213 research outputs found

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Sonar attentive underwater navigation in structured environment

    Get PDF
    One of the fundamental requirements of a persistently Autonomous Underwater Vehicle (AUV) is a robust navigation system. The success of most complex robotic tasks depends on the accuracy of a vehicle’s navigation system. In a basic form, an AUV estimates its position using an on-board navigation sensors through Dead-Reckoning (DR). However DR navigation systems tends to drift in the long run due to accumulated measurement errors. One way of mitigating this problem require the use of Simultaneous Localization and Mapping (SLAM) by concurrently mapping external environment features. The performance of a SLAM navigation system depends on the availability of enough good features in the environment. On the contrary, a typical underwater structured environment (harbour, pier or oilfield) has a limited amount of sonar features in a limited locations, hence exploitation of good features is a key for effective underwater SLAM. This thesis develops a novel attentive sonar line feature based SLAM framework that improves the performance of a SLAM navigation by steering a multibeam sonar sensor,which is mounted on a pan and tilt unit, towards feature-rich regions of the environment. A sonar salience map is generated at each vehicle pose to identify highly informative and stable regions of the environment. Results from a simulated test and real AUV experiment show an attentive SLAM performs better than a passive counterpart by repeatedly visiting good sonar landmarks

    Perceptual evaluation of personal, location-aware spatial audio

    Full text link
    This thesis entails an analysis, synthesis and evaluation of the medium of personal, location aware spatial audio (PLASA). The PLASA medium is a specialisation of locative audio—the presentation of audio in relation to the listener’s position. It also intersects with audio augmented reality—the presentation of a virtual audio reality, superimposed on the real world. A PLASA system delivers binaural (personal) spa- tial audio to mobile listeners, with body-position and head-orientation interactivity, so that simulated sound source positions seem fixed in the world reference frame. PLASA technical requirements were analysed and three system architectures identified, employing mobile, remote or distributed rendering. Knowledge of human spatial hearing was reviewed to ascertain likely perceptual effects of the unique factors of PLASA compared to static spatial audio. Human factors identified were multimodal perception of body-motion interaction and coincident visual stimuli. Technical limitations identified were rendering method, individual binaural rendering, and accuracy and latency of position- and orientation-tracking. An experimental PLASA system was built and evaluated technically, then four perceptual experiments were conducted to investigate task-related perceptual per- formance. These experiments tested the identified human factors and technical limitations against performance measures related to localisation and navigation tasks, under conditions designed to be ecologically valid to PLASA application scenarios. A final experiment assessed navigation task performance with real sound sources and un-mediated spatial hearing for comparison with virtual source performance. Results found that body-motion interaction facilitated correction of front–back confusions. Body-motion and the multi-modal stimuli of virtual–audible and real–visible objects supported lower azimuth errors than stationary, mono-modal localisation of the same audio-only stimuli. PLASA users navigated efficiently to stationary virtual sources, despite varied rendering quality and head-turn latencies between 176 ms and 976 ms. Factors of rendering method, individualisation and head-turn latency showed interaction effects such as greater sensitivity to latency for some rendering methods than others. In general, PLASA task performance levels agreed with expectations from static or technical performance tests, and some results demonstrated similar performance levels to those achieved in the real-source baseline test

    Flight Mechanics/Estimation Theory Symposium, 1990

    Get PDF
    This conference publication includes 32 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 22-25, 1990. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    Time for mapping:Cartographic temporalities

    Get PDF

    An integrative study of bird migration: From the migratory phenotype to its gene regulation mechanisms and back.

    Get PDF
    Life goes out of equilibrium; it is in constant movement. Animals, especially, move as part of their life cycle. An outstanding example is bird migration. Some birds adopt migration as a strategy to survive the harsh conditions of weather seasonality in temperate regions. Different sources of evidence indicate that seasonal migration is innate, and it can be inherited. Mutations in such heritable behaviour create an array of diversity in migratory traits: timing, orientation and distance. The diversity of migratory traits can affect ecological speciation. Migratory divides, for instance, are geographical areas where birds with different migratory orientations hybridise. If the differences in migratory behaviour are strong enough to create reproductive barriers, this could evolve into population divergence and eventually, speciation. However, to understand the potential processes of divergence caused by migratory behaviours, a crucial element is missing: the identity of the molecular mechanisms involved in migration. Genome-wide studies in bird species with migratory divides find several different genomic regions with species-specific signature. Similarly, gene expression approaches in different organs and species find groups of individual differentially expressed genes. These results suggest an intricate mechanism for the genetics of migration with potential species-specific characteristics. This thesis analyses the migratory behaviour from different angles spanning the phenotype to gene regulation, to contribute to the identification of mechanisms and evolution of migration. Most of the chapters of this thesis use the Eurasian blackcap ( Sylvia atricapilla) a species that comprise an extensive repertoire of orientation and distance traits, including entirely resident populations. With blackcaps, we studied the phenotypic variability of migration tracking individuals ithroughout the year (Chapter 2). We used light-level geolocators to obtain migratory routes of individuals from populations in Central Europe and the United Kingdom. We describe for the first time the orientation and timing patterns of individuals from a migratory divide and a recently adapted population in the UK. In chapter 4, we analyse the genomics and evolution patterns of blackcaps. Using whole-genome resequencing of populations covering all the differences in migratory traits, we describe population structure and demography in this species. We found that blackcaps show very little genomic differentiation. The most divergent populations are residents, while migratory populations comprise a single population at the genetic level. Chapter 5 is the first study of gene regulatory mechanisms in the context of bird migration. We characterised the chromatin accessibility landscape in three brain areas contrasting individuals during migration with individuals out of the migratory season. One of the findings is a general pattern of gene repression in relevant brain regions like the Cluster N. Moreover; we found cis-regulatory modules with particular evolutionary trajectories that may play a role in migration. Lastly, we did two comparative approaches to study macroevolutionary patterns related to migration. First, we analysed phylogenetic patterns and structural characteristics of previously proposed candidate genes (chapter 3). We found that the candidate genes do not have structural characteristics correlated with the presence of migration across the avian clade as it does within some species. The second comparative approach (Chapter 6), evaluates the repeatability patterns of genomic divergence in pairs of populations from migratory divides. Our results suggests that the degree of repeatability is mainly driven by how apart in the speciation continuum is the population pair located: if the pair is recently diverging, iifew repeatability is detected, while if the populations are further apart, repeatability is more plausible. Overall, this thesis highlights an essential feature for the study of complex traits like migration: integration of different sources of evidence. Ideally, in these cases, the analysis of phenotype, evolutionary patterns and regulatory mechanisms in the same individuals, should be the standard procedure. We are aware that this is an implausible scenario. However, the integration of different studies, help to guide the search of molecular elements involved in bird migration. This thesis is the first - at least that we are aware of - study compilating research on a variety of topics to understand bird migration. We are still far from getting a definitive understanding of bird migration. Nevertheless, confirming the heritability of the phenotype, describing macro and microevolutionary patterns of migration and specific regulatory elements, will improve the search for new candidate genes for this behaviou
    corecore