presented stimuli but is
implicitly known in the model. Therefore, we focus in this section on demonstrating the shift
from a weak to a strong prior.

4.3.2 Results Experiment 1B: Modifying the reliance on sensory infor-
mation

Section 4.3.1 demonstrated that changing Hprior can replicate the behavioral differences
between the conditions. This parameter can be intuitively interpreted as the inverse precision
of the network’s prior. However, modifying the inverse precision of the sensory input Hsensor
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could yield similar results. To test whether a change in Hprior or Hsensor better explain the
human data, we repeated Experiment 1A, modifying Hsensor instead of Hprior. As explained
above, the result of the Bayesian inference is mainly affected by the ratio of Hsensor and
Hprior, but the absolute values of the two parameters change the variance of the posterior.

To evaluate whether changes of Hsensor equally allow us to change the behavioral output
of the network according to the human conditions, we selected values of Hsensor such that
the ratio between sensory and prior precision is the same as in Experiment 1A. For example,
setting Hprior = 0.5 leads to a ratio between Hprior and Hsensor of 0.5 : 1 = 0.5. The same
ratio of 0.5 can be achieved by keeping Hprior = 1 but increasing Hsensor to a value of 2.
Thus, the corresponding value of Hsensor that produces the same ratio as the Hprior value that
was used in Experiment 1A can be computed as Hsensor = H−1

prior.
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Figure 4.6 Performance of the model as a function of Hsensor. Difference between the
regression index of networks produced using the 25 initial states of the social condition with
regular reliance on sensory information (Hsensor = 1) and the regression index produced with
the same initial states using decreased (Hprior > 1) sensory reliance. (a) For all ten networks
the median of the subject-wise difference is displayed. Horizontal lines from top to bottom
mark as indicated the zero line, the average subject-wise difference in the regression index
between the social and the mechanical condition in human data, and the average subject-wise
difference in regression index between the social and the individual condition. (b) Detailed
results including all subject data for a single network. The subject-wise differences between
the behavior using social initial states of H = 1 vs. H = x for different x values is displayed
for Hsensor.

The results are displayed in Figure 4.6a. Like in Experiment 1A, the figure shows the
median difference of all ten networks (different colors refer to different networks) between
the produced lengths observed with Hsensor = 1 and with Hsensor set to the values displayed
on the x-axis of Figure 4.6. Again, the horizontal dashed lines indicate the difference between
the social robot condition and the mechanical robot condition in the human data and the
difference between the social robot condition and the individual condition in the human data.
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While in Figure 4.5a the value of H was gradually decreased to increase the reliance on the
prior signal, in Figure 4.6a the value of Hsensor is gradually increased to decrease the reliance
on the sensory signal.

The results show a similar change of the difference with gradual modification of the pa-
rameter. The human data differences are replicated with Hsensor = 2.5 for social––mechanical
and with Hsensor = 10 for social––individual. With these values, the exact same precision
ratio between prior and sensory precision is achieved as with the corresponding values found
in Experiment 1A. The corresponding plot of a single network 4.6b shows identical results to
Figure 4.5b, indicating that in the present experiment a modification of Hsensor or Hprior lead
to equivalent behavior changes.

We tested whether the difference between human and model data is significant for the
individual parameter conditions analogously to the procedure described in Section 4.3.1.
Also here, no significant differences were found for the above parameter values (p > .05),
indicating that the model data well describe human data.

4.3.3 Discussion Experiment 1

The results of Experiment 1 indicated that reliance on the prior could account for the
differences we saw in the behavioral differences between the three conditions. Specifically,
we tested whether it was possible to gradually modify the network’s behavioral output from
weak prior reliance as it was found in the social robot condition of the human data towards a
strong prior reliance as it was found in the individual condition of the human data. We found
that a gradual shift of Hprior as well as of Hsensor could switch the network’s behavior from
the social condition to the other two conditions, indicating that all observed behaviors could
be explainable based on the same underlying mechanism.

Notably, the same behavior could also be achieved by changing the reliance on sensory
information instead of prior information. Further, while Experiment 1A and 1B could in
principle yield differences in the variances of the behavioral output, no significant difference
could be observed between the two mechanisms. Thus only the ratio, not the absolute values
of Hprior and Hsensor, influenced the behavioral outcomes.

One reason why we did not find any differences depending on the absolute amplitudes of
Hprior and Hsensor might be the fact that the task was too simple and thus easily learned by the
network. A more complex encoding of the experimental data, which also takes into account
the variability of the generated output could help to make differences between Experiment
1A and 1B visible. Here, the variance is estimated but not explicitly modeled in the data as



4.4 Experiment 2: Analysis of internal network dynamics 81

a sample is drawn from the estimated posterior distribution. Modifying the input encoding
to explicitly model the variance of the signal, using for example population coding [77],
could help to investigate whether differences between changes in prior and sensory reliance
might exist. For the purpose of our investigation, however, the current implementation is
sufficient as we were rather interested in the possibility to model the differences using a
single parameter than in the differences between modifying prior or sensory precision.

In conclusion, Experiment 1 demonstrated that a gradual change of the reliance on
prior or sensory information can replicate the changes that we observed in the human
data. Therefore, it seems possible that human cognition makes use of the same underlying
cognitive mechanism regardless of the situational context, but modifies this mechanism along
a continuum to fit situational constraints. Specifically, the precision associated with the
sensory and prior signal might be modified depending on the amount of social information
that is present in the experienced situation.

These experiments demonstrated that changes of the precision of sensory and prior
signals might be directly connected to the observed behavioral changes. However, this
is only one possible explanation. In the following subsection, we explore the alternative
hypothesis, namely, that there are fundamentally different cognitive mechanisms underlying
the behavioral change observable between the three experimental conditions.

4.4 Experiment 2: Analysis of internal network dynamics

While the results obtained in Experiment 1 render it plausible that the same cognitive mecha-
nisms might underlie the behaviors observed in all conditions of the human experiment, the
differences among conditions in the human experiment might be caused by fundamentally
different underlying cognitive mechanisms. For example, the difference between the individ-
ual condition and the two robot conditions seems to be of different nature than the change
between the mechanical and social robot condition. In the first case, it was not a change in the
social, but in the perceptual domain: whether the extremes of the presented lengths simply
appeared on a screen or were indicated by the finger of the robot. The difference between
the mechanical and the social robot condition, by contrast, was more subtle as the visual
stimulus was identical whereas the change occurred in the social (or not-social) context of
the task. Humans might thus use fundamentally different cognitive mechanisms to switch
between the individual and the two robot conditions.

In this section, we investigated how the network model differentiated the three conditions,
looking specifically at change in activations of neurons in the recurrent layer while replicating
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the three conditions. Notably, differences between the experimental conditions were coded in
our model only in terms of the behavior (i.e. the reproduced lengths). Differences in the way
of presentation that were present in the human experiment (e.g. whether points appear on a
screen or a robot touches the screen) were not explicitly modeled in the network. Thus, if we
found that the network coded the responses in the three conditions differently, this indicated
that this information should have been coded in the behavioral data of the human experiment,
and the network automatically extracted them in order to solve the learning task.

Unlike Experiment 1, this analysis did not require us to modify any hyperparameter.
Instead, we directly observed how the network self-organizes its structure to accommodate
the dynamics caused by the three different experimental conditions. Since these are all trained
within the same network, we could directly compare their corresponding network dynamics.
The core question was thus whether the network dynamics reflected the differences between
the individual and the robot conditions and between the two robot conditions, respectively, in
different ways.

Therefore, we investigated how different conditions were represented in the internal
activations of the neurons of the neural networks over the course of the trajectory (i.e. from
time step 0 to time step 21). The activations at one point in time were a 25-dimensional
vector containing the activation values of all the neurons in the recurrent network layer of
the internal model. These vectors were generated for each time step, and for all human
behavioral data, using the corresponding initial state of the participant and the condition in
which the behavior was presented.

4.4.1 Results Experiment 2

An illustration of the network activations of time step 0 and time step 21 can be found in
Figure 4.7. The activations are shown in the two-dimensional space generated via principal
component analysis (PCA) from the original 25-dimensional vectors. In the left plot, the
activations at time step 0 are shown, which correspond to the 75 initial states. Colored
symbols label different experimental conditions, the black symbols and ellipses show the
mean and the covariance of the three conditions. The right plot shows the activations at time
step 21. Note that more points are visible in the right plot compared to the left plot because
at t = 0 the trajectories still could not be differentiated depending on their length whereas
this differentiation is reflected in the network activations at t = 21.

Qualitatively, it can be observed that the mean and the covariances are similar for the
mechanical and social robot conditions, in the first as well as in the last time step. This result
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Figure 4.7 Plots resulting from Principal Component Analysis. The first two principal
components of the network activation traces of one example network (capturing 83% of the
variance), at the first time step (left) and at the last time step (right). The black symbols show
the mean, ellipses the covariances of the points of the corresponding experimental conditions.

is to be expected because the behavior in these two conditions was more similar to each
other. However, a difference between the first and the last time step can be observed in the
covariances: in the first time step, the covariance is larger in the individual condition than in
the robot conditions, whereas in the last time step the covariance appears relatively smaller
in the individual conditions.

This covariance indicates how variable the internal activations are in each of the three
experimental conditions. A higher variability at time step t indicates that the differences that
arise between participants in this condition are coded more strongly in the network dynamics
at this point in time.

Figure 4.7 shows only the results of a single trained network. To investigate whether
there is a systematic change of variability over the course of time, we quantitatively measured
the variability in the network activations of the three experimental conditions for all the ten
networks across time.

To compute the variability between the activations of different participants in the network,
we calculated the distances of the networks’ activations within the three conditions as
visualized in the scheme in Figure 4.8. In essence, activations were grouped into different
categories depending on the length of the stimuli (eleven length categories were selected
by identifying the most common presented lengths in the human data, namely, lengths
which were presented more than 100 times during the whole experiment) and distances
are computed only within the length categories. The reason for this procedure was that
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Figure 4.8 Illustration of how the pairwise distances across participants were computed
from the neural activation traces. Each circle represents one trajectory of 25×22 where
25 is the number of neurons and 22 is the number of time steps. Data is split into 11 length
categories and the pairwise distances within conditions are computed for each length category
individually and later averaged, such that differences between lengths do not affect the final
measure. The final measure, thus, shows for each time step the average distance between
participants (see Figure 4.9).

we wanted to measure the differences in how different participants were represented in
the network, but not differences in the reproduced lengths that also affected the network
activations. Thus, the distances between all two activation vectors x⃗ and y⃗ of the same
length category and experimental condition are computed as 1/N ·∑i(

√
(xi − yi)2). The

results are shown in Figure 4.9. This plot shows the mean and standard error across the ten
networks of the variability between activations of the same experimental condition. In line
with the qualitative results in Figure 4.7, it can be observed that the individual condition
has the highest variability in the beginning and the lowest variability in the end of trajectory
generation.

The differences between the variability of the individual condition and the social condition
are statistically significant in time step t = 0 (p < .05, Rm2=.16) as well as in time step t = 21
(p<.05, R2=.16) when modeling the reproduced distance with linear mixed effect models and
condition as fixed effect and network ID as random effect.
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Figure 4.9 Variability between the activations of different participants in the network.
Mean and standard error across networks of the average pairwise distances between the
neural activation traces of the three different conditions (see Figure 4.8). Activations were
normalized to [0,1] independently for each network beforehand.

4.4.2 Discussion Experiment 2

Results from this experiment provide access to the differences that exist among the individual,
the mechanical and the social conditions in the generation of the trajectories. In particular,
we suggest that the variability of network activations for the three conditions throughout
the 22-time steps allows for a deeper understanding of how different the encoding of the
network is across the three conditions for the entire generation process of the trajectories.
Specifically, if the variability is high at time step 0, this indicates that the network mainly
used differences in the encoding of the initial state of the network for differentiating the
conditions when starting with the trajectory generation. On the contrary, if the variability
is high at the last time step of the trajectory generation, this suggests that the differences
between the conditions were mainly affected by the differences in the input data.

We observed that at the beginning, the individual condition shows higher variability
than the social condition. Conversely, in the end, the variability is higher for the social as
compared to the individual condition. For replicating the individual condition, the network
mainly relied on information about the initial state, i.e., the network’s prior information,
whereas the social condition is affected more strongly by the input data that is presented
during trajectory generation. This finding suggests that the neural network used different
mechanisms to differentiate between the participants, depending on the condition.
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While Experiment 1 demonstrated that the differences between the conditions could be
explainable via a single unified mechanism, Experiment 2 suggested that the network might
have used two fundamentally different strategies to encode the individual vs. the social
condition, indicating that also multiple distinct mechanisms could be at play.

Firstly, the network relied on the differences in the initial states. In the experiment, this
strategy could correspond to using context information about the perceptual task (top-down
strategy). The second mechanism that the network used was the input signal (bottom-up
strategy).

For what concerns the bottom-up strategy, in the behavioral experiment, the sensory
information was richer in the case of the conditions with the robot compared to the individual
condition (the robot’s finger movements vs. a dot on the screen). It is, therefore, plausible
that the participant relied more strongly on this richer information in the case of the two
robot conditions. For what concerns the top-down strategy, the network shows a similar
trend using more information about the input signal for generating the trajectories in the
social condition compared to the other conditions (mechanical and individual conditions).
This finding makes it plausible that such an interplay of two mechanisms could explain the
behavioral differences.

