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ABSTRACT

Life  goes  out  of  equilibrium;  it  is  in  constant  movement.  Animals,

especially, move as part of their life cycle. An outstanding example is bird

migration. Some birds adopt migration as a strategy to survive the harsh

conditions of weather seasonality in temperate regions. Different sources of

evidence indicate that seasonal migration is innate, and it can be inherited.

Mutations  in  such  heritable  behaviour  create  an  array  of  diversity  in

migratory traits: timing, orientation and distance.

The diversity of migratory traits can affect ecological speciation. Migratory

divides,  for  instance,  are  geographical  areas  where  birds  with  different

migratory orientations hybridise. If the differences in migratory behaviour

are strong enough to create reproductive barriers, this could evolve into

population divergence and eventually, speciation. However, to understand

the potential processes of divergence caused by migratory behaviours, a

crucial  element  is  missing:  the  identity  of  the  molecular  mechanisms

involved in migration. Genome-wide studies in bird species with migratory

divides  find  several  different  genomic  regions  with  species-specific

signature.  Similarly,  gene expression approaches in  different  organs and

species  find  groups  of  individual  differentially  expressed  genes.  These

results suggest an intricate mechanism for the genetics of migration with

potential species-specific characteristics.

This thesis analyses the migratory behaviour from different angles spanning

the  phenotype  to  gene  regulation,  to  contribute  to  the  identification  of

mechanisms and evolution of migration.

Most  of  the  chapters  of  this  thesis  use  the  Eurasian  blackcap  (Sylvia

atricapilla) a species that comprise an extensive repertoire of orientation

and distance traits, including entirely resident populations. With blackcaps,

we  studied  the  phenotypic  variability  of  migration  tracking  individuals
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throughout the year (Chapter 2). We used light-level geolocators to obtain

migratory routes of individuals from populations in Central Europe and the

United Kingdom. We describe for the first time the orientation and timing

patterns  of  individuals  from a  migratory  divide  and  a  recently  adapted

population in the UK.

In chapter 4, we analyse the genomics and evolution patterns of blackcaps.

Using  whole-genome  resequencing  of  populations  covering  all  the

differences  in  migratory  traits,  we  describe  population  structure  and

demography  in  this  species.  We  found  that  blackcaps  show  very  little

genomic  differentiation.  The  most  divergent  populations  are  residents,

while  migratory populations  comprise a single  population at the genetic

level.

Chapter 5 is the first study of gene regulatory mechanisms in the context of

bird migration. We characterised the chromatin accessibility landscape in

three brain areas contrasting individuals during migration with individuals

out of the migratory season. One of the findings is a general pattern of

gene repression in relevant brain regions like the Cluster N. Moreover; we

found cis-regulatory modules with particular evolutionary trajectories that

may play a role in migration.

Lastly,  we  did  two comparative  approaches  to  study  macroevolutionary

patterns related to migration. First, we analysed phylogenetic patterns and

structural characteristics of previously proposed candidate genes (chapter

3).  We  found  that  the  candidate  genes  do  not  have  structural

characteristics correlated with the presence of migration across the avian

clade as it does within some species. The second comparative approach

(Chapter 6), evaluates the repeatability patterns of genomic divergence in

pairs of populations from migratory divides. Our results suggests that the

degree of  repeatability  is  mainly  driven by  how apart  in  the  speciation

continuum is the population pair located: if the pair is recently diverging,
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few repeatability  is  detected,  while  if  the  populations  are further  apart,

repeatability is more plausible.

Overall, this thesis highlights an essential feature for the study of complex

traits like migration: integration of different sources of evidence. Ideally, in

these  cases,  the  analysis  of  phenotype,  evolutionary  patterns  and

regulatory mechanisms in  the same individuals,  should be the standard

procedure. We are aware that this is an implausible scenario. However, the

integration  of  different  studies,  help  to  guide  the  search  of  molecular

elements involved in bird migration. This thesis is the first - at least that we

are  aware  of  -  study  compilating  research  on  a  variety  of  topics  to

understand bird migration.

We are still far from getting a definitive understanding of bird migration.

Nevertheless,  confirming  the  heritability  of  the  phenotype,  describing

macro and microevolutionary patterns of migration and specific regulatory

elements,  will  improve  the  search  for  new  candidate  genes  for  this

behaviour.
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KURZFASSUNG

Das  Leben  gerät  aus  dem  Gleichgewicht;  es  ist  in  kontinuierlicher

Bewegung.  Insbesondere  Tiere  bewegen sich  in  bestimmten Abschnitten

ihres  Lebenszyklus.  Ein  herausragendes  Beispiel  dafür  ist  der  Vogelzug.

Einige  Vogelarten  nutzen  den  Vogelzug  als  Überlebensstrategie  um  die

rauen  Wetterbedingungen,  verursacht  durch  die  Jahreszeiten  in  der

gemäßigten  Zone  der  Erde,  zu  überleben.  Verschiedene  Beweisquellen

zeigen, dass der jahreszeitliche Vogelzug angeboren ist und vererbt werden

kann.  Mutationen  in  einem  solchen  vererbten  Verhalten  erzeugen  ein

vielfältiges  Spektrum  in  Zugeigenschaften:  zeitliche  Koordinierung,

Richtung und Distanz.

Die  Vielfältigkeit  der  Zugeigenschaften  kann  ökologische  Artbildung

beeinflussen.  „Zugscheide“  zum  Beispiel  sind  geographische  Gebiete  in

denen Vögel mit unterschiedlichen Zugrichtungen hybridisieren. Wenn die

Unterschiede im Zugverhalten groß genug sind um Reproduktionsbarrieren

zu  bilden,  kann  dies  zu  Populationsdivergenz  und  schließlich  Artbildung

führen.  Um allerdings  die  durch  Zugverhalten  verursachten  potentiellen

Prozesse der Divergenz zu verstehen, fehlt ein entscheidendes Element: die

Identifizierung der in den Vogelzug involvierten molekularen Mechanismen.

Genomweite  Studien  in  Vogelarten  mit  Zugscheide  finden  mehrere

unterschiedliche  genomische  Regionen  mit  artspezifischen  Signaturen.

Gleichermaßen  finden  Methoden,  die  Genexpression  betrachten,  in

verschiedenen Organen und Arten Gruppen von individuell unterschiedlich

exprimierten  Genen.  Diese  Ergebnisse  legen  einen  komplizierten

Mechanismus für  die  genetische Grundlage  des  Vogelzugs  mit  eventuell

artspezifischen Eigenschaften nahe.

Diese Doktorarbeit analysiert das Zugverhalten aus verschiedenen Winkeln,

den  Phänotypen  bis  hin  zur  Genregulation  umfassend,  um  zu  der

Identifizierung des Mechanismus und Charakterisierung der Evolution des

Vogelzugs beizutragen.
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Die meisten Kapitel dieser Thesis betreffen die Mönchsgrasmücke (Sylvia

atricapilla),  eine Art,  die ein umfangreiches Repertoire an Zugrichtungen

und  Zugdistanzen  umfasst,  einschließlich  vollkommen  residenter

Populationen. In der Mönchsgrasmücke untersuchten wir die phänotypische

Variabilität des Vogelzugs indem wir einzelne Vögel über das Jahr verfolgten

(Kapitel  2).  Wir  beschreiben  erstmals  die  Orientierung  und  zeitliche

Zugstrategie  von  Individuen  entlang  einer  Zugscheide,  sowie  die

Brutgebiete  einer  erst  seit  kurzem  in  Großbritannien  angesiedelten

Überwinterungspopulation.