Note that the input signal provided to the network input solely included the behavioral
output, i.e., there was no difference in the richness of the signal in the computational study
depending on the conditions. This limitation, however, is at the same time a strength of the
computational model: the results hint at differences in the behavioral trajectories, although
no confounding factors were present in the input signal. Still, it would be important in the
future to verify this finding, extending the experiment to explicitly include factors such as
the perceptual richness of the signal.

4.5 General Discussion

The aim of this study was to investigate how behavioral differences caused by differences
in the social context could be replicated in a neural system, in order to generate hypotheses
about the underlying cognitive mechanisms. For this purpose, we trained a neural network
with human behavioral data of an experiment studying visual perception of space where three
different conditions were tested ranging from an individual to a social task setting.

First, we demonstrated that the hyperparameters of the computational model that control
the precision of the sensory and prior signal, respectively, can account for the differences
among the experimental conditions (Experiment 1). Specifically, we found that altering the
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precision of the prior as well as the precision of sensory input could replicate the behavioral
differences between the three conditions: a stronger reliance on the prior, as well as a weaker
reliance on sensory input, equally shifted the behavioral output of the network from the
human behavior in the social condition towards the behavior in the individual condition, in
line with the finding of Chapter 3 that participants tended more towards the mean in the
individual condition. This finding makes it plausible that the same cognitive mechanism could
be underlying the perceptual differences between the three conditions. Alternatively, different
mechanisms could be intervening jointly in the same inferential process of perception.

The advantage of the network modeling study is that we could analyze the network’s
internal representation in order to understand how it performed the task at the level of neuron
activities. Therefore, in a second experiment we analyzed how the differences between the
conditions were coded in the neural dynamics of the network. In this second experiment,
we did not artificially modify the network’s mechanics (as in Experiment 1) but directly
explored how the network internally represented and differentiated the three experimental
conditions. The findings support the hypothesis of a plurality of phenomena affecting
the visual perception of space. We found that the variations between the three conditions
emerged at different moments in time, suggesting that different mechanisms are at play. At
the beginning of trajectory reproduction, more information about the nonsocial conditions
affected the network representation. At the end of the reproduction, the representation is
strongly driven by the differences in the social conditions, potentially due to the richer visual
input that was present in this task.

The findings of this second experiment indicate that the balance between sensory and
prior information which we demonstrated in Experiment 1 only tells a part of the story. All
three experimental conditions were differentiated in the neural encoding in ways that are
intuitively explainable by the design of the human behavioral experiment (i.e. the richer
sensory information provided in the robot conditions, see Section 4.4.2). The network solves
the different conditions in different ways although it did not know what differentiated the
individual and the robot conditions in the first place. This finding is interesting because
it indicates that the human behavior alone was sufficient to let network dynamics emerge
differently between the conditions, although the task design was exactly the same in all three
conditions in the computational study.
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4.6 Conclusion

As explained in Chapter 2, Shared Perception is an important aspect affecting our perception
of the world. Here, as already emphasized in Chapter 3, the word “shared” could mean
"disclosed to others" or “experienced in common” (see also [56]). Specifically, these two
meanings referred to the stimulus that was communicated by the robot and experienced
both by the robot and the participant. The framework of Chapter 2 described three elements
involved in the process of Shared Perception: the environment (here the sensory stimulus),
the self (the priors), and the other (the social context created by the robot’s social behaviors).
The present work tried to understand how the social behavior of the robot could affect the
relation between the other two elements producing a stronger reliance on the shared sensory
information instead of private internal models.

Thanks to the use of a computational model where we can observe not only the behavior
but also the internal dynamics of the network, in this study, we could add to the findings
of Chapter 3 how the network came to the decisions it made. Specifically, the neural
representation of the stimuli in the network allowed us to look into the time dynamics during
the replication of the stimuli – something that remained hidden in the human behavioral
experiment reported in Chapter 3. The proposed model simplifies cognition significantly
but still might capture something important about Shared Perception, that is, how humans
perceive their environment in a social context. The development of computational models for
testing potential underlying mechanisms of specific behaviors found in human experiments,
thus, may be an important means to form new hypotheses that may be tested in future
experiments.

A further potential step for this research is to provide cognitive robotics with a compu-
tational model of Context Dependency in Shared Perception. This can be implemented on
a robotic platform in order to endow it with a model developed on and "aware" of human
perceptual mechanisms, able to take into account three different parameters: the sensory
information, the prior, and the sociality of the context, which impacts on the other two
parameters. Such socially perceiving robots might be used for further experiments in human-
robot interaction to understand what social mechanisms would strengthen or reduce Shared
Perception in similar perceptual phenomena.

Also, it could be interesting to repeat the experiment reported in Chapter 3 while looking
at the dynamic changes of human behavior, by either changing the task design to a dynamic
task or tracking human behavior over a longer time window.
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Another important direction of future research is to strengthen the connection of compu-
tational study to the field of neuroscience. Such a stronger focus on computational studies for
investigating neural phenomena is advancing significantly in recent decades, and a substantial
amount of this work has focused on a topic that is also relevant for this study, namely,
the relevance of top-down and bottom-up processing on human cognition [66, 213, 130].
Our analyses showed that human behavior in a social context might be affected by the
precision of sensory and prior information and that two temporally separated mechanisms
might be involved. Neuro-biological studies are required to understand which precise neural
mechanisms are underlying such differences. There is in fact evidence of neuro-biological
differences that can be measured in the human brain in a social context. The most prominent
finding is that social context affects the concentration of neuromodulators in the human
brain [45, 23]. Interestingly, neuromodulators also have been connected to the Bayesian
framework. Specifically, studies suggest that neuromodulators might affect the reliance
on prior and sensory information [43, 213]. Nevertheless, our study can only provide a
potential explanation but not verify the neuro-physiological plausibility at this point. Further
investigations are required to better understand the neuro-biology underlying social behavior
in the context of a task like the one we investigate for gaining deeper insights into cognitive
mechanisms of shared perception.



Chapter 5

A DL model for Addressee Estimation: a
step towards an Addressee Estimation
architecture based on Shared Perception.

5.1 Introduction

The etymological root of the word "communication" is the Greek "koinos", which means
"common", "belonging to everyone", and "public". Communicating means, therefore, sharing
something with someone, might it be a message, a thought, or an inner state. An act that
inherently shapes the social world, binding together societies, social groups, and dyadic
relationships. To properly be part of the social environment, each agent should understand
some basic dynamics of communication, such as to whom a message is directed. A crucial
element is, therefore, understanding who the addresser and who the addressee, or addressees,
are. This ability is even more crucial for social robots, especially in those situations that go
beyond the mere dyadic interaction.

The third research objective of this thesis (RO3) was developing a model for Addressee
Estimation, which is the ability to understand whom someone is talking to, to foster robots’
socio-perceptual skills based on the Shared Perception framework. This ability would bring
tangible benefits for the robot in case of multi-party interaction, or in any scenarios where
the robot is not considered the obvious focus of attention of other people. Grasping the
others’ addressee could make the robot able to understand implicitly expressed robot-directed
commands, the level of engagement of all participants in a conversation, the social dynamics
and roles in multi-party interactions, or the correct meaning of sentences that contains deictic



5.1 Introduction 91

expressions (e.g., personal pronouns such as you, we, they, ...). Addressee Estimation is a
concrete example of a capability that can be modeled on the Shared Perception framework
and that reveals how integrating information coming from others (in this case, the speaker)
can enable an augmented perception of the environment, such as discovering not-yet detected
agents in the room.

To tackle this problem, this Chapter reported the development of a deep neural network
for Addressee Estimation1. This model, which takes as input the speaker’s non-verbal
behavior and returns the addressee’s position with respect to the robot yields the information
coming from the other that the robot should integrate in order to achieve a complete Shared
Perception. Therefore, it represents an essential step for a future architecture for Addressee
Estimation that is outlined at the end of this Chapter and will be implemented in the iCub
robot as future work.

For what concerns the structure of this Chapter, this first section aims to introduce
the topic of Addressee Estimation and show its link to Shared Perception. After a more
precise definition of the problem (see Section 5.1.1), previous works on the development
of Addressee Estimation models will be presented (see Section 5.1.2). Eventually, the
framework of Shared Perception, as defined in Chapter 2, will provide the structure for a
possible implementation of an architecture for Addressee Estimation (see Section 5.1.3).

5.1.1 Definition of the problem

To achieve a definition of Addressee Estimation, the first step is to specify the meaning of
the word "addressee". As Roman Jakobson stated, the addressee is one of the constitutive
factors of verbal communication, together with the addresser, the message, the context, the
contact, and the code.

“The ADDRESSER sends a MESSAGE to the ADDRESSEE. To be operative, the message

requires a CONTEXT referred to (the "referent" in another, somewhat ambiguous nomen-

clature), graspable by the addressee, and either verbal or capable of being verbalized; a

CODE fully, or at least partially, common to the addresser and addressee (or in other words,

to the encoder and decoder of the message); and, finally, a CONTACT, a physical channel

and psychological connection between the addresser and the addressee, enabling both of

them to enter and stay in communication.” ([104], p. 21).

1This work started during a 3-month visiting period in the Cognitive Robotics Lab at the University of
Manchester and was conducted in collaboration with Prof. Angelo Cangelosi and Dr. Marta Romeo. The
outcome has been submitted at the International Joint Conference on Neural Networks (IJCNN) 2023 with the
title "To Whom are You Talking? A DL Model to Endow Social Robots with Addressee Estimation Skills".
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Hence, the addresser is the agent to whom the addressee intends to communicate the
message. The addressee receives the message through a code and a channel connecting
them to the addresser. In the relationship between the addresser and addressee, there is an
element of intentional reference: the addresser refers to another agent as the addressee of its
message and expresses this reference through a code that is understandable from the outside:
through this code, the actual addressees can understand they were being addressed. Often,
this reference is not only understandable by the addressee. There could be other agents, who
albeit not directly addressed understand who the addressee is. In general, Goffman [81]
divides the listeners of a speech into three categories:

1. the over-hearing listeners

2. the ratified participants that are not expressly addressed

3. the ratified participants that are expressly addressed.

This last group is that of addressees. For the communication to be successful, it is essential
that also the other groups of listeners understand to whom the message is directed. As a
consequence, this allows considering that within its communicative act, the addresser does
not only communicate a message; it also communicates and expresses its addressee to all
listeners. Behavioral studies demonstrated that the human expression of communicative
aspects related to Addressee Estimation, turn yielding, and turn taking involves verbal, para-
verbal, and non-verbal channels [206]. Specifically for Addressee Estimation it was proven
that, beyond contextual and verbal information, the speaker’s bodily cues, such as gaze and
gestures, allow listeners to better understand the speaker’s intentions [9, 103]. Our approach
in developing our Addressee Estimation model was inspired by these findings. The scope of
the present study was to implement a model for Addressee Estimation as an added social skill
for robots, to enhance Human-Robot Interaction (HRI). To achieve this aim, we conceived
Addressee Estimation as the ability to understand an utterance’s addressee by interpreting

and exploiting non-verbal/bodily cues from the speaker.

5.1.2 Previous works

Autonomous artificial systems that engage in multi-party interaction need Addressee Esti-
mation skills because otherwise, it would not be possible for them to understand to whom a
message is being directed. Addressee estimation models have been developed to go beyond
the dyadic and robot-centric structure of human-robot interaction [110, 200] and enable
robots to interact in more ecological scenarios [94]. Furthermore, other fields of research
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for Addressee Estimation were the design of Smart Robotic Homes and Environments [180],
human-behavior-aware conversational agents [143], meeting assistant agents [162], and other
user-friendly systems, such as information kiosks [11] or artificial assistants [52]. Eventually,
Addressee Estimation has also been used to enable systems detecting their partners’ engage-
ment in multi-party interaction [190]. This section intends to describe previous studies on
the problem of Addressee Estimation and present methods and features used to approach its
modeling.

The human expression of communicative aspects related to Addressee Estimation, turn-
yielding, and turn-taking involves different channels. Together with contextual and verbal
information, para-verbal (prosody and breathing) and non-verbal cues (gaze and gestures)
allow listeners to understand the speaker’s intentions [206]. Given these premises, previous
studies have often dealt with the problem of Addressee Estimation by using a multi-modal
approach. Jovanovic et al. [111] used an ad hoc retrieved dataset gathered on meeting groups
of 4 humans to train a Bayesian Network and Naïve Bayes Classifiers with contextual, lexical,
and gaze features and solve the task as classification of whom, among the four agents (or the
entire group), was the addressee of each utterance.

Also, the AMI Corpus, containing data from 100 hours of meetings, served as a dataset
to train models of several other studies [162, 65, 136, 137]. Frampton et al. [65] focused on
the problem of the discrimination of the meaning of “you” as it was used in the utterances of
the Corpus: (1) whether it was used in a generic vs. referential way, (2) with a singular vs.
plural reference, and (3) by detecting its referent. To this aim, the authors trained a Bayesian
Network classifier with visual (head location and orientation, speakers’ focus of attention,
and mutual gaze) and linguistic features (structural, lexical, and syntactic pattern of “you”
utterance, relation with previous and next utterances, dialogue act features). Using the same
dataset, Op den Akker et al. [162] treated Addressee Estimation as a binary problem from
the perspective of each agent: “are you being addressed?” and trained different classifiers
with data about the speakers’ focus of attention, dialogue acts, and context of utterances
(topic and role of speakers). To overcome the limitations of previous models, such as the
specific position and the number of participants or the reduction of Addressee Estimation
to a binary problem, Malik et al. [136] selected several features from the AMI Corpus
(textual, contextual features, and focus of attention) to classify the role of the addressee in
the meeting interaction as annotated in the corpus. In a later study, the same authors used
similar features but added to the AMI dataset also the MULTISIMO Corpus, a multiparty
multimodal dataset involving meetings of 3 participants [137]. In this way, authors trained
different machine learning and deep learning algorithms to improve their previous results and
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develop a real-time Addressee Estimation model, i.e., without information about previous
addressees.