In  Kapitel  4  analysieren  wir  Genomik  und  evolutionäre  Muster  der

Mönchsgrasmücke. Mit genomweiter Resquenzierung von Populationen, die

alle  unterschiedliche  Zugeigenschaften  umfassen,  beschreiben  wir

Populationsstruktur  und  Demografie  in  diese  Vogelart.  Wir  fanden,  dass

Mönchsgrasmücken sehr wenig genomische Differenzierung zeigen. Die am

meisten  divergierenden  Populationen  sind  Ziehende  und  Nicht-ziehende

Populationen, wogegen die ziehenden Populationen auf dem genetischen

Level eine einzelne Population darstellen.

Kapitel  5  ist  die  erste  Studie  über  Genregulationsmechanismen  im

Zusammenhang  mit  dem Vogelzug.  Wir  charakterisierten  die  Chromatin

“accessibility landscape” in drei Gehirnarealen, um Individuen während des

Vogelzugs von Individuen außerhalb der Zugzeit  zu unterscheiden. Eines

der  Erkenntnisse  ist  die  Identifizierung  eines  Zugzeit-spezifischen

Genexpressionsmusters in relevanten Hirnregionen wie Cluster N. Zudem

fanden wir  cis-regulative Module mit  insbesondere evolutionären Pfaden,

welche eine Rolle im Vogelzug spielen können.

Zuletzt verwendeten wir zwei vergleichende Ansätze um mit dem Vogelzug

in Verbindung stehende makroevolutionäre Muster zu untersuchen. Zuerst

analysierten  wir  phylogenetische  Muster  und  strukturelle  Charakteristika

von  im  Vorhinein  vorgeschlagenen  Kandidatengenen  (Kapitel  3).  Wir

fanden, dass keine strukturellen Merkmale der Kandidatengene mit  dem

Vorhandensein des Vogelzugs innerhalb der vogelartigen Klade korrelieren,

wie sie  es innerhalb einiger  Arten tun.  Der zweite  vergleichende Ansatz
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(Kapitel  6)  evaluiert  die  Wiederholbarkeit  der  genomisch  divergierten

Muster  in  Paaren  von  Populationen  der  „migratory  divides“.  Unsere

Ergebnisse  legen  nahe,  dass  der  Grad  der  Wiederholbarkeit  vor  Allem

dadurch  bestimmt  wird  wie  weit  sich  das  Populationspaar  im

Artbildungskontinuum befindet: wenn das Paar jüngst divergiert wird eine

geringe Wiederholbarkeit bemerkt, während, wenn die Populationen weiter

auseinander sind, die Wiederholbarkeit eingängiger ist.

Insgesamt  hebt  diese  Doktorarbeit  eine  essentielle  Eigenschaft  für  das

Studieren  von  komplexen  Eigenschaften  wie  den  Vogelzug  hervor:  die

Integration  verschiedener  Beweisquellen.  Idealerweise  sollte  die

Standardprozedur  in  diesen  Fällen  die  Analyse  von  Phänotypen,

evolutionären  Mustern  and  regulatorischen  Mechanismen  im  selben

Individuum sein. Wir sind uns darüber bewusst, dass dies ein unplausibles

Szenario ist. Jedoch hilft die Integration verschiedener Studien die Suche

nach molekularen Elementen, die in den Vogelzug involviert sind, zu lenken.

Diese Doktorarbeit ist die erste – zu Mindestens uns bekannte - Studie, die

Forschung vielfältiger Themen zusammenstellt um Vogelzug zu verstehen.

Wir sind immer noch weit von einem endgültigen Verstehen des Vogelzugs

entfernt. Trotzdem wird die Suche nach neuen Kandidatengenen für dieses

Verhalten durch die Bestätigung der Vererbbarkeit des Phänotyps und die

Beschreibung  makro  und  mikro  evolutionären  Muster  und  spezifischer

regulatorischer Elemente verbessert werden.
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OVERVIEW OF THE DISSERTATION

The topics covered in this thesis range from the behavioural components of bird

migration, to speciation with a special emphasis around finding the molecular

elements of migration and their evolutionary history. This thesis consists of three

parts: first, gives a focus into migration at the phenotypic level, second at the

gene sequence level and lastly a study parallel evolution and speciation.

In  the  introductory  chapter  1, I  review  the  basic  biology  of  migration,  its

definition, behavioural features and ecology. I focus on the research of genetics

and molecular elements of migration. Next, I discuss the evolution of migration

and its potential impact on speciation. Finally, I present the Eurasian Blackcap

(Sylvia atricapilla) as an excellent model for migration and focal study system

used in my thesis.

Part I. 

To understand the underlying genetic  architecture of  any  complex behaviour,

precise  characterization  of  the  focal  phenotype  is  imperative.  Chapter  2,

”Versatile migratory strategies and evolutionary insights revealed by tracks of

wild  Eurasian  blackcaps” is  a  colaboration  where  we  addressed  previous

limitations  of  indirect  approaches  (ringing  recovery,  isotope,  and  funnel

orientation analysis) to characterize the migratory phenotype. To do this we fit

geolocators (small archival tags that record light intensity values) on blackcaps in

Central Europe and the United Kingdom. In the study we characterized routes

and timing patterns of 90 individuals, some of which were tracked for two years.

This also allowed us to confirm the repeatability of migratory routes in the wild,

and patterns of heritability previously described  in funnel-based orientation and

crossbreeding  experiments.  Phenotypic  characterization  and  repeatability  are

crucial requirements to base evidence for the genetic nature of migration. 

Part II 

In this part,  the focus is to explore the molecular elements of migration with

three  approaches.  The  first  one  evaluates  the  extent  of  the  current  gene

candidates  of  migration  in  an  evolutionary  framework.  Second,  we  used  a

genome-wide based approach to look for genes associated with migration in  S.
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atricapilla.  Finally,  we  applied  a  gene  regulation  approach  using  chromatin

accessibility to identify cis-regulatory elements involved in migration.In  chapter

3, “Candidate  genes  do not  distinguish between migratory  and nonmigratory

species” I used a phylogenetic and molecular evolution approach to analyze a set

of previously suggested candidate genes for migration. Using available genome

data  for  70  bird  species,  I  found  that  structural  sequence  characteristics  of

candidate genes (i.e. allele lenghts) are not a reliable measure for propensity to

migration. This suggests that candidate genes for migration found in one species

might not be necessary to other groups in the avian clade. 

In  chapter  4, “The  evolutionary  history  and  genomics  of  European  blackcap

migration”  we  analyzed  population  structure  and  genomic  associations  of

migratory traits in Eurasian blackcaps (Sylvia atricapilla). We used whole-genome

resequencing data of individuals across its breeding range in Europe, to compare

all  possible  migratory  phenotypes.  Our  analyses  indicate  that  genomic

differentiation  among  populations  is  very  low,  only  a  few  SNPs  show  strong

differences between migratory and resident populations. Most of the SNPs with

high differentiation are located in non-coding regions suggesting a potential cis-

regulatory  role  for  the onset  of  migration.  We also suggest  that  selection on

standing variation is playing a role in recent adaptations of the phenotype.  