To avoid training their Addressee Estimation model on too specific situations and tasks,
Le et al. [148] proposed a multi-modal deep learning model trained on images from the
GazeFollow dataset [177] enriched with utterances generated by annotators, as if a person
in the image uttered it. Considering images as snapshots from a robotic system camera, the
authors trained their network with images, the cropped images of the speaker, their gaze
direction, and the text of utterances to estimate if the addressee of the utterance was the
person in the speaker’s line of sight, the robot (the photographer), or others in the scene.

Research on Addressee Estimation, which directly involved artificial conversational
systems and robots, mostly solved the problem as a binary classification. Bakx et al. [11]
conducted multi-party experiments with two humans and an information kiosk. By recording
participants with an external camera, they used a rule-based approach to classify whether
the participant at the information kiosk was addressing the system or the human partner,
given its focus of attention and the length of the utterance. Operating with the same scenario,
Turnhout et al. [234] trained a Naïve Bayes Classifier to solve the same task. Katzenmaier
et al. [114] designed a multi-party interaction with two humans (host and guest) and a
simulated robot. They approached the task as a binary classification (host speaking either to
the robot or to the guest) using visual data (automatically extracted head pose) and speech
data (syntactic and semantic information and utterance length), both separately and combined.
In a human-human-robot online interaction, Richter et al. [180] opted for a rule-based model
taking as input the human’s lip movement and the mutual gaze between the human and
the robot (either combined or not) to understand if an utterance was addressed to the robot
or not. After a dataset collection of multi-user human-virtual agent interaction conducted
in Wizard-of-Oz, Huang et al. [95] trained an SVM classifier for a binary classification
(robot addressed or human partner addressed) by giving as input several features related to
prosody, utterance length, and head direction and equipped the virtual agent with a model
for real-time Addressee Estimation. The work of Sheikhi et al. [200] relied on the role
contextual information plays in Addressee Estimation. The authors used context about the
utterance, the agents involved in the interaction, and the objects of interest in the environment
to extract information about the speaker’s and the human partner’s visual focus of attention
and to train a model to predict the addressee of each utterance in a binary classification task.
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Addressee estimation has also been connected to other communication problems, such as
turn-taking, and approached as a response obligation detection task. For instance, in a multi-
party card game scenario, Johansson et al. [110] combined the turn-taking and addressee
detection tasks into one decision: whether or not the Furhat robot has to take the turn. They
used only automatically extracted features (voice activity, prosody, syntax, head pose, and
card movements) and solved the task both as binary classification and as linear regression
(gradual opportunity to take the turn). Horiguchi et al. [94] used an HRI dataset collected
in ecological contexts (station and commercial building). The authors used a Long-Short
Term Memory (LSTM) neural network combined with a Logistic Regression after extracting
features related to vision (speaker’s face), audio (Mel-frequency cepstral coefficients and
Perceptual Linear Prediction), and text (word embeddings). In a multi-party HRI scenario,
Romeo et al. [185] trained a convolutional neural network (CNN) model implemented on
the Pepper robot over 4 days of interactions with humans for a three-class classification task.
The robot was trained to predict the other agent’s intention to interact by classifying visual
images of the scenes according to three possible actions it could initiate in response to the
situation. The robot could decide if starting the interaction, calling for attention, or waiting.

5.1.3 Shaping Addressee Estimation on Shared Perception

The problem of Addressee Estimation has been defined as the robot’s task consisting of
understanding to whom in the environment an agent (addresser) is addressing its speech.
Starting from the framework of Shared Perception as it was structured in Chapter 2, this
problem may be tackled through the triangulation of Shared Perception: the other, the self,
and the environment.

In these terms, Addressee Estimation is the ability to interpret the addresser’s intentional-
ity and integrate it with internal models and perception of the external world. Therefore,

• The information from the other corresponds to the addresser’s intentional relation to
the environment.

• The information from the self embodies the set of the robot’s internal representations
of the environment and previous events. Among these, the robot’s awareness of the
external environment, its spatial memory of the disposition and number of agents in
the environment, and prior/contextual information about the environment or previous
events.
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• The information from the environment, in this case, symbolizes the factual disposition
and number of social agents in the environment that the robot can continuously check
through visual perception.

To endow the robot iCub [147] with Addressee Estimation, we started designing a
software architecture based on the Shared Perception framework. Endowed with audio-
visual sensors, action generation abilities, modules for perceiving the environment, detecting
persons, and retaining information about their location in the environment, the robot was
missing the ability to interpret cues from the speakers’ behavior about their addressee and
to integrate the three above-mentioned sources of information. Two modules have been
designed for this, but unfortunately, only the first one has already been developed.

1. The module “Addressee Position Estimation” (APE) is aimed at the interpretation of
the non-verbal behavior of the speaker as a cue to localize the addressee. It has been
developed as a deep-learning model classifying the addressee’s position with respect
to the robot starting from the addresser’s face and body pose.

2. The module “Triangulated Addressee Identification” (TAI) is aimed at the final pre-
diction of the addressee’s identity and, although it has not yet been implemented, by
design it will return the identity of the addressee by comparing:

• the output of the APE module (information from the other)

• the information that is available through the robot’s spatial memory about the
number and position of agents in the environment (information from the self )

• additional information from perceptions of the environment allowed by action
generation and further exploration (information from the environment).

The separation of the APE from the TAI module is intended to leave the first estimate
of the addressee’s position independent from the other sources of information (self and
environment). The APE module interprets, therefore, the addresser’s behavior and returns a
first estimate of the addressee in terms of its position. In this way, the first reading of the
speaker’s intention may also be given in the lack of any hint given by prior experience or
contextual and environmental information.

The TAI module is designed for a different task. This module takes the estimate of APE
as input and integrates information coming from the robot’s spatial awareness and novel
perceptual knowledge coming from exploring the environment. At the crossroad of the three
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sources of information (other, self, and environment), this module integrates, weights, and
reads together different information, returning a final, triangulated prediction.

This Chapter explores the implementation of the APE module (see Section 5.2), which is
the first crucial step for the entire architecture (see Section 5.4). The following paragraphs
describe the methods (see Section 5.2.1), the results (see Section 5.2.2), and the discussion
of this implementation (see Section 5.2.3). Subsequently, Section 5.3 conducts a preliminary
assessment of the generalizability of the deep-learning model on the iCub robot. In Section
5.4, the design of the entire architecture and a discussion about its benefit for the robot in
terms of Shared Perception is provided for future work.

5.2 Exp. 1. Development of “Addressee Position Estima-
tion” (APE) model

In the APE module, we tackled the problem of Addressee Estimation as a classification task
of the addressee’s position based on the non-verbal behavior of the addresser. To solve this
task, we designed a deep neural network composed of two parts: a CNN network and an
LSTM network. Three general principles guided the selection of the methods: Awareness of
bodily non-verbal behavior, Temporality, and Suitability for ecological scenarios.

Awareness of bodily non-verbal behavior As Skatnze [206] explained, non-verbal infor-
mation (e.g., head pose, gesture, contextual knowledge, prosody, proxemic, etc.) is crucial
for Addressee Estimation. For this reason, given the embodied nature of Human-Robot
interaction, the focus has been placed on the bodily aspects of non-verbal behavior. For
instance, the gaze pattern, and hence the visual focus of attention, has been recognized as
a crucial cue in previous work on Addressee Estimation [240]. More specifically, the head
direction was often considered as a proxy in automatic models for Addressee Estimation in
robots [200, 95, 110, 180, 206].

Following a similar direction, the model of Addressee Position Estimation implemented
in this chapter is based on two non-verbal bodily information. The first one is the image
of the speaker’s face. This image is used as information about the speaker’s head direction
that, in turn, is a proxy for their visual focus of attention. The second is the body pose of
the speaker, automatically extracted from the visual information coming from the robot’s
cameras, represented by a vector of 18 key points and expressing the speaker’s whole body
direction and gesture.
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Temporality Another fundamental element that the design of our APE model considers
is the temporal and ongoing nature of this kind of estimation. Addressee estimation is the
ability to understand to whom an agent addresses a given utterance. Since an utterance can
last from less than one second to several seconds, a reliable prediction cannot result from
single, instant information. What is informative of the addresser’s intentional reference is the
temporal sequence of its behavior. For this reason, the design and the training of the neural
network of the APE model have been based on sequences of the addresser’s faces and body
poses.

Another crucial point connected with temporality is the relation between duration of the
utterance and estimate of the addressee. Only at the end of an utterance, all the elements
to predict the addressee are available. However, it is also true that estimating the addressee
before the utterance is completed is often possible and convenient. Accordingly, the classifi-
cation task of APE module has been conceived so that predictions were independent of the
length of the utterance and were regularly provided at set time intervals.

Suitability for ecological scenarios In implementing the APE module, the idea was to
have a model as little constrained as possible by the interaction setting. With this objective
in mind, the choice of data fell on those that could be automatically extracted through the
robot’s sensors without the need for any external device. This principle guided the selection
of the dataset to train the neural network. Therefore, a corpus (see Section 5.2.1.1) containing
data recorded through the robot’s cameras was preferred to all those that exploited external
sensors to record human movements and gaze. Thanks to this criterion, the model could
be trained with data recorded from the ego-centric perspective of a robot, an aspect that
will be extremely important when implementing the model on the robot to make it interact
autonomously, without any help of external sensors.

The idea of overcoming the limits of dyadic HRI was another point inspired by the urge
to leave the interaction setting as ecologically as possible. In real-world scenarios, the dyad
addresser-addressee is often broken by other elements taking part in the interaction. The
third element(s) can be represented by other agents as potential partners of the interaction
or even by objects in the environment the two partners are talking about. In developmental
psychology, interactions in which the infant and the adult interact with or through an object
are called "triadic". Accordingly, a triadic interaction between the speaker and the addressee
occurs when the addresser talks to the addressee about something in the environment, might
it be an object or another agent. This situation, which frequently occurs, modifies the gaze
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pattern and the body posture of both interactants [206]. Therefore, a second preference
criterion for selecting the dataset was that it also included triadic interactions with objects.

5.2.1 Methods

5.2.1.1 The dataset

Figure 5.1 Illustrative frames from Vernissage Dataset. Examples of multi-party HRI
data recorded from the Nao robot’s cameras.

Rather than creating a custom dataset from scratch, we evaluated if those already existing
and publicly available answered to the requirements previously identified. Jayagopi et al.
[107, 108] created a synchronized multimodal corpus of multi-party interactions in which
two humans conversed with a Nao robot (Aldebaran robotics). During the interaction, the
robot asked participants to present themselves to the group, showed them – in the role of an
art guide – some paintings on the walls of the room, and asked them some questions about
the paintings. Moreover, participants sometimes had to discuss together before giving the
answer or could comment with their peer about what was going on. All recordings took place
in the same room, where participants were not required to keep a specific absolute position,
although most of the time, because of the configuration of the room and the interaction, they
were standing in from of Nao and had a relative position to each other: one on the left, the
other on the right side (see Figure 5.1 for some examples). Dialogues about the paintings on
the walls ensured the presence of triadic interactions with participants that, when describing
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the paintings, focused their attention on them or directly got closer to see them better. In this
way, although the dialogue was controlled by the questions of the robot, the scenario granted
sufficient flexibility and spontaneity to human behavior.

Yet another positive feature of the Vernissage Corpus was that the authors recorded the
interactions from the cameras of the Nao robot, positioned in its eyes. In this way, the
implementation of the APE model could be based directly on data provided by a robot from
an ego-centric perspective and hence more easily ported onto other robotic platforms. As a
side effect, data resulted noisier because of the movement of the robot while, for instance,
nodding or turning its head, but this could also be an advantage in training a model suitable
for ecological scenarios. For what concerns sensors, the robotic platform used for recording
the Corpus had a modified head containing improved cameras located in the eyes of the robot
(for further specifications, see [107]). Only a single camera was used for recording, with
a resolution of 640x480 pixels, at a frequency of about 15 fps (mean) and YUV422 color
mode.

The Vernissage Corpus is manually annotated to have a Ground Truth also for information
about addressees and utterances. More specifically, the addressee has been annotated as “the
person or group of people to whom a speech utterance is intended to” [107]. Annotation has
been made by one coder, whose reliability has been positively tested through annotations from
another coder on 30% of the annotations. Information about the addressee was annotated each
40 msec, starting from merged video and audio. Five different labels were used: "ROBOT",
"RIGHT", "LEFT", "GROUP", and "NOLABEL". "RIGHT" and "LEFT" refer to the person
at the right and the left of the robot, "GROUP", means that both the robot and the other
agent are addressed, whereas "NOLABEL" indicates a time interval of silence or laugh. For
annotation of utterances, silence and speech segments have been automatically detected and
then manually controlled and adjusted.