As  in  many  complex  traits,  regulatory  elements  play  a  relevant  role  in  the

evolution and onset of migration. In  chapter 5 I took a functional approach to

search  for  molecular  elements  of  bird  migration  with  a  gene  regulation

perspective.  In  “Controlling  bird  migration  behaviour  through  cis-regulatory

elements” we looked for  patterns  of  differential  chromatin  accessibility  in  an

experimental  setup  to  asses  migratory  behaviour.  Because  the  migratory

phenotype is only exhibited during the migratory season, we can contrast it with

an  off-season/control  phenotype.  Specifically,  we  characterized  chromatin

accessibility in  three brain regions related to migration.  We characterised the

genomic  regions  changing  chromatin  accessibility  and  their  potential

Transcription  Factor  Binding  Sites.  These  genomic  regions  harbour  potential

regulatory  elements  for  the  migratory  phenotype.  Additionally,  evolutionary

patterns show that these elements have gone through population changes that

might have shaped the evolution of migration in Eurasian blackcaps.  
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Overall, part II of this thesis recognise that changes in coding and non-coding

sequences  are  relevant  for  migratory  behaviour.  However,  many  sources  of

evidence  point  to  a  significant,  mostly  unexplored  contribution  from  cis-

regulatory sequences. 

PART III

The last part of this thesis explores the elements of speciation in hybrid zones. In

chapter 6 “Comparative analysis examining patterns of genomic differentiation

across multiple  episodes of  population divergence in birds”,  we analyzed the

repeatability  of  genomic  differentiation  and  divergence  in  eight  pairs  of  bird

populations  forming  hybrid  zones.  We  found  that  repeatability  can  only  be

recognized once populations are clearly divergent, compared to population pairs

that diverged recently.  Repeatability in  this context depends on where in the

speciation continuum the pair of populations is located and if evolution has had

sufficient time to leave recognizable selection signatures in the genome. 
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CHAPTER 1

THE BIOLOGY OF MIGRATION.
The  first  observations  of  animal  migration  dating  around  ancient  Greek

philosophers  noticed  that  some  animals  vanished  and  reappeared  almost

suddenly  during  specific  seasons  of  the  year.  A  rigorous  analysis  of  this

phenomena, found that patterns of bird flocks flying, bison herds running, and

butterfly swarms moving correlated with the seasonal absence of these animals.

Since then, many questions and hypothesis about origins and characteristic of

animal migration have been postulated.

A large body of scientific literature from various disciplines has established the

foundations of  our  understanding of  animal  migration.  Many of  the questions

why,  when  or  how  animals  move  in  specific  seasons  are  now  answered  by

different disciplines of biology. Patterns of timing or when an animal population

starts and stops to move [1] is mainly studied by chronobiology. The routes that

a migratory bird could take or where do the animals go, is studied mainly by the

field  of  movement  ecology.  [2].  The  physiological  adaptations  and  sensory

mechanisms  or how animals are able to accomplish the challenge of migration

[3] is  mainly  studied  by  physiological,  neuroanatomical  and  neurosensory

approaches to behaviour. Finally, the answers of why animals have the urge to go

to other areas [4] and what could be the benefits of exhibiting such an energetic

intense behaviour, is studied in the context of evolutionary biology.

All of the biological disciplines involved in migration have laid the ground work

for many answers. Even in genetics, it is already established that some traits are

heritable [5], [6]. However, despite the collected evidence from all the different

fields  studying  migration,  the  molecular  mechanisms  that  enable  certain

individuals/populations or species to migrate, remain a complete mystery.

1.1 Definition, patterns and mechanisms of migration.

Migration can be distinguished from other movement behaviours (e.g  dispersion

or foraging) by two characteristics:  1)  a  directed,  coordinated back and forth

journey between two fixed territories,  and 2)  predictable seasonality.  Animals
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predictably move between breeding and non-breeding grounds, either alone or in

groups. Usually, breeding grounds are

 located in higher latitudes (like temperate or polar regions) and non-breeding

grounds are located in lower equatorial/tropical latitudes. 

Seasonal  migration  is  ubiquitous  across  the  animal  kingdom.  Examples  of

seasonal migrations range from blue whales swimming between Costa Rica and

the Alaska [7], to the multigenerational monarch butterfly  migratory cycle from

North America to Mexico and Central America [8]. Though ubiquitous in animals,

birds  are  arguably  the  taxon  with  the  longest history  of  migration studies.

5

Glossary

Zugunruhe: or migratory restlessness: a characteristic behaviour observed in caged 

migratory songbirds at night during the migratory season. It consists of an increase 

nocturnal activity characterized mainly by directed hopping hopping and flying, as well as 

wing whirring while perched. This behaviour can be monitored and quantified through 

motion sensors and infrared video cameras.  

Migratory divide: During glacial times, the geographical distribution of many bird species 

was confined to equatorial regions (glacial refugia). Allopatric populations developed 

specific migratory phenotypes. After glaciation, populations expanded and came close in 

geographical locations. The secondary contact of the populations creates a migratory 

divide. 

Radical pair mechanism: A spin-chemical reaction initiated by light excitation of a  donor 

molecule followed by electron transfer to an  acceptor molecule and formation of a 

transient radical pair. The spin state of the unpaired electrons can naturally change 

between opposite (singlet state, S) or parallel (triplet state, T) spin orientations that lead 

to different end products. This interconversion rate can be altered depending on the 

orientation of the molecule within an ambient magnetic field, consequently shifting the 

reaction towards one of the two states and subsequently altering the yield in the end 

product.

Partial migratory populations: are composed of individuals from the same breeding 

grounds that constitutively migrate and individuals that are all year residents. 

Genomic islands of divergence: Many sympatric populations experience gene flow. The 

genomic islands of divergence are parts of the genome that do not show evidence of 

gene flow. These regions stand out in the analysis of divergence using measures of 

relative differentiation (FsT) or absolute divergence (dxy). The genomic islands of 

divergence contrast with the rest of the genome that is under gene flow and should 

homogenize the divergence.



Migratory journeys displayed by birds range from a few kilometers to impressive

pole-to-pole journeys performed by Artic terns (Sterna artica) . 

The predictable seasonality of migration is linked to the life cycle of a migratory

animal.  In  birds,  it  starts with hatching on their  breeding grounds,  where the

fledglings grow and prepare for their first autumn migration. During the migratory

season, they travel to the non-breeding grounds where they stay until they are

prepared to travel back to their natal breeding grounds to reproduce and start

the cycle all over again.

In the following sections (1.1.1 to 1.1.3) I will show the evidence of how birds use

different adaptations and information sources to perform a migratory journey.

1.1.1.Choosing or adapting to migratory routes.

Bird migration routes are diverse and might vary even within the same species.

Those routes are optimized to avoid geographical or ecological barriers that could

be  disadvantageous  (e.g.  high  mountains,  deserts  or  sea).  Despite  the

optimization of migratory routes, population-specific variation in migratory routes

may have different survival and fitness consequences [9]. 

Each population has its own consistent route for migration but this repeatability

of route depends on age and genetic factors. Age adds components of learning

and memory which makes adults more consistent than naïve juveniles that have

never been to the area they are heading [10]. Genetic structure also influences

repeatability  considering that  species with  low population structure have less

consistent routes [11]. 

In  some species,  migratory routes have gone through dramatic  shifts  in  very

recent  times.  Barn  swallows  (Hirundo  rustica)  usually  migrate  from  North

America  to the Equator.  Nonetheless,  recent  evidence shows that  some barn

swallows populations have now also populated southern South America, creating

a pattern of migration that mirrors those from North American populations: this

new population migrates from Argentina to the equator and back south, without

going to North America like their relatives [12]. Similarly, introduced populations

of  House  finches  (Carpodacus  mexicanus)  [13] and  natural  populations  of

Eurasian Blackcaps (Sylvia atricapilla) have changed their migratory patterns and
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evolved new strategies in recent times. The reasons for such recent changes may

have different origins, environmental or genetic,  but without knowledge about

molecular mechanisms the reasons remains speculative.

1.1.2.Synchronization and timing to know when to migrate.

To  know  when  to  start  migration,  a  combination  of  environmental  cues  and

internal mechanisms work together to synchronize the life cycle of the migratory

animals to the annual cycle. Environmental characteristics of the seasons trigger

hormonal changes in birds to prepare for migration[14]. One of the preparatory

mechanisms for migration is hyperphagia, a behavioural adaptation where birds

start consuming large amounts of food, particularly sugar-rich sources, before

migration[14]. This has the purpose to store fat in the body as fuel for the energy

demand of the migratory journey. Hyperphagia often implies a shift in the regular

diet. For instance, by the end of summer/beginning of autumn insectivorous birds

shift  to  a  frugivorous  diet  specializing  in  fruits  with  high  sugar  content  like

berries. Hyperphagia must be strictly controlled to balance the amount of fat

deposition and the gain of mass to conform with the extent of migration distance

[15], otherwise, the bird would carry an unnecessary load. 

However, ought to potential fluctuations in weather and temperature from year

to year, the environment is not reliable as the unique cue all the time. Internal

processes keeping track of time (i.e. biological clocks), can take over to trigger

and coordinate  necessary  changes  for  migration.  The  precise  departures  and

arrivals of migratory birds during years of unconventional weather suggests the

existence of an internal clock mechanism to keep track of life history events like

breeding  and  moult.  In  experimental  settings,  Zugunruhe, or  migratory

restlessness, is a characteristic nocturnal behaviour that caged migratory birds

exhibit when kept indoors. Recent studies across the genus Saxicola, found that

the intensity of Zugunruhe of individuals correlates well with the phenotype of

the  population  (e.g  long  distance  migrants  have  longer  intervals  of  higher

intensity  of  zugunruhe)[6],  [16].  The  evidence  from  controlled  conditions

suggests that timing and intensity of this activity can be used as a proxy for

migration in the wild.
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The  synchronisation  mechanisms  for  migration  are  not  entirely  understood.

However,  these  mechanisms  must  agree  with  physiological  need  and

environmental cues, allowing a migratory bird an appropriate synchronisation to

avoid negative consequences in fitness.

1.1.3.Adaptations to find the way.

1.1.3.1. How to navigate in space.

To move in space, animals must navigate and orientate using different external

reference systems to keep their inherited  [17] directional information. Some of

the information comes from celestial cues like the stars or the sun, sunset and

polarized  light,  as  well  as  the  Earth’s  magnetic  field.  Additionally,  odour,

landmarks  and  signposts  are  important  elements  to  be  integrated  into  the

knowledge  for  the  route  they  must  take[15].  It  is  also  well  known  that  the

sensory information of various sources is integrated in specific structures of the

brain such as the hippocampus (see box 1).

Animal migration requires the development or enhancement of mechanisms that

help  animals  to  navigate.  Generally,  the  mechanisms  used  by  animals  to

navigate  include:  non-compass  orientation,  vector  navigation,  and  compass

orientation (For a review of all  the mechanisms, see  [18] in press).  In any of

these mechanisms, birds use various sources of cues to guide the path to follow

during migration. 

1.1.3.2. Celestial cues

The movement and position of the sun functions as a reliable orientation cue for

diurnal birds. The movement of the sun always follows an east-west pattern and

its position changes through the course of the day and year. Birds possess a time

compensated sun compass which accounts for time of day when using the sun as

a reference cue[15]. The stars can also be used as a reference cue in a different

way than the time compensated sun compass. Birds might use the centre of axial

rotation as an orientation cue that points poleward.
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Sunlight gets  deflected when it  enters the atmosphere.  This creates different

amounts of  polarization given the inclination of  the light source.  Experiments

changing orientation and filtering light show that the polarization conditions of

light change the direction that migratory birds tend to orientate [19]  

1.1.3.3. Magnetic compass

The Earths’ magnetic field is not uniformly distributed along all the surface. This

magnetic field has a polarity going from South to North of the magnetic poles.

Similarly, the intensity of the field changes across the globe having a maximum

at  the  poles  and  diminishing  in  half  towards  the  equator.  Behavioural

experiments  have  shown  that  birds  can  sense  changes  of  inclination  in  the

magnetic field and can use that information as directional cues for orientation

[20] .

Despite the evidence that birds use the Earth’s magnetic field to orient, we still

do  not  clearly  understand  how  they  sense  this  information.  Two  main

mechanisms  have  been  proposed  to  explain  this:  (I)  based  on  iron  mineral

structures  (like  magnetite)  and  (ii)  based  on  a  light-dependent  biochemical

reaction. Magnetite is accumulated in many living organisms as crystals inside

some  cells  and  could  act  as  a  compass  needle  and  potentially  aid  sensing

magnetic fields[21]. The light dependent biochemical reaction, called radical pair

mechanism, has been suggested by theoretical physicists based on the fact that

the  rate  of  some  biochemical  reactions  involving  electron  transfers  forming

transient radical-pairs, can be affected by magnetic fields as low as the Earth’s

magnetic field[21]. Currently the most promising candidate molecule that fulfills

these requirements is cryptochrome 4 (CRY-4). CRY-4 is a member of a multigene

family photosensible to blue light, however in differenc to other members of the

family, it doesn fluctuate with the circadian rhytms [22].

Many sensory inputs are processed and integrated in dedicated brain regions,

and increasing evidence suggests that magnetic compass information (at least in

night-migratory songbirds) is processed in a specific forebrain area part of the

visual Wulst, called Cluster N[23] (see box 1). This makes Cluster N a promising

brain area to find molecular  elements that are involved in shaping migratory

behaviour. 
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BOX 1. The brain structure of a migrant bird

The anatomical structure of the avian brain is different than that of mammals. The avian 

brain organization maintains big structures homologous to the mammalian brain (i.e. 

telencephalon, cerebellum, thalamus, midbrain and hindbrain) but the organization inside 

such structures is different. The avian brain has well compartimentalized regions, called 

nuclei, characterized by different cell types and functional features (for a review see[26]). 