5.2.1.2 Features selection and pre-processing data pipeline

The data chunk on which the neural network for Addressee Estimation has been trained is a
sequence of 10 frames of face images and vectors representing body poses. The process to
obtain the chunks from the Vernissage Corpus involved the following five steps:

• Division in utterances

• Extraction of body poses and face images

• Aggregation in sequences
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• Data augmentation

• Body pose shifting.

Division in utterances The dataset comprised recordings of 10 interactions between
two humans (different for each interaction) and the Nao robot. Video clips were trimmed
according to the speech detection annotations and extracted from the recordings of the 10
interactions, leaving out the frames labeled "silence’. The rationale was to eventually keep
only chunks in which participants were actually speaking. Since no verbal and semantic
information has been used for the task, utterances have been defined only based on speech
detection. Therefore, utterances were considered as the time intervals in which an agent
continuously speaks without silence being detected, that is, utterances that are not interrupted
by silence pauses longer than 0.08 sec.

Extraction of body poses and face images Firstly, utterances were divided into frames
of 0.08 sec. Then, using OpenPose [33], vectors of 2D coordinates for body poses were
extracted for each frame for all participants in the image. For the extraction, the OpenPose
COCO body format was adopted, which predicted the x and y coordinates for 18 key points
of each person (5 for the head, 3 for each limb, and 1 for the torso). Coordinates ranged from
-1 to 1 for both axes. Given the poses, from the five coordinates of each person’s head-key
points, a square-size cropped image was obtained by the original frame, resized at 50x50px.
Body poses and face images were labeled as "speaker" or "other’. During the interaction,
both human participants played the role of "speaker" and "other’. Since the Vernissage
Corpus comprised 10 interactions, each with two possible speakers, 20 instances of speakers
were available.

Aggregation in sequences The following step consisted of aggregating frames in sequences
of 10 consecutive body poses and face images. Sequences, thereby, resulted being 0.8-sec
portions of the utterances. From this aggregation, the data chunk of the dataset consisted
of sequences of 10 body poses and 10 face images. Since the objective was to train a
network with only data from the speaker, the speaker’s sequences were saved separately from
those belonging to the other participant. All sequences were annotated with the addressee
("ROBOT", "LEFT", "RIGHT", "GROUP") and received an ID connected to the interaction,
the speaker, the original utterance from which they were extracted, and the chronological
order in which they appear within the utterance. Figure 5.2 shows an illustrative sequence,
whereas Figure 5.3 shows the difference between sequences and utterances.
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Figure 5.2 Illustration of a sequence. Aggregation of frames in a sequence of 0.8 sec. and
extraction of body poses and face images.

Figure 5.3 Illustration of an utterance. The utterance is partitioned into sequences of
0.8 sec. Utterances were defined as speech intervals addressed to the same addressee and
delimited by silence. Each utterance comprised at least one sequence.

Data augmentation Given the purpose of the study (classifying the addressee’s position),
we selected three labels: "LEFT", "ROBOT", and "RIGHT", leaving out the label "GROUP"
that had no precise reference to the position of the addressee. The interaction scenario,
with the Nao robot asking questions and managing the interaction, provoked an imbalanced
representation of classes in the dataset, with a prevalence of sequences labeled as "ROBOT"
(addressed to the robot). With the double objective of augmenting the dataset and balancing
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the number of sequences, all frames labeled as "LEFT" and "RIGHT" (and accordingly, the
body poses and the face images extracted by them) were flipped, and their label inverted
(from "LEFT" to "RIGHT" and vice versa). As a consequence, "LEFT" and "RIGHT" data
have been doubled, and the resulting dataset was composed of 18190 speaker’s face images
and body poses partitioned in 1819 sequences: 529 for "ROBOT", 645 for "LEFT", and 645
for "RIGHT".

Body pose shifting A final step involved data transformation for all the body poses to
prevent bias during the training process. As it appears from Figure 5.1, participants at the
left of the robot never spoke toward a left addressee, and participants at the right never did it
toward a right one. Therefore, even though participants could mildly move, the coordinates
of their bodies could bias the prediction of their addressee. To overcome this issue, for each
sequence, the 10 body poses were shifted along the x-axis of a random measure ranging from
the two extremes of the image.

5.2.1.3 Architecture Design

The core objective of this study was to develop a model to estimate the position of the
addressee. The task has been approached as a three-class classification of the addressee
position starting from the addresser’s embodied non-verbal behavior. The position of the
addressee was considered from the ego-centric perspective of the robot, taking the addresser
as a reference. Therefore, the addressee’s position could be classified as "LEFT", in case the
addressee was at the left of the addresser (from the robot’s perspective), "RIGHT", in case
the addressee was at the addresser’s right, or "ROBOT", in case the addressee was the robot.

This configuration allows the model to extract features through convolution and then
support learning temporal sequential patterns with LSTM cells. The deep learning model de-
veloped for the task is a CNN + LSTM hybrid architecture. Previous works combined CNNs
with an LSTM final layer. For instance, Subramaniam et al. [217] used this combination
to train a model for classifying first impressions of personality. Romeo et al. [186] used a
similar architecture to predict apparent personality from body language cues for human-robot
interaction. Moreover, Ullah et al. [233] integrated convolutional and LSTM layers for action
recognition from videos, while Nakisa et al. [159] developed a multi-modal neural network
with convolutional and LSTM layers for emotion recognition through physiological signals.

The model was also designed to exploit and integrate both visual modalities: the face
images and the body pose vectors. Face images and body pose vectors pass independently in
two parallel streams of convolutional layers. Consequently, the two embeddings received as
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Figure 5.4 Illustration of the Deep Neural Network for Addressee Position Estimation
employing an intermediate fusion approach (Exp. 1a). Face images and body pose vectors
are passed separately to two blocks of convolution, each including two 2D convolutional
and one max-pooling layers. Then, the two embeddings resulting from fully connected
layers are concatenated and sequences of 10 fused embeddings are passed to the LSTM layer.
The output is provided after two others fully connected layers and a LogSoftMax layer. *
represents LeakyReLU activation function. See Table 5.3 in Section 5.6 for full details.

output are concatenated before the LSTM layer. In this way, features are extracted separately
in convolution and then combined at a higher level of abstraction. This was inspired by
a gradual fusion of modalities at an intermediate level of the network, which has been
demonstrated beneficial [176, 208], and by the training on joint representations of temporal
sequences as, for instance, in Nakisa et al. [159], which proved fusing streams between
the convolutional and LSTM layers being beneficial rather than a late fusion after temporal
training.

Therefore, the APE model employing the intermediate-fusion approach (Exp. 1.a)
consists of two blocks, each including two 2D convolutional layers (the second followed by a
LeakyReLU activation function) and one max-pooling layer. The two blocks for convolutions
are followed by two fully connected layers (the first followed by a LeakyReLU activation
function) providing the embeddings of the modalities to be concatenated. Up to this point,
the 10 face images and body poses of each sequence are carried out in parallel. The fusion of
the two streams was carried out as a simple concatenation, with the body pose embeddings
repeated 29 times so as to balance information in the final embedding. The sequence of 10
fused embeddings is then passed through the LSTM layer. Eventually, after two final fully
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connected layers (the first followed by a LeakyReLU activation function), the output is given
by a LogSoftMax layer. For an illustration of the architecture see Figure 5.4, whereas for full
details see Table 5.3 in Section 5.6.

Several variants of the above-mentioned intermediate-fusion model (Exp. 1.a) have been
designed for additional experiments. To compare it with a late-fusion approach, a second
model was trained using both visual modalities but combining them after the LSTM layer
(Exp. 1.b, see Table 5.4). Also, to test performances using single modalities, mono-stream
models were trained: one related to the face images (Exp. 1.c), the other for the body pose
vectors (Exp. 1.d). In these two latter cases, the convolutional part of the two mono-stream
models matched the two-stream one for that modality but differed in the LSTM layer, which
was designed to be trained on single modalities (see Table 5.5).

As a final additional variant (Exp. 1.e), the same architecture of the intermediate-fusion
model was trained to classify a binary output instead of the three-class one. The model
was designed to answer an additional, parallel question: if the robot was addressed by the
addresser. Hence, with respect to the previous task, this classification did not consider
the position of the addressee in case the robot was not addressed by the addresser. For
this reason, data referred to labels "LEFT" and "RIGHT" were combined for the negative
answer "NOT-ADDRESSED", whereas data referred to the label "GROUP" were added to
the "ROBOT" ones for the answer "ADDRESSED".

5.2.1.4 Training Procedure

To train and test the model, 10-fold cross-validation was established. In this way, the
prediction of the classes could be evaluated based on the average performance of the model
when trained and tested on different sets of data. To create the 10 different train and test
sets, the dataset of sequences derived from the pre-processing of the Vernissage corpus was
partitioned along the 10 multi-party interactions of the original corpus. Each interaction
comprised two agents for a total of 20 speakers/addressers. The ratio to create the train sets
was 9:10, with the remaining 1:10 for the test set. Accordingly, each train set included all
the face image and body pose sequences of 18 participants, whereas the test set the ones
of the remaining 2 participants. From the train sets, 90 sequences (30 for each class) were
randomly extracted, removed, and used for the validation phase during the training in order
to check the trend of the loss function.

Following the pre-processing pipeline (see Section 5.2.1.2), the Addressee Position
Estimation model was thus trained 10 times, one for each train set, and evaluated on as many
test sets. The model was fed with temporal sequences of data in mini-batches of 10 sequences.
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Each sequence included 10 face images and 10 body pose vectors. The convolutional section
of the network for face images was trained by employing Stochastic Gradient Descent (SGD)
optimizer whereas the one for body pose vectors and the LSTM section were trained using
the Adam algorithm [119]. Cross entropy was used as the criterion to compute the loss
function. The model was trained for 50 epochs with a learning rate of 1e-3, with a decay
of 0.1 (multiplicative factor) after 40 epochs. To prevent overfitting, a method of early
stopping was implemented to stop the training after 10 trials in which the loss function of
the evaluation phase increased. The model was implemented using PyTorch 1.12 (Python
version 3.8), whereas the training was carried out through an NVIDIA Quadro RTX 5000
with 16 GB of RAM.

5.2.1.5 Evaluation Metrics

The classical metrics to evaluate binary classification tasks would not be suitable to measure
the performance of the three-class classification model. Accordingly, Precision, Recall, and
F1-score are estimated for each class and expressed as a percentage. Hence, for each class,
Precision is computed as the ratio between the correctly predicted labels and the number of
positively predicted labels. Recall is computed as the ratio between the correctly predicted
labels and the number of actual positive labels. F1-score is the harmonic mean of Precision
and Recall. Results for each class are subsequently weighted for the number of samples
of each class and averaged to provide a performance of each model in terms of Weighted
Precision, Recall, and F1-score. Eventually, the results of the 10 testing from the 10-fold
cross-validation were averaged to obtain a final estimate of the model’s performances.

The training and the first testing of the model were achieved by keeping the 10-frames
sequences as data chunks. However, since sequences were extracted from utterances, the
same metrics could be used to verify the model’s performance in predicting the addressee of
an entire utterance. The utterance classification was computed by averaging the predictions
of all the sequences belonging to that utterance, weighted for the prediction score provided
by the LogSoftMax layer.

For the binary classification task, Precision, Recall (Sensitivity), F1-score, and Specificity
were calculated in the following way and expressed as a percentage. Considering the positive
prediction as “the robot is addressed” and the negative one as “the robot is not addressed”,
Precision is computed as the ratio between the True Positive (correctly predicted labels) and
the total number of positively predicted samples. Recall is computed as the ratio between
True Positive and the total number of actual positive samples. F1-score is the harmonic mean
of the Precision and Recall, whereas Specificity (true negative rate) is computed as the ratio
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between the correct negative samples and the total number of actual negative samples. In
addition to these parameters, for a further measure of the model’s performance, an overall-
F1-score of the two classes ("ADDRESSED" vs "NOT-ADDRESSED") was computed as in
the three-class model.

5.2.2 Results

5.2.2.1 Performance of the model on the Vernissage Dataset

The model Addressee Position Estimation (APE) has been trained for a three-class classifi-
cation task to predict the position of the addressee based on the non-verbal behavior of the
addresser. To train and test the model, two visual modalities were used: face images and
body pose vectors of the addresser, ordered in temporal sequences of 10 frames. Several
experiments have been conducted varying the design of the model:

• Exp. 1.a: two-modalities combined with an intermediate-fusion approach

• Exp. 1.b: two-modalities combined with a late-fusion approach

• Exp. 1.c: single modality: the model was trained with only face images

• Exp. 1.d: single modality: the model was trained with only body pose vectors

• Exp. 1.e: the same model of Exp. 1.a was trained for a binary classification.

In Exp. 1.a the average performance of the intermediate-fusion model in terms of
weighted F1-score was 75.01% (see Table 5.2 and Figure 5.5). This performance resulted
from testing the model on single sequences without combining them in utterances (Figure 5.3
illustrates the difference between sequences and utterances). Each utterance could comprise
several sequences. Hence, when considering sequences of the same utterance together, the
performance increased up to 76.48%. An additional score was computed only focusing on
the first sequence of each utterance, which means measuring the model’s performance in
providing a correct prediction at 0.8 sec from the beginning of the utterance. Considering the
limited amount of time, the model performed satisfactorily, with an F1-score of 74.15%.

For what concerns Exp. 1b (late fusion), the model reached an average F1-score of 73.18%
on the sequences, 74.19% considering sequences combined in utterances, and 71.88% on the
first 0.8 sec of each utterance (see Figure 5.5). Therefore, although the difference between
the performances of the two approaches is not substantial, the intermediate-fusion model
achieved greater performances. Respectively, the only-face and only-pose models achieved



5.2 Exp. 1. Development of “Addressee Position Estimation” (APE) model 109

Table 5.2 Performances of the Addressee Position Estimation model. Results of the 10-
fold cross-validation experiments (Exp. 1.a-b-c-d) are provided in terms of mean and standard
deviation of F1-score, Precision, and Recall. Performances are computed considering each
sequence separately (0.8 sec)

F1 score Precision Recall
Model avg std avg std avg std
Exp. 1.a Intermediate Fusion 75.01 8.60 77.68 7.71 75.08 8.18
Exp. 1.b Late Fusion 73.17 7.57 76.27 6.13 73.60 6.88
Exp. 1.c Face 72.83 5.86 76.50 6.31 72.95 5.37
Exp. 1.d Body pose 72.60 6.75 75.04 6.41 72.42 6.48

an average F1-score of 72.83% and 72.61% on sequences, 73.22% and 71.05% on the whole
utterances, and 72.07% and 70.77% on the first sequence of each utterance.

Weighted Precision, Recall, and F1-score have been computed for each class ("LEFT",
"ROBOT", "RIGHT") to observe if the performances of the four models (intermediate-fusion,
late-fusion, only-face, only-pose) were equally distributed among classes. As reported in
Figure 5.6, with the exception of the only-pose, the other models present higher performances
for the "LEFT" and "RIGHT" classes. For instance, in the only-face and late-fusion models,
"LEFT" and "RIGHT" overcome the "ROBOT" by more than 15%. Such a difference is
slightly mitigated in the intermediate-fusion model, which reflects the influence of the body
pose features. Albeit lower in "LEFT" and "RIGHT" than other models, in the only-pose
model, the average F1-score is similar in the three classes, measuring 72.95%, 68.56%, and
68.87% for "LEFT", "ROBOT", and "RIGHT", respectively. Such a result is due in particular
to a greater recall for the "ROBOT", which exceeds 75% and overcomes precision of about
10%, meaning that this model is more permissive for the “self”.

The present models are trained and tested on sequences of data lasting 0.8 sec. In this way,
for longer utterances, multiple classifications are available so that fresh update predictions are
released every 0.8 sec. Figure 5.7 displays the F1-score of the four models for incremental
time intervals, showing how the models perform in predicting the addressee of utterances as
time passes. For instance, if at 0.8 sec the intermediate-fusion model achieves an F1-score of
74.15%, the performance increases up to 76.48% at 1.6 sec, maintains 76.5% at 2.4, and still
improves up to 79.8% after 2.4 sec. Except for the only-pose model, whose performances
measure about 70% and do not improve over time, the only-image and the late-fusion models
follow the same trend as the intermediate fusion one, achieving an F1-score of 78.25% and
77.2% after 2.4 sec respectively.
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Figure 5.5 Bar plots reporting performances of the Addressee Position Estimation
model. Results of the 10-fold cross-validation experiments (Exp. 1.a-b-c-d) are provided in
terms of mean and standard deviation (error bar) of F1-scores. Performances are computed
in three ways: considering one prediction for each sequence separately (0.8 sec), considering
one prediction for each utterance, and considering the prediction of the first sequence of each
utterance (first 0.8 sec of each utterance). On the y-axis the performance score is expressed
in %.

State-of-the-art models on the Vernissage dataset were implemented as binary classifica-
tion, predicting whether either the robot or another user was the addressee of an utterance.
To compare our approach with the ones used by Sheikhi et al. [200], in the Exp. 1.e a model
was trained to solve the following binary classification task: if the speaker was addressing
the robot. The model was designed and trained as the intermediate-fusion model of Exp. 1.a
(described in Section 5.2.1.3) but the last layer was modified to give a binary output. Figure
5.8 displays the results of the testing phase in a 10-folds cross-validation, where Precision,
Recall, F1-score, Specificity, and overall-F1-score of the model are calculated as described
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Figure 5.6 Bar plots reporting performances of the Addressee Position Estimation
model for each class. Results of the 10-fold cross-validation experiments (Exp. 1.a-b-c-d)
are provided in terms of mean and standard deviation (error bar) of Recall, Precision and
F1-score for each of the 3 classes. On the y-axis the performance score is expressed in %.

in 5.2.1.5. Asking the model to predict whether the speaker was addressing the robot, consid-
ering single sequences, the average model’s Recall to the affirmative answer was 73.78%,
whereas the average Precision was 74.23%, and the average F1-score was 72.73%. Sensitivity
achieves 80.7%. The general performance of the model, as measured by overall-F1-score
was 77.36% if measured on single sequences, 79.7% considering the whole utterances, and
79.97% with respect to the first 0.8 sec of each utterance. The performance of the model in
Sheikhi et al. [200] was 76.3% utterances correctly predicted employing a measure of the
speaker’s visual focus of attention automatically computed as input. Therefore, our model
slightly outperforms the state-of-the-art. In addition, our methodology allows achieving such
results before the end of the utterance: just 0.8 sec from its beginning. Moreover, the inputs
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Figure 5.7 Bar plots reporting performances of the Addressee Position Estimation model
as a function of the duration of the utterance. Results of the 10-fold cross-validation
experiments (Exp. 1.a-b-c-d) are provided in terms of mean and standard deviation (error
bar) of F1-score according to the duration of the utterance. Performance are computed
considering the first 0.8, 1.6, and 2.4 sec. of each utterance and for utterance lasting 2.4 sec
or more. On the y-axis the performance score is expressed in %.

to predict the addressee do not involve any contextual information such as the length of the
utterance and the possible targets of attention in the environment as, for instance, in Sheikhi
et al. [200]. Prediction is just obtained through the automatic extraction of the addresser’s
face and body pose from the visual stream of the robot’s cameras.
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Figure 5.8 Bar plots reporting performances of the binary classification model. Results
of the 10-fold cross-validation experiment (Exp. 1.e) are provided in terms of mean and
standard deviation (error bar). Sensibility, Precision, F1-score, and Sensitivity on sequences
of 0.8 sec are reported on the left. On the right, performances in terms of overall-F1-score
are computed in three ways: : considering one prediction for each sequence separately (0.8
sec), considering one prediction for each utterance, and considering the prediction of the first
sequence of each utterance (first 0.8 sec of each utterance). On the y-axis the performance
score is expressed in %.

5.2.3 Discussion

5.2.3.1 Performance of the model

In this work, the problem of Addressee Estimation has been divided into two sub-tasks: a
prediction of the position of the addressee (Addressee Position Estimation – APE model)
and a final identification of the addressee by triangulating information from the addresser,
the environment, and the self (Triangulated Addressee Identification – TAI module). Within
this context, Addressee Position Estimation has been conceived as a three-class classification
task based on the non-verbal behavior of the addresser as a cue to predict the position of the
addressee with respect to the addresser, from the ego-centric perspective of the robot. Hence,
the three possible classes are "ROBOT", "LEFT", and "RIGHT" referring to the addressee
respectively being the robot, at the left or at the right of the addresser.

To solve this task, a deep-learning model with convolutional and LSTM layers has been
designed and trained with sequences of face images and body pose vectors of the addresser.
As Skantze [206] reported, information from the addresser’s head pose, as a proxy of visual
focus of attention is highly relevant for humans when estimating others’ addressee and
beneficial when implementing automatic Addressee Estimation models. Results from the
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testing phase of the APE model corroborated this perspective: with only information about the
addresser’s face, the model could predict the position of the addressee. Moreover, considering
the fact that, in the Vernissage dataset, the speakers were often involved in triadic interactions
with pictures on the walls, focusing their gaze on objects different from the addressee, the
classification score may be considered a feasible result. Interestingly, the model trained with
only body pose information proved to be equally effective. It is true that also the body pose
vectors contained information about the head direction, but this was gathered only by 5 key
points: 1 for the Nose, 2 for the Eyes, and 2 for the Ears. Compared to the face image, the
body pose presented evidence of the speaker’s whole-body direction. Though the difference
was not substantial, the models trained with both visual modalities (face and body pose)
performed better than the single-modality ones. This outcome was expected, as well as the
fact that the intermediate-fusion approach resulted to be more effective than the late-fusion,
as literature on the topic suggested [176, 208].

The beneficial effect of combining the two visual features may be explained by analyzing
the performance of each class more thoroughly. Although the overall performance of the two
single-feature models was nearly identical, relevant differences appear when considering
each class separately. As it appears in Figure 5.6, the only-face model predicts with higher F1-
score the "LEFT" and "RIGHT" classes with respect to the "ROBOT" with a gap greater than
15%. Different is the case for the only-pose model, whose performance is more stable along
the three classes. What impacts more in such a result is the high recall for the "ROBOT",
meaning that the model recognizes the "ROBOT" more easily from body poses than face
images. This situation seems to be reflected in the performance of the intermediate-fusion
model, which combines a high performance for the "LEFT" and "RIGHT" classes with
results more balanced for the "ROBOT". This suggests that beyond a general increase in
performance given by the help of two channels instead of one, relevant features for "LEFT"
and "RIGHT" are provided by the face modality, whereas for "SELF" by the body pose of
the speaker. Interestingly, this pattern is not shared with the late-fusion model, in which the
same gap between "LEFT"/"RIGHT" and "SELF" is even more evident than in the only-face
model. Accordingly, this difference between the intermediate and the late-fusion approach
suggests that fully-connected layers are not enough to optimally balance the two modalities.

The APE model has been developed so as to have predictions independent from the
utterance length and available less than 1 second after the utterance start. The method
chosen to solve this task has been to focus on sequences of data lasting 0.8 sec. For each
utterance, this allowed providing a first prediction about the addressee at 0.8 sec., as well as
other continual predictions every 0.8 sec., incrementally weighted on all the predictions of
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sequences of that utterance. Longer utterances are formed by a higher number of sequences,
hence more ample evidence for a correct estimate. This is what appears from results in
Figure 5.7. The longer the addresser talks, the better the estimate of the addressee. The
intermediate-fusion, late-fusion, and only-image models share this pattern. Conversely, this
is not the case for the only-pose model. It appears, therefore, that the two multi-modal
models inherit this characteristic from the only-face model. Moreover, one may speculate
that the reason underlying this different behavior is that humans often turn their heads while
speaking, in particular, if they are referring to some objects in the environment, as is the
case in triadic interactions. The situation might be different for body poses that, although
including information about the face pose, are more stable if considering the whole body, at
least in the scenario of the Vernissage Corpus.

5.2.3.2 Insights on the three principles for the model design: Awareness of bodily
non-verbal behavior, Temporality, Suitability for ecological scenarios

The model was designed to follow three general principles: awareness of bodily non-verbal
behavior, temporality, and suitability for ecological scenarios. More specifically, the aware-

ness of bodily non-verbal behavior has been implemented as exploiting visual non-verbal
information from the addresser’s body (face and body pose) to estimate the addressee of
an utterance. Such an embodied solution for the task highlights how important non-verbal
behavior may be to correctly interpret verbal information and advocates making further use of
this component for developing robots as conversational agents. Bodily non-verbal behavior
offers profound insights into other agents’ intentions. Targeting bodily non-verbal behavior
is a valid solution to improve robot’s skills of human awareness: an ability that is crucial to
enhance natural human-robot interaction.

The principle of temporality influenced the design of the classification task and of the
neural network. Firstly, temporality was applied within each utterance, because utterances
were not considered as a whole within the neural network but were partitioned in multiple time
intervals of 0.8 sec., each of them generating a prediction, as explained before. Secondarily,
temporality was conceived within each sequence, i.e., time interval of 0.8 sec, because they
were not considered as snapshots but were themselves temporal sequences consisting of 10
frames.

In future work, the principle of temporality could be also applied to enhance Addressee
Estimation within each dialogue. Each dialogue comprises multiple utterances exchanged by
at least two agents. Previous literature highlighted the importance of this kind of information,
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such as previous speakers and/or previous addressees, as additional sources for Addressee
Estimation [206]. For the moment, the present model does not envisage this contextual
knowledge which, however, could be investigated when implementing the second module of
the architecture: the Triangulated Addressee Identification.

Figure 5.9 Examples of sequences wrongly predicted. The face images of four sequences
are exhibited reporting the wrong prediction given by the intermediate-fusion model (Exp.
1.a) and the ground truth (correct addressee).

As a third principle, the suitability for ecological scenarios drove the selection of the
dataset [107]. The APE model has been designed and trained to be implemented on the iCub
robot as a future step. Hence the importance of relying on data acquired directly from the
robot’s cameras (although the robot used for the Vernissage dataset recording was a Nao).
Having a dataset recorded in embodied interaction with a physical robot is indeed essential
to train the model to be tested in embodied physical HRI. People behave differently in front
of a physical robot, or a virtual agent [133].

Another element following the ecological scenario principle was related to triadic interac-
tions. Instead of having a fixed conversational scenario, e.g., everybody sat at a table directly
looking at their addressee, the Vernissage corpus envisages situations more difficult to predict.
For instance, Figure 5.9 shows some sequences wrongly predicted. It appears that the head
direction was not always predictive of the addressee’s position and that in certain cases it
even causes errors. Triadic interactions are one of the causes of such errors because in the
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dataset participants could talk to Nao while looking at a picture on the right or, vice versa,
talking to their companion on the left while looking at a picture collocated over the robot.
It is true that this may result in lower performance of the model and in higher confusion of
features belonging to different classes. However, this confusion has been balanced with the
temporal design of the model that is aimed at considering frames, sequences, and predictions
varying over time and is more representative of real-time interactions.