Spatial movement, circadian cycles, and sensorial input are key elements of migration 

related to structures in the brain. 

The hippocampus acts as multisensorial integrator of olfaction and the visual cortex [27], 

additionally, all the functions related to spatial memory and cognition are mainly located 

in this region[28]. Besides the functional associations with migration, some evidence 

suggests a hippocampal volume increase during the migratory season [29] and the 

number of cells in the hippocampus differs between migratory and resident species .

Another essential factor for migration is timing. Observations and seasonality of migratory 

restlessness, suggest a circannual clock in birds likely linked to circadian cycles[15], [30]. 

The Suprachiasmatic Nucleus (SCN) is the core regulatory unit of circadian cycles in 

mammals. Likely, it has the same function in aves. Surgical ablation of the avian SCN 

disrupts the normal circadian cycles in birds. 

The visual regions of birds are mainly located in the palial layer of the brain. When birds 

are stimulated with light during the day, several different regions of this part of the brain 

have early gene expression activity. One specific region shows active gene expression 

during night vision in migratory songbirds[26] . This region, located on forebrain is called 

Cluster N. No evidence of activation of this area was found during daytime, when 

nonmigratory birds were tested or the eyes of migratory birds were covered [23]. Chemical 

lesions in Cluster N disrupt magnetic compass orientation in migratory birds[31], but does 

not affect orientation capabilities using sunset cues or an artificial star compass. 

Fig B1. Brain regions in a migratory bird brain. Left: Location of three relevant regions for 

migration: Hippocampus (HC), Cluster N (CN) and Ventral Anterior Hypothalamus (VAH). 

Center Sagital cut at approx 0.5 mm from the medial line. It indicates the location of HC 

and VAH. Right Saggital cut at 2mm from medial line. Depicts CN area

Hippocampus (HC)

Ventral Anterior Hypothalamus (VAH)

Cluster N (CN)

Hippocampus (HC)

Ventral Anterior Hypothalamus (VAH)

Cluster N (CN)



        1.2 The search for genetic and molecular regulators of  

migration.

The set of physiological and behavioural adaptations like hyperphagia, circadian

and  circannual  timing  of  key  life-history  events,  and  navigation  skills  are

sometimes  referred  as  the  “migratory  syndrome”[24] .  If  such  “migratory

syndrome” exists it might be controlled by major  genetic components. Evidence

from quantitative genetics of common garden experiments [25]and displacement

experiments  in  the  wild[17],  suggest  a  clear  heritable  component  of  several

migratory traits (See box 2). Despite several approaches to find potential genes

underlying migration behaviour, their  identity remains elusive. 

1.2.1 Candidate Gene Approaches

The  objective  of  a  candidate  gene  is  to  find  associations  between  genetic

markers and a specific phenotype. This approach relies on the orthology and

conservation of genes to infer functional homology across species with similar

traits. The usual approach to select a candidate gene starts finding a gene of

known function in model organisms with a polymorphic genetic marker in the

target species (microsatellite lengths repeats or characteristic polymorphisms)

that  correlates  with  a  certain  trait  of  the  phenotype.  In  migration,  the

correlations are usually with traits like timing, orientation, distance or migratory

restlessness[32]. Some candidate gene approaches work well for simple traits.

However in complex traits like many diseases, this approach receives criticisms

about low replication, and lack of thoroughness and inclusivity [33].  

As migration is a timing related behaviour,  naturally the search for candidate

gene(s) for migration started with the molecular machinery controlling circadian

cycles. One of the first candidates was the CLOCK gene, a master regulator of the

circadian cycle in mammals. The first associations found with  CLOCK  were the

breeding latitude and the length of a poly Glutamine(Q, polyQ) repeats in the

exon 12 of  this gene in blue tits  [34].  In  several  other species,  polyQ length

correlates with timing of seasonal traits[35]–[37], and migratory distance [38]. A

second candidate gene, ADCYAP1 showed a positive correlation between lengths

polymorphism in the 3’ UTR and migratory restlessness (zugunruhe) in blackcaps

[39]. However the results are inconclusive. On one hand, correlations of length
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polymorphism with breeding latitude and timing were also found in other species

[35], [38], [40], [41]. On the other hand, replications of the same approach in

other species do not find a correlation between the length polymorphisms of any

the  previous  gene  candidates  (CLOCK and  ADCYAP1)  and  traits  related  to

migration [40], [42]–[44]. 

One  of  the  main  drawbacks  of  using  candidate  gene  approaches  to  study

migration  is  the  lack  of  genetic  structure  assessment  on  correlations  with

migratory traits that covary with geography[32]. Breeding latitude and migratory

distance could have significant correlations with migration due to demography

and not  strictly with the migratory phenotype.  There is  still  a  need for  gene

candidates  of  migration.  However,  the  search  for  new  candidates  has  more

benefits using genome-wide approaches. 

1.2.2. Population Genomics

Taking advantage of the access to new sequencing technologies in any species

now  allows  us  to  expand  the  search  for  genetic  factors  of  migration  from

candidate genes and marker-based approaches to whole genome examination. 

Population genomics approaches on species with divergent patterns of migration

have used summary statistics to identify broad genomic regions of divergence

(genomic islands of divergence) potentially harboring genes related to migratory

behaviour. One of the first examples came from the Swainson’s thrush (Catharus

ustulatus),  a  migratory  species  with  populations  showing different  orientation

patterns. Using a windowed FsT approach, the authors found genomic islands of

differentiation  between these  populations.  The  genomic  islands  harbor  genes

implicated in circadian cycles and Heat shock proteins  [45],  [46].  Following a

similar approach in willow warblers (Phylloscopus trochilus) the genomic regions

differentiating between sympatric populations with opposite orientation patterns,

have  long  stretches  of  elevated  differentiation  and  clear  boundaries  which

suggests structural variation located in chromosomal inversions [47]. The genes

in such genomic regions are involved in fatty   acid metabolic  pathways,  and

transcription factors.  Nonetheless,  the regions  found are  not  similar  to  those

found in the Swainson’s thrush, and do not include any of the early candidate

genes (i.e. ADCYAP1 or CLOCK).  
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As an addition to the broad genomic population differentiation patterns found

throug  population  genomics  genome-wide-association  studies  (GWAS)  are

beginning  to  narrow  down  the  potential  genes  involved  in  migration.  To

characterize the phenotype, the miniaturization  of tracking devices now allows a

13

BOX 2. The genetics of migration.

To characterize the molecular machinery that controls migration, it is necessary to 

identify whether the phenotype is influenced by genetic and/or environmental factors. 

Using quantitative genetic analyses of cross breeding and selective breeding in a common 

garden environment, [1,2] demonstrated that migratory traits are heritable. In blackcaps, 

birds breeding on either side of the central European migratory divide show distinctly 

different migratory orientation directions: in autumn, birds breeding on the west of the 

divide, migrate South West, and populations breeding east of the divide head to a South 

East direction(see section 1.4). Orientation preference of selectively bred offspring 

resembles the same direction as the parents. When crossing individuals from either side 

of the divide, crossbred offspring follows an intermediate orientation pattern. The 

orientation in the F2 shows increased variance, but also recovers the pattern of the 

parental orientation preference, suggesting the genetics of orientation is based on only 

few genomic elements with big size effects.

The figure depicts the cross breeding experiment done         

by Helbig et al 1991 [1]. Funnel experiment results are 

represented as circles locating the cardinal locations. 

Each point is the average orientation of an individual.  

Blue and red are pure populations (southwest and 

southeast, respectively). The F1 result of crossbreeding  

blue and red individuals shows an intermediate 

orientation. Furthermore an F2 obtained from inbreeding     

of F1 individuals, shows that the intermediate and 

parental phenotypes are recovered.

The study conducted in Chapter 2, confims this classic 

experiment revealing previously inaccessible insight  

into the huge variability in orientation direction across      

a migratory divide. In the contact zone, several 

individuals will follow an intermediate orientation, 

confirming what was found with earlier classic experiments.

F1

F2



more  complete  picture  of  the  variability  in  migratory  phenotypes  of  small

songbird species like the Blackcap. With such tracking devices, now it is possible

to  make associations  between the routes  taken by individual  birds  and their

genome. The relationship between tracks and single-nucleotide polymorphisms

(SNPs)  in  Swainson’s  thrushes,  revealed  a  genomic  region  located  in

chromosome 4 associated with differences of route in migration. In this region

there are  several  genes  including CLOCK[48],  endopeptidases  of  the  nervous

system and cell  signaling genes. With a similar approach, a study associating

individual  migratory  routes  and  genomes  in  blue/golden  winged  warblers

(Vermivora  spp)  found  a  small  region  differentiated  between  these  two

subspecies in the chromosome Z  [49].  The only gene found in that region is

VPS13A  a  gene  associated  with  movement  disorders.  However,  unlike  other

species  like  blackcaps,  the  Swainson’s  thrushes  and  the  blue/golden  winged

warblers populations not only differ in migration. These subspecies also have

differences  in  plumage  colouring  that  could  confound  the  results  obtained

population genomic approaches[49], [50].

The disagreements between the results  with the methodologies used suggest

that the mechanisms employed by different species might not be  the same.

Alternatively, it could also suggest that other signatures not hard coded in the

genomes, like DNA methylation or histone modifications might play a role in the

regulation of bird migration. 

1.2.3.  Regulatory  and  functional  genomics  (transcriptomics  and  

epigenomics)

The underlying difficulty of approaches using population genomics to study bird

migration  is  that,  in  many  bird  species,  demography  and  other  evolutionary

processes influence the divergence between populations. This divergence does

not necessarily translate directly into genetic elements related with migration. 

Recent  transcriptomic  studies  have  started  to  unravel  the  complexity  of  the

migratory phenotype, analyzing differentially expressed genes (hereafter, DEG)

of several tissues (blood, muscle, heart, liver, brain and ventral hypothalamus) in

different species  [51]–[57].  Results from these studies are so far inconclusive

about  the  general  mechanisms  or  signaling  pathways  involved  in  migratory
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behaviour. Depending on the species, experimental design and focal tissue, the

number of DEG can range from just 4 ([51] – blackbirds, tracking devices, blood)

to  around  188  ([52] -  Swainson’s  thrush,  common  garden,  ventral

hypothalamus).  Moreover,  the  latter  study  found  little  overlap  between  the

differentially expressed genes with those found in a sequence based GWAS in the

same species [48]. So far only one study found DEG evidence for ADCYAP1 one of

the traditional  candidate genes for migration  [57].  However, the little overlap

could be due to the heterogeneity of  approaches and tissues included in the

studies or the complexity of a trait like migration involving many genes in similar

pathways.

Approaches  related  to  gene  regulation  like  DNA  methylation  are  starting  to

become integrated to study migration in non-avian species. The comparison of

differentially methylated regions across the whole genome in fins of F2 inbred

migratory and non-migratory trouts, have identified regions close to genes of the

circadian rhythm pathway and nervous system development  [58].  Changes in

methylation can  affect gene expression  [59],  therefore the changes found in

these fish could potentially affect genes involved in migration. 

So far non-coding sequences have not been investigated in the context of

migration.  These  approaches  were  previously  mostly  limited  to  model

organisms and difficult to adapt to non-model species, like migratory birds.

However,  with  recent  advancements  of  genomic  techniques  and  the

possibility  to  study  chromatin  accessibility  using  approaches,  such  as

ATAC-seq (see box 3) the study of non-coding regions can now be applied

to basically any species of interest.
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BOX 3. Techniques used to study chromatin accessibility.

In eukaryotes and archaea, the DNA wrapped around an octamer complex of histone 

proteins is called a nucleosome. Nucleosomes are arranged in a hierarchical organization 

to get what Is commonly known as chromatin. This hierarchical nature of chromatin allows 

different mechanisms of gene regulation. One of those mechanisms is chromatin 

accessibility, consisting on the distribution and occupancy of nucleosomes to enable 

physical access of the DNA sequence. This accessibility is the translation outcome of the 

information encoded in the histone and DNA modifications of nucleosomes. The most 

accessible DNA also called open chromatin regions (OCRs hereafter), is often bound by 

transcription factors or RNA polymerases. Different degrees of accessibility along the 

chromatin, create a landscape reflecting the regulatory snapshot of a given cell in a 

specific condition. Hence, changes in accessibility can relate to specific cis-regulatory 

sequences controlling the expression of neighbouring genes and long-range interactions.

Several techniques have been developed to analyse chromatin accessibility. FAIRE-seq 

uses a gradient of phenol-chloroform to separate open chromatin regions from DNA in the 

nucleosomes. DNAse-seq employs an enzyme that cuts on accessible DNA. A limitation of 

these techniques is the requirement of large amounts of cells/tissue. This makes it difficult 

to study small focal areas or parts of organs whenever large amounts of tissue are not 

available.

More recently, a technique called ATAC-seq has been shown to work reliably even in 

situations where only small amounts of samples are available. This technique is based on a 

modified tn5 transposase that targets only regions of the genome that are not bound to 

nucleosomes. This enzyme cuts open stretches of DNA and pastes adapters that can be 

used for sequencing with Illumina based technologies. After aligning the reads to a 

reference genome, the regions with higher frequency of mapped reads indicates where the 

chromatin is more accessible than the background. 

Figure B3. ATAC-seq overview. After a nuclei extraction of any tissue, the transposase 

enzyme will target exclusively regions of open chromatin. It cuts the DNA and paste 

adapters. This fragments are sequenced and mapped back to a Genome of reference. 

Regions of the genome where there are high frequencies of reads are regions of Open 

chromatin.

Nuclei extraction

Transposase

Condensed chromatin

Open chromatin

Open chromatin



1.3 How migration evolves, appears and disappears in birds.

1.3.1 Origins of migration

The  origin  of  migration  is  not  clear,  in  fact,  its  presence  across  the  animal

kingdom  indicates  a  very  ancient  origin.  In  birds,  however,  it  is  difficult  to

pinpoint at what time and how migration arose. It is more accurate to establish

when migration appears or disappears, and still, it is a very complex picture. In

terms of species, migration can be present in two sister species, but not in their

outgroup, or sister species may have one lineage with obligatory migration, and

the other  completely  resident[60].  More strikingly,  in  the same species there

could  be  a  complete  spectrum  from  completely  resident  passing  by  partial

migrants to obligate migratory populations.