5.2.3.3 Limitations and future work

The current APE model presents three major limitations. Even if it is built upon the principle
of ecological validity, the model does not envisage the presence of a large number of people
in the environment. It is true that with respect to most of the previous implementations
of Addressee Estimation in HRI, this model does not merely provide a binary outcome.
Nevertheless, a three-class classification of the position of the addressee might not be
enough in case of crowded places such as airports, hotel reception areas, malls. Relying on
auditory cues might not represent a solution, since a crowded environment often involves
noisy auditory information. Conversely, non-verbal bodily behavior still allows for more
discretized spatial representations in the longitudinal dimension (adding for instance also
extreme left and extreme right positions) or in depth.

As a second limitation, the ape Model does not provide a final estimate of who the
addressee is: except for the class “ROBOT”, the model only predicts the addressee’s position
with respect to the addresser. However, future work will overcome this restraint. Indeed, the
outcome of the APE model represents only the first core step for an Addressee Estimation
architecture inspired by Shared Perception. As anticipated in Section 5.1.3, a module of
Triangulated Addressee Identification (TAI) will take as input the prediction of the APE
model and triangulate this information with the one from the environment and the self,
achieving, the identification of the addressee.

Eventually, for the moment the model has been designed only for visual information. No
auditory or contextual information is used. However, by design, the model was conceived
not to rely on contextual information. In this way, a first prediction of the addressee may
be provided by only focusing on visual information, without any knowledge of the number
of agents in the environment, previous addressees, previous speakers, topic of the dialogue,
hot-words, etc. Some of this information may be used instead in the TAI module, and,
hence, exploited in future implementations. Future work should also envisage the use of
auditory cues, which comprise not only verbal information but also, for instance, prosody.
Auditory data was already available in the Vernissage corpus. It was recorded by the Nao’s
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microphones, but too noisy to extract reliable prosodic information. Therefore, prospected
plans consist of recording also auditory information in a forthcoming data acquisition during
HRI with the iCub robot.

5.3 Exp. 2. Preliminary assessment of generalizability of
the model on iCub

The data used to train and test the model of addressee position classification were recorded
in a multi-party interaction with the robot Nao, using the robot’s cameras. Nevertheless, the
model was thought to be subsequently implemented on the iCub platform. The future plan
consists of employing a transfer learning approach to retrain the model on data taken directly
in interactions with the iCub robot and make it effective on another platform. However, we
thought that testing the model on already available data recorded by the iCub’s camera might
provide a preliminary assessment of its robustness and generalizability.

5.3.1 Methods: dataset and procedure

To this aim, a corpus of data that had already been collected was exploited. Data consisted
of camera frames recorded from 10 participants standing in front of the iCub robot and
pretending to talk to an imaginary addressee positioned in three different positions. The
addressee’s positions were the same as the Vernissage corpus: "LEFT" and "RIGHT" of
the participant from the robot’s perspective and "ROBOT", meaning that the robot was the
addressee. The iCub’s corpus had been labeled by the experimenters directly during the
recording. The recording session did not involve reciprocal interaction with the robot, which
only played the role of observer. During the session, participants stood in different positions
in the room at a distance of about 1.8 m from the robot. They had to draw the robot’s attention,
endowed with a model for autonomous sound localization and face tracking [83]. Once the
robot turned its face and looked at the participant, the experimenter asked the participant to
turn and look towards three different directions: "LEFT", "RIGHT", or "ROBOT". For each
pose, the view from the robot’s left camera was recorded for 5 sec.

Though this dataset was similar to the Vernissage Corpus in terms of labeling and
addressee position, noticeable differences occur. The first main difference between the two
datasets is that participants interacting with the iCub wore facial masks because data was
recorded during COVID-19 restrictions. Furthermore, in the Vernissage corpus, participants
behaved and moved naturally while speaking and often referred to objects in the environment,
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which provided dynamism to data organized in temporal sequences. Conversely, in the
iCub dataset, participants just hold the same position throughout the 5-sec recording, which
removed any dynamism from the data. Therefore, since the data within each recording did
not differ from each other, to test the model on the iCub dataset, only the first sequence of 10
frames for each recording was considered. Body pose vectors and face images were then
extracted from the frames with the same methods used for the Vernissage corpus (see Section
5.2.1.1) leading to a set of 30 sequences for each label, each consisting of 10 body pose
vectors and 10 face images.

5.3.2 Results

After a final training on the whole dataset, the Addressee Position Estimation model was
tested on data recorded from an iCub robot’s cameras, as specified in Section 5.3.1, in four
experiments: (1.a: intermediate-fusion, 1.b: late-fusion, 1.c: only-face, 1.d: only-pose).
Figure 5.10 shows the four confusion matrices that report the Recall and Precision for each
class and the general F1-score of the model. Results are only related to the testing on
sequences because the composition of the dataset did not include any information about
utterances.

The intermediate-fusion model, which on the Vernissage dataset outperformed the others,
achieved an F1-score of 65.14%, whereas the late-fusion model reached 58.47%. The
two single-modality models, which produced similar results on the Vernissage dataset,
dramatically differ in this case. The model trained by using only body poses did not even
reach 50%. Conversely, the only-face model outperformed the intermediate-fusion multi-
modal one and obtained an F1-score of 69.25%.
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Figure 5.10 Confusion Matrices. Generalizability performances of the APE model on the
dataset recorded by iCub in 4 experiments (1.a-b-c-d). Within the 3x3 matrix values represent
the number of sequences, whereas Recall, Precision, and F1-score are expressed in %.
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5.3.2.1 Discussion

A design following the principle of suitability to ecological scenarios should hypothetically
result in a higher level of portability between robots. As mentioned above, the APE model
was designed to be implemented on the iCub robot. To achieve this goal, one of the next steps
for future work will be acquiring some data with the iCub and use them following a transfer
learning approach to enhance the model performance. The portability of models from one
robot to another might result in a performance loss. In this particular case, this could be due
to the different heights where the two robots’ cameras are located and, accordingly, to their
different perspective on the environment.

A small dataset recorded through the iCub cameras and labeled with information about
the (pretended/imaginary) addressee was already available (see Section 5.3.1). Hence, this
dataset has been used for a preliminary check of the model’s portability. After training the
four models (intermediate-fusion, late-fusion, only-face, only-pose) on the entire Vernissage
corpus, such models have been tested on the iCub dataset. Between the two mono-modality
models, the only-face performed better, with an F1-score slightly lower than with the
Vernissage corpus. Conversely, the only-pose model suffered a considerable loss. The
intermediate-fusion model was affected by this loss resulting in performance slightly worse
than the only-face although still acceptable.

These results should indeed be read considering the differences between the two datasets.
Beyond the different robots, the dataset recorded with iCub involved participants wearing a
face mask, not really speaking with someone but only looking in the direction of an imaginary
addressee. The dataset was recorded so as to train a CNN to classify snapshots of head
directions. For this reason, participants were not requested to move during the recording but
only to look at specific directions, so the frames in sequences were very similar to each other.
It is not surprising therefore that the only-face model performed in line with previous results,
whereas worsening occurs where also the pose was involved. Given all these considerations,
this preliminary check suggests the model may be ported to a different platform, such as the
iCub robot, with possible adjustments using transfer learning.

5.4 The design of the Shared Perception-Addressee Estima-
tion Architecture

Addressee Estimation is a social ability that can be tackled in the frame of Shared Perception
(see Section 2.5.2). Considering the core idea of Shared Perception (having at disposal three
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sources of information - environment, self, others - and being able to integrate them), two
elements were missing to implement a Shared Perception-Addressee Estimation (SP-AE)
architecture on the iCub: the information coming from the others (APE module) and the
integration of the three sources of information (TAI module).

Since the APE module was needed as input of the TAI module, we decided to start
developing the former. The APE module that has been developed interprets the addresser’s
bodily behavior in terms of addresser/robot-relative position of the addressee. Providing
information about the addresser’s intentional relation toward the environment, this module
represents one of the three sources of information needed for Shared Perception triangulation.

The TAI module (“Triangulated Addressee Identification”) was conceived based on the
three sources of information of Shared Perception, its function consisting of comparing the
information from:

1. the interpretation of the speaker’s behavior,

2. the robot’s awareness of other social agents and prior information of previous events,

3. the robot’s continual perception of the environment.

To achieve the whole SP-AE architecture, a set of other modules and connections are
required. Modules related to sensory inputs, attention, perception, memory, and action
generation are needed to provide the SP-AE architecture with the necessary information to
identify the addressee and the cognitive skills to act autonomously. Most of these modules will
be imported by another architecture recently developed on the iCub robot in our department.
The HRI Tutoring Framework for Long-Term Personalization and Real-Time Adaptation
[19] was developed to make the iCub a good robotic tutor of Yoga movements with the
ability to adapt in real-time to participants’ performance and to personalize its instructions
to each participant in long-term interactions. To autonomously interact with people, the
robot was endowed, among others, with modules for sound localization, person recognition
and tracking, pose detection, short-term spatial memory, and long-term memory to store
information about known participants.However different the objective of the architecture
may be, such modules will also be exploited in the SP-AE architecture.

Figure 5.11 represents the SP-AE architecture. Below a description of all modules is
provided, listing those already existing on the iCub robot and/or imported from the HRI
Tutoring Framework, the APE module, and the ones that still need to be implemented.

Sensory input systems The two sensory modalities required by the architecture are vision
and audio.
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Figure 5.11 Shared-Perception Addressee-Estimation (SP-AE) Architecture. Modules
related to perception (light blue), memory (violet), and action generation (red) contribute to
the estimation of the addressee together with the APE module for the interpretation of others’
intentionality (yellow) and the TAI module for triangulation (green). The modules with a
continuous outline have already been developed whereas the ones with the dashed line still
need to be so.

• Binaural auditory information is processed by the two microphones located in the ear
cavities of the iCub head.

• Visual sensory information is provided by the two 2D cameras of the iCub platform.

Attention and Perception

• An auditory attentional system is implemented to localize sounds starting from binaural
information and exploiting the auditory phenomenon of interaural time difference [83].
The same module also provides information about sound activity detection.

• A module for face detection and tracking [84] localizes faces from the visual stream of
cameras and simultaneously takes records and tracks multiple faces.

• An additional visual attention system may be helpful in SP-AE architecture: a module
for lips movement detection that still needs implementation should be connected to the
face detection module to improve the localization of the speaker thanks to an additional
sensory modality.



5.4 The design of the Shared Perception-Addressee Estimation Architecture 124

• A module for body pose extraction is implemented through the OpenPose algorithm
[33] providing a 2D vector of 18 key points for each person detected.

• A module for Person Recognition [82] exploits embeddings previously extracted from
agents’ faces to recognize them in later interactions or when losing their initial tracking.

Memory

• A module for spatial working memory takes records of the number of agents and their
position in the room from the ego-centric perspective of the robot through a discretized
partition of the environment [19].

• A complementary working memory module keeping records over time of the speaker’s
identity, their addressee, and other contextual information about interaction might be
required in future developments of the SP-AE architecture.

• A module of long-term memory takes records of the embeddings of agents that already
interacted with the robot, to subsequently recognize them in the interactions [82].

Action Generation

• A Gaze Controller was implemented on the iCub to control the joints of the neck and
eyes to track a 3D cartesian point in space [187]. This allows the robot to track objects
(faces), switch attention toward new objects, and explore the environment looking for
new objects.

Others’ intentionality interpretation

• The Addressee Position Estimation (APE) module, as specified in section 5.2.1, predicts
the position of the addressee from the ego-centric perspective of the robot. The module
is implemented as deep neural network taking as input temporal sequences of face
images and body poses of the speaker and predicting the position of its addressee in a
three-class classification task. The predicted addressee could be positioned either at
the left or at the right of the speaker or could be the robot.

Triangulation

• The Triangulated Addressee Identification (TAI) module would take in input the
following information:
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1. Addressee Position as predicted by the APE module, representing the information
coming from the other.

2. Number of agents and their position in the environment as recorded in the spatial
memory module, representing the self in terms of the robot’s awareness of the
environment.

3. Additional information about the position of previous and novel agents in the
environment provided by visual perception while proactively exploring the en-
vironment (for instance, in case the output of the APE module does not find
correspondence in the robot’s awareness of agents’ positions (see Figure 5.12).
This represents the information coming from the environment.

Figure 5.12 Illustration of two possible outcomes from Triangulated Addressee Iden-
tification Module. For each example, three snapshots of iCub’s left camera taken over
time are shown together with the information about the position of the known agents in the
environment available in the spatial memory, and the description of the robot’s behavior if it
was driven by the whole SP-AE architecture.
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5.5 Conclusion

The whole Shared-Perception Addressee-Estimation (SP-AE) architecture still requires
several steps to be implemented on the robot. The main point is the development of the TAI
module for a triangulated identification of the addressee. Here, the information coming from
all the different sources should be integrated. This means that the resulting estimation of the
addressee may be constantly revisited and corrected. In Chapter 2, we maintained that the
Shared Perception process may bring different achievements: deepening one’s understanding
of others, establishing a common ground with others, and enhancing one’s representation of
the environment. Accordingly, solving the Addressee Estimation problem as a triangulation
task may be beneficial in all these three directions.