There  are  three  main  hypotheses  for  the  origin  of  migration.  The  first  one

supports  that  migration  reduces  intra-specific  competition  during  breeding

season. Birds start to move from tropical to temperate regions because the latter

offers  more  resources  during  breeding  season,  therefore,  adaptation  to  a

migratory life  style  might  translate  into  increased fitness  for  migratory birds.

However, harsh conditions in temperate regions during winter make migratory

birds return to tropical areas and come back to their breeding grounds[61]. A

second hypothesis  holds the  opposite  view.  Birds  posses  site  fidelity  to  their

breeding grounds and migration is one of the strategies to avoid harsh conditions

in temperate regions.  A phylogenetic  approach in a large family of  songbirds

(Emberizae),  supports  this  idea.  Several  migratory  clades  of  Emberizae  are

related to non-migratory lineages breeding in temperate regions [60]. The third

hypothesis proposes a relevant role of the species historical contingency, with

weather conditions as a switch to activate migration. Niche modelling supports

the idea that reduction of potential refugia during glacial maxima forces birds to

populate tropical areas, while keeping their breeding grounds [62]. Elaborating on

this idea,  Zink et al [63] proposes that migration appears depending on which

strategy improves fitness at a given time. For instance, the conditions on the

beginning and end of glacial maxima can act as a migratory switch to activate or

disactivate migration. Despite these hypothesis are well supported, none of the

three  invalidate  or  hold  a  stronger  support  than  the  other  hypotheses.  The

origins and establishment of migration are still in debate.
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Partial migratory populations provide a good opportunity to study the patterns

that enable or suppress migration and its adaptive process  [5]. Fitness effects

can favour migration or not, leading to frequency changes of strategies within

one population. However, if both strategies have very small differences in fitness,

that could indicate the emergence of a partial migratory population [64]. In some

partial migratory populations the differences in fitness can be minimized when

considering all year round [65]. Despite the potential dangers that might come

with migration, birds facing this threat may have more chances to survive during

the  winter  compared  to  all  year  residents.  To  balance  fitness  all  year  round

residents must have at least ~60% higher breeding success than migrants, a

requirement that these individual met having 2 or 3 broods per year. All these

adaptations in residents can even the fitness of a migratory strategy.

Alternative  hypotheses  describe  migratory  behaviour  as  a  threshold  model,

which implies the interaction of environmental and genetic elements to express

one  or  other  migratory  phenotype.  The  model  assumes  that  migration  is  a

continuous  trait  with  a  normal  distribution.  The  genetic  and  environmental

conditions place an individual inside the distribution of the trait. If the individual

is above a threshold, it will express the migratory phenotype; otherwise, it will

not express the migratory phenotype[66]. This model confers characteristics of

phenotypic plasticity to migration, which is a powerful mechanism for adaptation.

1.3.2. Evolutionary consequences of seasonal migration.

Behavioural  isolation  can  be  a  channelling  factor  towards  speciation  favoring

selection of  sexual  secondary traits  like  plumage and song  [67],  [68].  At  the

same time, behaviour isolation can create or enhance prezygotic reproductive

barriers that evolve either in allopatry or sympatry. When populations meet in

secondary contact, postzygotic reinforcement of the differences could happen via

lower hybrid fitness. In several migratory species this process leads to migratory

divides. 
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Several examples of migratory divides are known, for example willow warblers in

Scandinavia,  Blackcaps  in  central  Europe  and  Swainson’s  thrushes  in  North

America.  Migratory  divides  provide  a  useful  case  to  study  how  migratory

orientation evolves. Changes in the behaviour of individuals in a population can

cause  divergence  and  differentiate  at  the  genomic  level  showing  patterns  of

disruptive  selection[68].  Different  patterns  of  migratory  divides,  can  reflect

differences  in  timing  and  preference  of  wintering  grounds.  Secondarily,  if

migratory divides indirectly start to affect differences in morphology or sexual

traits  like  song  or  plumage,  this  can  catalyze  the  effect  on  speciation[67].

Although most of those mechanisms are happening through prezygotic isolation,

postzygotic isolation can occur in the case of the lower fitness of hybrids on the

migratory  divide.  However,  the  importance  of  migration  in  selection  against

hybrids has not been fully addressed. 

1.4 The Eurasian Blackcap (Sylvia atricapilla) the ideal model

for the genetics of seasonal migration.

The  Eurasian  blackcap  (S.  atricapilla)  is  a  bird  of  the  genus  Sylvia

(Passeriformes), a group of small songbirds similar to warblers. The distinctive

black colored feathers on the upper part of his head gives it the common name

blackcap. Blackcaps are common breeders across Eurasia with a wide breeding

distribution throughout Europe including areas of Norway and Russia. The largest

number  of  blackcaps  overwinter  in  the  western  and  central  areas  of  the

Mediterranean Sea and north of the African continent. Some blackcaps migrate

across  the  Sahara  Desert  to  wintering  grounds  in  countries  like  Senegal  and

Sudan. 

Blackcaps, like most songbirds, are nocturnal and solitary migrants. Fledglings

are under parental care, but once they have moulted and accumulated enough

fat, they are ready to perform their first migratory journey on their own (REF).

This  characteristic  of  individual  nocturnal  migration  suggests the existence of

innate mechanisms that equip the bird with information about when to start and

where/which  direction  to  migrate.  This  discards  any  learning  process  for
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migration,  and  highlights  the  predominance  of  genetic  factors  to  exhibit  the

migratory phenotype. 

Blackcaps have the full spectrum of migratory distances: there are populations

with  long,  medium,  and  short  distances,  in  addition  to  year-round  residents.

Orientation patterns of migration in blackcaps vary from south western to south

eastern orientation. Some closely neighbouring populations migrate in distinct

different  orientations.  Specifically,  populations  breeding east  of  the migratory

divide breeding east of migrate towards a southeast direction via Greece and

Turkey towards sub-Saharan countries. Individuals from the west side travel to

south Spain and north Africa[69]. In the middle of the migratory divide, there are

hybrid individuals that theoretically, should travel across the Alps and the middle

of the Mediterranean Sea. A new orientation pattern seems to have emerged

recently: in the UK, an increasing population of blackcaps has been observed

recently overwintering, suggesting a new north west orientation pattern[70]. 

It  is  uncommon  to  find  species  exhibiting  a  whole  range  of  behavioural

phenotypes.  Many  of  the  differences  in  behaviour  are  between  species  or

subspecies.  Having  the  complete  range  of  migratory  phenotypes  in  a  single

species, plus differences in the propensity, distance and orientation of migration,

are ideal prerequisites that make the blackcaps an ideal model organism to study

the genetics of this behaviour[71] . 
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PART I
PREFACE

Currently, tracking data is the most accurate way to describe the migratory 

phenotype in the wild. For small songbirds, the current development of tracking 

devices does not allow real-time data acquisition. Light-level geolocators are the 

most up to date devices for tracking small songbirds. These are archival devices 

that store information of light intensity and length. This information allows for a 

rough positional estimation through all the year of a single individual.