Addressee estimation is connected to the ability to understand others. More specifically,
it falls inherently within the HRI research quest for endowing social robots with reading
intentions skills [196]. An important approach to develop human awareness in robots is
focusing on human non-verbal behaviors, which often convey important information. This
is also the case in Addressee Estimation. Correctly predicting whom a person is talking to
is essential when a robot needs to interact with others, not only because the robot becomes
able to detect whether others are talking with them, but also because in this way the robot
can learn that another agent is involved in the conversation. Moreover, Addressee estimation
paves the way to make the robot understand others through the interactions they keep with
third agents. For instance, others might not be “angry”, “excited”, or “friendly” per se. Such
emotions may be referred only towards third agents so that agent A could be angry with
agent B, but friendly with C. Understanding others, often comes through understanding their
interactions. From this perspective, Shared Perception proves to be profitable in providing a
deepen and correct understanding of the social dynamics of the interaction. For instance, the
triangulation of the three sources of information provided by the TAI module may result in a
more precise identification of the addressee, which may differ, as in Figure 5.12, from the
estimation coming from the APE module alone, since it was only based on the non-verbal
behaviors of the speaker.

Understanding others’ addressee enables creating a common ground with them, hence
establishing a more natural interaction. A correct estimation of the addressee provides the
robot with greater skills for effective command reception, correct turn-taking, and better
understanding of the message conveyed by the speaker. Messages are often addressee-
dependent indeed. Deictic expressions are words or phrases which strictly depend on the
context. Several deictic expressions depend on the speaker, such as spatial deixis ("here’,
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"there’, "this’, "that’). But others rely on the addressee, such as personal deictic words ("you’,
"she’, "he’, "they’). Therefore, only a triangulated Addressee Estimation grants a correct
interpretation of deictic sentences. Moreover, going back to the above-mentioned example
of Addressee Estimation for emotion recognition (agent A that is angry with B but friendly
with C), one may notice that correctly understanding the social/emotional dynamics among
agents is also beneficial to create a common ground with them. Hence, Addressee Estimation
allows the robot to better understand the situation and behave accordingly.

Eventually, Shared Perception is not only referred to understanding others but also
to achieving an augmented perception of the external world. Addressee estimation may
enhance the robot’s awareness of the position or the number of agents in the environment.
From the first example illustrated in Figure 5.12 it appears that, for instance, visual and
auditory systems may not be the unique modalities for the robot to perceive and discover the
environment. In this sense, sociality may be considered an additional sense to experience the
world. Even in the animal kingdom, animals living in groups rely on each other, for example,
to detect predators. In a similar way, a robot endowed with the SP-AE architecture may rely
on other people to localize agents not yet detected in the room.

Addressee Estimation is only one task in which the triangulation of the three sources
of information (others, self, environment) may provide interesting results, but from this
perspective, Shared Perception appears to be essential to the design and development of
socially interactive robots. As for Addressee Estimation, the framework of Shared Perception
may inspire the development of other social skills as well, enabling robots to interact more
naturally and efficiently with humans.
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5.6 Appendix to Chapter 5: Descriptive tables of neural
network architecture

Table 5.3 Description of the hybrid architecture (CNN + LSTM) employed in the
intermediate-fusion approach (Exp. 1.a).

Face Image Body Pose Vector

Layers Input Parameters Input Parameters

Conv1 [100, 3, 160, 160] k=7, s=1 [100, 1, 18, 3] k=(3,1), s=1

Conv2 + LeakyReLU [100, 6, 154, 154] k=5, s=1 [100, 16, 16, 3] k=(3,1), s=1

MaxPool1 [100, 8, 150, 150] k=2, s=2 [100, 16, 14, 3] k=(2,1), s=(2,1)

Conv3 [100, 8, 75, 75] k=5, s=1 [100, 16, 7, 3] k=(3,1), s=1

Conv4 + LeakyReLU [100, 12, 71, 71] k=3, s=1 [100, 32, 5, 3] k=(3,1), s=1

MaxPool2 [100, 16, 69, 69] k=2, s=2 [100, 32, 3, 3] k=2, s=2

Flatten [100, 16, 34, 34] [100, 32, 1, 1]

FC1 + LeakyReLU [100, 18496] [100, 32]

FC2 [100, 4624] [100, 24]

Concatenation [100, 578] [100, 20]

Input Parameters

LSTM [10, 10, 1158] h_dim=516

FC3 + LeakyReLU [10, 256]

FC4 [10, 128]

LogSoftmax [10, 3]
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Table 5.4 Description of the hybrid architecture (CNN + LSTM) employed in the late-
fusion approach (Exp. 1.b).

Face Image Body Pose Vector
Layers Input Parameters Input Parameters
Conv1 [100, 3, 160, 160] k=7, s=1 [100, 1, 18, 3] k=(3,1), s=1
Conv2 + LeakyReLU [100, 6, 154, 154] k=5, s=1 [100, 16, 16, 3] k=(3,1), s=1
MaxPool1 [100, 8, 150, 150] k=2, s=2 [100, 16, 14, 3] k=(2,1), s=(2,1)
Conv3 [100, 8, 75, 75] k=5, s=1 [100, 16, 7, 3] k=(3,1), s=1
Conv4 + LeakyReLU [100, 12, 71, 71] k=3, s=1 [100, 32, 5, 3] k=(3,1), s=1
MaxPool2 [100, 16, 69, 69] k=2, s=2 [100, 32, 3, 3] k=2, s=2
Flatten [100, 16, 34, 34] [100, 32, 1, 1]
FC1 + LeakyReLU [100, 18496] [100, 32]
FC2 [100, 4624] [100, 24]
LSTM [10, 10, 578] h_dim=512 [10, 10, 20] h_dim=256
FC3 [10, 512] [10, 256]
Concatenation [10, 128] [10, 128]

Input Parameters
FC4 + LeakyReLU [10, 256]
FC5 [10, 128]
LogSoftmax [10, 3]

Table 5.5 Description of the hybrid architecture (CNN + LSTM) employed in the single
modality approach (Exp. 1.c-d).

Face Image Exp. 1.c Body Pose Vector Exp. 1.d
Layers Input Parameters Input Parameters
Conv1 [100, 3, 160, 160] k=7, s=1 [100, 1, 18, 3] k=(3,1), s=1
Conv2 + LeakyReLU [100, 6, 154, 154] k=5, s=1 [100, 16, 16, 3] k=(3,1), s=1
MaxPool1 [100, 8, 150, 150] k=2, s=2 [100, 16, 14, 3] k=(2,1), s=(2,1)
Conv3 [100, 8, 75, 75] k=5, s=1 [100, 16, 7, 3] k=(3,1), s=1
Conv4 + LeakyReLU [100, 12, 71, 71] k=3, s=1 [100, 32, 5, 3] k=(3,1), s=1
MaxPool2 [100, 16, 69, 69] k=2, s=2 [100, 32, 3, 3] k=2, s=2
Flatten [100, 16, 34, 34] [100, 32, 1, 1]
FC1 + LeakyReLU [100, 18496] [100, 32]
FC2 [100, 4624] [100, 24]
LSTM [10, 10, 578] h_dim=512 [10, 10, 20] h_dim=256
FC3 + LeakyReLU [10, 256] [10, 256]
FC4 [10, 128] [10, 128]
LogSoftmax [10, 3] [10, 3]



Chapter 6

Conclusion

This research considered social HRI from the point of view of perception and was motivated
by the idea that Shared Perception is crucial to enhance natural and effective interaction
between humans and robots. The general question underlying the research has been “how
social interaction affects perception?”. Nevertheless, the diverse nature of the agents involved
in HRI (i.e., humans and robots) brought me to tackle Shared Perception from different
perspectives: the investigation of Shared Perception in humans with a focus on the specific
mechanism of Context Dependency, the development of a Shared Perception-inspired skill
in robots with a focus on the socio-perceptual ability of Addressee Estimation, and, as an
overall binding element, the outline of a theoretical framework of Shared Perception. Based
on empirical findings and philosophical perspectives about social perception, such a general
framework serves as a reference for the experimental research about Shared Perception
in Chapters 3 and 4 and for the development the Addressee Estimation model inspired by
Shared Perception in Chapter 5.

As a conclusion of this work, after examining how each Research Objective has been
fulfilled (see Section 6.1), a final overview will exhibit the impact of Shared Perception in
the field of socio-cognitive HRI (see Section 6.2).

6.1 Achievement of Research Objectives

6.1.1 RO1: Formulating a theoretical framework of Shared Perception

As defined in Chapter 2, Shared Perception is the observer’s perceptual ability to integrate
different sources of information: perception of the environment, private internal models
of reality,and perception of other social agents. Also, the integration dynamics have been
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described as triangulation among these three sources. The idea of providing a general
definition stemmed from the need for a comprehensive account of Shared Perception, valid
for humans and robots.

One of the achievements of the Shared Perception account has been to frame together
humans and robots. The objective of Section 2.4 was to put in parallel studies about human
perceptual or attentive phenomena triggered during interaction with other humans and studies
about the same effects triggered by robots. Social robots can therefore convey similar
information to humans. As it was demonstrated, when interacting with robots, humans are
able to implicitly understand and integrate into their perception where the robot’s attention
is directed, what is its perspective on the environment, what hidden information about the
environment is disclosed by its actions, as well as its internal state. This is a crucial feature
for natural and effective HRI. Humans, which grew up in a social world and acquired social
perceptual abilities since the first months of life, are prone to integrate others’ intentional
relation to the environment. The fact that they do the same even in front of robots raises the
possibility of designing smooth and effective interactions with robots, based on the same
perceptual phenomena that support human sociality.

On the same line, a fundamental aspect covered by the framework is that different social
perception mechanisms are not only envisaged separately but also conceived together. With
respect to previous literature, this represents one of the contributions of this work. Therefore,
integrating others’ attention, perspective, actions, and inner states are envisaged as a unique
extensive phenomenon meant to generally grasp other more specific mechanisms under the
terms of “perception of others’ intentional relation to the environment”.

Empirical research on distinct mechanisms of social perception is therefore the foundation
of the Shared Perception account. Nevertheless, the perspective proposed here was a frame
interpreting such mechanisms together because out of laboratories, where real interactions
happen, such processes often occur contemporarily and influence each other. Deepening the
investigation of these and other perceptual processes separately is still crucial: the studies
contained in Chapters 3 and 4 testify to it. However, to enhance the quality of HRI and bring
robots outside of laboratories, a comprehensive account of Shared Perception, which was
missing, was needed.
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6.1.2 RO2: Investigating the mechanism of Context Dependency in
human visual perception of space during social interaction

Context Dependency is a well-known perceptual phenomenon that clearly shows perception
is not a mere reception of stimuli. A crucial difference occurs between what is present in the
external world and what we, in fact, perceive. Perception is the entire process connecting
these two poles. As explained in Chapter 2, many elements might be involved in such a
process. Among them, Context Dependency reveals the influence of previous experience.
Information received through senses is affected by previous experience in this respect: what
we previously perceived becomes an internal model of reality that acts as priors/predictions
on what we are perceiving, hence modifying sensory information.

Previous literature explored this phenomenon only in individual scenarios. In an individ-
ual context, the mechanism reveals two of the three sources of information enabling Shared
Perception: the environment and the self. The sensory stimulus can be seen as information
from the environment, whereas the priors – the internal model of reality – can be considered
part of the information related to the self. Keeping the perspective of Shared Perception, the
studies reported in Chapters 3 and 4 tried to add the third source of information: the other
social agent.

For the first time, in this work, Context Dependency has been investigated in a social
context. An interactive experimental setting was inspired by state-of-the-art but with the
addition of a humanoid robot interacting with participants and exhibiting two different styles
of behavior (mechanical or social) and employed to explore how social interaction affects
Context Dependency in visual perception of space. Interestingly, the robot, which had the
role of stimuli demonstrator indicating visual stimuli to participants, impacted differently on
the participants’ perception, according to its social or mechanical behavior. With the social
robot, the influence of priors was significantly lower than with the mechanical one. Both the
psychophysics and computational approaches agreed on this, showing that sociality caused
a rebalance between sensory information and prior information. Also, from the Bayesian
modeling, sociality appeared as an additional factor, not envisaged by models validated in
individual scenarios.

This phenomenon appears in line with the Shared Perception framework. In front of a
social agent, perception is triangulated among information coming from the environment
(sensory stimuli), information coming from the self (priors as the internal model of reality),
and information coming from others (perception of the social robot). This was not the case
of the robot behaving mechanically, as suggested by the results from the computational
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model of Context Dependency. Considering the influence caused by the social robot, further
consideration is needed on what element of the social robot affected Context Dependency.
Was the influence triggered by the robot’s attention (perceived through its gaze and head
movements), by its action (which albeit identical was perceived as endowed with more
agency), or by the social context (created by the robot’s speech and emotions expression)?

For the moment, there is no element to settle the question. As it was the first time Context
Dependency was investigated during the interaction, the study was designed to maximize
the influence caused by the social interaction. Therefore, it might be the above-mentioned
features (attention, action, and social context) contributed to the effect. This might be seen as
a limitation of the study, which for the moment does not allow to outline which element (or
which more) was integrated into the Shared Perception process. Future studies should move
in this direction.

6.1.3 RO3: Developing a model for Addressee Estimation to foster
robots’ socio-perceptual skills based on the Shared Perception
framework

As defined in Chapter 2, Shared Perception moves from the perception of others to achieve
an augmented perception of the environment. Others’ intentional reference toward the
environment is perceived, interpreted, and employed as an additional source of information to
enhance one’s perception. The body of the other is a crucial element for Shared Perception to
emerge. Its intentional reference toward the environment is grasped from its body: attention,
perspective, actions, and inner states are all achievable by perceiving and interpreting bodily
non-verbal behaviors.

Addressee Estimation has been developed as a Shared Perception skill starting from
here. As the ability to perceive whom a person is talking to, it is inherently connected to the
concept of intention understanding. Rarely, the addressee of a speaker is defined as overt
information, explicated in the speech. More often, it is made clear by the context or the
non-verbal behavior of the speaker: elements which bring to interpret the implicit goal of
the person talking. Endowing the robot with the ability to interpret the non-verbal behavior
of the speaker and localize its addressee serves as a basis for Shared Perception to occur
and to foster social interaction. Beyond enabling the robot to engage in conversation with
others and evaluate if being approached, it allows understanding the social dynamics of the
group, contextualizing the content of a speech, discovering not-yet-detected agents in the
environment, etc.
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With respect to previous literature on the topic, the Addressee Position Estimation model
developed in this thesis moves from a binary prediction approach to understand if the robot
was addressed, toward predicting the position of the addressee with respect to the speaker.
From this perspective, the model yields information about the position of the addressee
starting from the bodily behavior of the speaker. Specifically, the two features that disclose
the speaker’s intention are the head direction and the body pose. The former served as a proxy
for the speaker’s attention, the latter provided information about the speaker’s perspective
(body direction) and, to a lesser and not directly explored extent, actions (body movements).
The results of the model suggested this to be sufficient information to predict the addressee’s
position. No other contextual knowledge about the number or position of third agents in the
room was needed to achieve sufficiently reliable results, as it was, instead, in several previous
models of Addressee Estimation.

Shared Perception is based on the perception of others’ intentional relation toward the
environment but is fulfilled with the integration of two other sources of information: the
self and the environment. However fundamental to eliciting Shared Perception, the APE
model does not reach a complete Shared Perception. For this to happen, the whole Addressee
Estimation architecture designed at the end of Chapter 5 is needed. This way it will be
possible to move from the perception of the speaker’s body to the other benefits enabled
by Shared Perception: understanding others, creating a common ground, and augmenting
perception of the external environment, as described in Section 5.5. Future work is therefore
needed to finalize the model of Addressee Estimation as Shared Perception. Though the
architecture has already been designed in most components, the Addressee Estimation
modules still need to be implemented on the iCub robot and connected to those preexistent.

6.2 Final Overview

The present work emerges at the intersection of human-robot interaction, cognitive robotics,
and social robotics. From these disciplines, the thesis respectively inherits the quest for
a natural and efficient interaction between humans and robots, the aim to foster robots’
autonomy with cognitive abilities, and the social dimension of the interaction. Accordingly,
the motivation for this research has been the need to improve the interactive social abilities
of robots to make them effective instruments and collaborators of human development and
well-being. The theoretical and experimental investigation of human perception as well as
the modeling and development of a perceptual skill inspired by it were driven by this need.
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Shared Perception offers a plausible interpretative account of human perception during
social interaction and, for this reason, provides support to improve socio-cognitive HRI:

• it is a reference for designing human-scaled interactions

• it promotes the implementation of human-inspired cognitive and perceptual skills.

If robots are developed to help and assist humans, designing interactions with them
based on human social abilities appears straightforward. Principles of human perception
have already been used to develop technological devices. For instance, the perceptual laws
identified by Gestalt Theory (see Section 2.3.1) have been adapted for web page [252]
and, more generally, interactive media design [86], with the objective to enhance the user
experience (UX) by modeling the device on human perception. The role of Shared Perception
in HRI could follow the same direction. Based on criteria inspired by human social perception,
the design of the robot’s body, movements, and gestures, as well as the structure of proxemic
and context, could be all elements to improve the quality of the interaction in terms of
smoothness, engagement, and effectiveness. The results of the experiment described in
Chapter 3 promote this outlook. In that case, we designed the interaction using a humanoid
robot expressing biological motion to obtain a higher attribution of anthropomorphism,
the robot’s head movements, oculomotor behavior, and emotion-expression with eyelids to
elicit attribution of intentionality, mutual gaze and smiles to evoke pro-sociality, speech to
foster engagement. As a result, despite the identical visual stimulus, the interaction with
the social or mechanical robot induced an alteration in visual perception of space, leading
participants to rely on the shared visual stimuli more than on their private internal models
while interacting with the social robot.

In embodied artificial systems, human awareness can be considered the system’s ca-
pability to interpret human behavior and be sensitive to their inner states, such as beliefs,
emotions, or intentions. Shared Perception indicates that this ability is crucial at several
levels: it increases the understanding of others, aids the robot in discovering the environment,
and founds interaction on common ground. For these reasons, this thesis suggests that the
dynamics of Shared Perception, based on the other, the self, and the environment, should
be considered when it comes to developing perceptual and cognitive skills for autonomous
robots. Addressee Estimation was one possible solution to practically implement such dy-
namics. I decided to tackle the Addressee Estimation problem because it is extremely helpful
in multi-party interaction and can support the robot’s capability to infer the presence of new
people in the environment. Two skills that would improve robots’ awareness and perception
of social environments. However, the same logic underlying the model development reported
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in Chapter 5 can be applied to a number of other situations. Every time the behavior of others
can reveal, for instance, hidden areas of the environment, subjective qualities of objects, the
presence of new people, or specific relations among people, Shared Perception can be of help.
Improving the robot’s awareness and perception of the environment thanks to other people
would not only make it more autonomous but may profoundly improve the interaction.

These three years of research have been guided by the idea that to interact, hence to
act together, two partners need to perceive together. On the same line, to perceive together
each partner should integrate personal information, information disclosed by the other, and
information from the environment: in two words, share perception.
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(2020). Human-robot interaction: An introduction. Cambridge University Press.

[17] Bartneck, C., Kuli, D., and Croft, E. (2009). Measurement instruments for the anthropo-
morphism , animacy , likeability , perceived intelligence , and perceived safety of robots.
International Journal of Social Robotics, 1:71–81.

[18] Bejjanki, V. R., Knill, D. C., and Aslin, R. N. (2016). Learning and inference using
complex generative models in a spatial localization task. Journal of Vision, 16(5):9–9.

[19] Belgiovine, G., Gonzalez-Billandon, J., Sandini, G., Rea, F., and Sciutti, A. (2022).
Towards an hri tutoring framework for long-term personalization and real-time adaptation.
In Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and
Personalization, UMAP ’22 Adjunct, page 139–145, New York, NY, USA. Association
for Computing Machinery.

[20] Belgiovine, G., Rea, F., Barros, P., Zenzeri, J., and Sciutti, A. (2020). Sensing the
partner: Toward effective robot tutoring in motor skill learning. In Wagner, A. R., Feil-
Seifer, D., Haring, K. S., Rossi, S., Williams, T., He, H., and Sam Ge, S., editors, Social
Robotics, pages 296–307, Cham. Springer International Publishing.

[21] Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., and Tanaka, F. (2018).
Social robots for education: A review. Science Robotics, 3(21):eaat5954.

[22] Bertenthal, B. (1996). Origins and early development of perception, action, and
representation. Annual review of psychology, 47(1):431–459.

[23] Bicks, L. K., Koike, H., Akbarian, S., and Morishita, H. (2015). Prefrontal cortex and
social cognition in mouse and man. Frontiers in psychology, 6:1805.

[24] Bolis, D. and Schilbach, L. (2020). ‘I interact therefore I am’: The self as a historical
product of dialectical attunement. Topoi, 39(3):521–534.

[25] Brooks, R. and Meltzoff, A. N. (2005). The development of gaze following and its
relation to language. Developmental Science, 8(6):535–543.



References 141

[26] Brown, E. and Brüne, M. (2012). The role of prediction in social neuroscience. Frontiers
in Human Neuroscience, 6:147.

[27] Brown, L. N. and Howard, A. M. (2014). The positive effects of verbal encouragement
in mathematics education using a social robot. In 2014 IEEE Integrated STEM Education
Conference, pages 1–5.

[28] Bubic, A., von Cramon, D. Y., and Schubotz, R. I. (2010). Prediction, cognition and
the brain. Front Hum Neurosci, 4:25–25. 20631856[pmid].

[29] Bushnell, E. W. and Boudreau, J. P. (1993). Motor development and the mind: The
potential role of motor abilities as a determinant of aspects of perceptual development.
Child Development, 64(4):1005–1021.

[30] Butterworth, G. (1991). The ontogeny and phylogeny of joint visual attention. Basil
Blackwell.

[31] Cangelosi, A. and Asada, M. (2022). Cognitive robotics. MIT Press.

[32] Cannon-Bowers, J. A. and Salas, E. (2001). Reflections on shared cognition. Journal
of Organizational Behavior, 22(2):195–202.

[33] Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., and Sheikh, Y. A. (2019). Openpose:
Realtime multi-person 2d pose estimation using part affinity fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[34] Carpenter, M., Nagell, K., Tomasello, M., Butterworth, G., and Moore, C. (1998).
Social cognition, joint attention, and communicative competence from 9 to 15 months of
age. Monographs of the society for research in child development, pages i–174.

[35] Chevalier, P., Kompatsiari, K., Ciardo, F., and Wykowska, A. (2020). Examining
joint attention with the use of humanoid robots-a new approach to study fundamental
mechanisms of social cognition. Psychonomic Bulletin & Review, 27(2):217–236.

[36] Chiorri, C., Bracco, F., Piccinno, T., Modafferi, C., and Battini, V. (2014). Psychometric
properties of a revised version of the ten item personality inventory. European Journal of
Psychological Assessment.

[37] Chita-Tegmark, M., Lohani, M., and Scheutz, M. (2019). Gender effects in perceptions
of robots and humans with varying emotional intelligence. In 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 230–238.

[38] Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., and Burr, D. C. (2012). Optimal
encoding of interval timing in expert percussionists. Journal of Neuroscience, 32:1056–60.

[39] Cifuentes, C. A., Pinto, M. J., Céspedes, N., and Múnera, M. (2020). Social robots in
therapy and care. Current Robotics Reports, 1(3):59–74.

[40] Clark, A. (2013). Whatever next? predictive brains, situated agents, and the future of
cognitive science. Behavioral and Brain Sciences, 36:181–204.

[41] Clark, A. (2016). Surfing Uncertainty: Prediction, Action, and the Embodied Mind.
Oxford University Press.



References 142

[42] Conway, J. R., Lee, D., Ojaghi, M., Catmur, C., and Bird, G. (2017). Submentalizing
or mentalizing in a level 1 perspective-taking task: A cloak and goggles test. Journal of
Experimental Psychology: Human Perception and Performance, 43(3):454.

[43] Corlett, P. R., Frith, C. D., and Fletcher, P. C. (2009). From drugs to deprivation:
a bayesian framework for understanding models of psychosis. Psychopharmacology,
206(4):515–530.

[44] Creem-Regehr, S. H., Gagnon, K. T., Geuss, M. N., and Stefanucci, J. K. (2013).
Relating spatial perspective taking to the perception of other’s affordances: Providing a
foundation for predicting the future behavior of others. Frontiers in Human Neuroscience,
7:596.

[45] Crockett, M. J. and Fehr, E. (2014). Social brains on drugs: tools for neuromodulation
in social neuroscience. Social cognitive and affective neuroscience, 9(2):250–254.

[46] Davidson, D. (1991). Three varieties of knowledge. Royal Institute of Philosophy
Supplement, 30:153–166.

[47] De Jaegher, H., Di Paolo, E., and Gallagher, S. (2010). Can social interaction constitute
social cognition? Trends in Cognitive Sciences, 14(10):441–447.

[48] Den Ouden, H., Kok, P., and De Lange, F. (2012). How prediction errors shape
perception, attention, and motivation. Frontiers in Psychology, 3:548.

[49] Di Cesare, G., Di Dio, C., Marchi, M., and Rizzolatti, G. (2015). Expressing our
internal states and understanding those of others. Proceedings of the National Academy of
Sciences, 112(33):10331–10335.

[50] Di Cesare, G., Di Dio, C., Rochat, M., Sinigaglia, C., Bruschweiler-Stern, N., Stern,
D., and Rizzolatti, G. (2014). The neural correlates of ‘vitality form’recognition: an fmri
study: This work is dedicated to daniel stern, whose immeasurable contribution to science
has inspired our research. Social cognitive and affective neuroscience, 9(7):951–960.

[51] Di Cesare, G., Vannucci, F., Rea, F., Sciutti, A., and Sandini, G. (2020). How attitudes
generated by humanoid robots shape human brain activity. Scientific Reports, 10(1):1–12.

[52] Divekar, R. R., Kephart, J. O., Mou, X., Chen, L., and Su, H. (2019). You talkin’ to me?
a practical attention-aware embodied agent. In Lamas, D., Loizides, F., Nacke, L., Petrie,
H., Winckler, M., and Zaphiris, P., editors, Human-Computer Interaction – INTERACT
2019, pages 760–780, Cham. Springer International Publishing.
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