Here we used light-level geolocators to track individuals of the Eurasian 

blackcaps (S. atricapilla) known to have a wide array of migratory orientations 

and distances. We were particularly interested in describing the migratory 

phenotype of two populations: 1) individuals from a migratory divide and 2) 

individuals wintering in the United Kingdom. The first individuals are of interest to

describe how the migratory divides can act as hybrid zones, as secondary 

contact of populations with opposite migratory directions. The second individuals

are a potential case of recent adaptation. Individuals migrating to the UK have 

been reported since the 1960s, and their population is increasing. To know from 

where these individuals are coming from, can give clues on how the migratory 

behaviours can be flexible to adapt in a world of constant change.

We  retrieved  98  individuals  from  all  over  Europe  to  describe  how  a  broad

spectrum of orientation patterns is present in the migratory divide of Eurasian

blackcaps  and  the  unexpected  wide  distribution  of  breeding  sites  for  the

populations wintering in the UK.
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Summary

Migration is ubiquitous in the animal kingdom and may play a key role in 

promoting reproductive isolation [1–4] and underpinning responses to 

environmental change [5,6]. Migratory divides are contact zones between 

populations with different migratory phenotypes and ideal natural laboratories 

for studying the evolution of migration [7,8]. The Eurasian blackcap (Sylvia 

atricapilla) exhibits a migratory divide in Central Europe between populations 

that migrate southwest (SW) and southeast (SE) in autumn [3,9,10] and has 

recently established a wintering population in Britain [1,5,11,12]. We tracked 106

annual migrations of 98 blackcaps captured across their range to characterize 

both the migratory divide and novel wintering strategy. Blackcaps to the west 

and east of the divide used predominantly SW and SE directions, respectively, 

but close to the contact zone many individuals took intermediate (S) routes. At 

14.0ºE, we documented a sharp transition (22 km) in migratory direction from 

SW to SE, implying a strong selection gradient across the divide. Blackcaps 

wintering in Britain took northwesterly migration routes from continental 

European breeding grounds. They originated from a surprisingly extensive area, 

spanning 2000 km of the breeding range. British winterers bred in sympatry with 

SW-bound migrants but arrived 10 days earlier on the breeding grounds, 

suggesting some potential for assortative mating by timing. Overall, our data 

reveal complex variation in songbird migration and suggest that selection can 

maintain variation in migration direction across short distances while enabling 

the spread of a novel strategy across a wide range.

Results and Discussion

Pioneering studies of blackcaps revealed that songbird migration has a genetic 

basis and can rapidly evolve, and these findings underlie much of our current 

understanding of bird migration [1,5,9,13–21]. Today, blackcaps may offer 

important insight into adaptation to environmental change, as recent population 

increases [22] and new routes [5] illustrate how this species has successfully 

kept pace with a changing world. A major limitation of past studies on blackcaps 

has been a reliance on indirect experiments in captivity (see [23,24]) and 

infrequent recaptures of ringed birds to infer phenotypes. We sought to bridge 

this gap by intensively tracking blackcaps in the wild across the species’ range, 

29



examining the processes shaping migratory divides and contemporary migratory 

change, and placing our results in an evolutionary context.

Tracking blackcaps across a migratory divide

Ringing and orientation studies suggest that a migratory divide exists in Central 

Europe between blackcaps that migrate SW and SE, running north-south at 14ºE 

[3,10]. We tracked 41 annual migrations of 36 adult male blackcaps from 

breeding territories across the divide in Austria. To contrast behavioral variation 

inside and outside the divide, we also tracked blackcaps (3 F, 39 M) from 

breeding sites in the Netherlands (N=21), west Austria (N=6), central Germany 

(N=4), northern Poland (N=8), and east Austria (N=3). We expected to find a mix

of strategies in the divide versus pure SW and SE directions at sites west and 

east of the divide, respectively.

Our tracks from the divide area clearly demonstrate the existence of a migratory 

divide (Figures 1 and 2, Figure S5). We estimated each blackcap’s autumn 

migration direction by drawing a rhumb line between breeding and wintering 

areas. Migration directions varied between 130 and 288º. Intermediate (S) routes

were more common (53.7%) than SE (26.8%) and SW (17.1%) strategies (Figure 

1A). One individual from within the divide migrated NW to winter in Britain. Multi-

year tracks reveal highly repeatable routes (Figure S6). Among-individual 

variation in migratory direction was considerably greater in the divide (Figure 3), 

suggesting that the contact between migratory phenotypes gives rise to 

increased diversity of behaviours.

A cline analysis using migration directions suggests that strong selection is 

maintaining the divide. Specifically, we examined the change in directions from 

western Austria (entirely SW), through the divide to eastern Austria (largely SE) 

(Figure 2; see Methods). We fit a cline through these directions to characterize its

center and width. Clines maintained by selection should be narrow relative to 

dispersal distance, with a rapid transition between phenotypes [25]. Our data 

showed this pattern: the center of the cline occurred at 14.0ºE [interval within 

two log-likelihood units: 13.8–14.2º] and its width was only 22 km [2LL: 14–93 

km]. This transition from SW to SE directions is very narrow compared to average

natal dispersal distance in blackcaps (41.2 km [26]).
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Our data do not allow direct identification of the source of selection, but possible 

processes include prezygotic selection for assortative mating and postzygotic 

selection reducing the fitness of hybrids. We discuss the potential for assortative 

mating in the next section. Helbig [9] selectively mated SW and SE blackcaps in 

captivity and observed intermediate orientations in their offspring. He argued 

that these hybrids would experience lower fitness through reduced survival, as 

they would have to cross the Alps, Mediterranean Sea, and Sahara Desert. This is

a widely held hypothesis today [4,9,27], but our data do not necessarily support 

it, as a considerable number of the birds we tracked successfully took 

intermediate routes, survived, and returned to be recaptured. Most of these birds

encountered portions of the Alps, but many did not cross the Mediterranean, in 

which case they never encountered this barrier or the Sahara Desert. Many of 

the birds that wintered in Africa navigated around the Mediterranean, and others 

used Italy as a land bridge (Figure 1 and Figure S5).

There is one important caveat: to maximize recapture success, we exclusively 

tracked adult birds, which had already completed at least one migration. It is 

possible that some blackcaps attempt to migrate over the Mediterranean and 

Sahara but do not survive to adulthood. Indeed, there is a striking deficit of birds 

wintering in Africa around 5ºE and 15ºE (Figure 1 and Figure S5; note birds from 

Dutch and Polish populations did winter in these areas). This deficit would not 

have been present in Helbig’s work because he was not tracking free-flying birds.

Alvarado et al. [28] argued similarly after failing to recover hybrids in a divide 

between hermit thrushes (Catharus guttatus). At present, tracking of small 

songbirds is limited to archival tags not capable of transmitted daily location 

estimates, so we cannot address this idea further.
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Figure 1: Wintering (i.e. non-breeding) and breeding locations of migratory 

blackcaps. Wintering and breeding location estimates made with GeoLight shown

with closed and open circles, respectively. Uncertainty in latitude estimation is 

indicated with vertical bars, which show estimates for sun angles higher and 

lower than the calibrated sun angle by 1º (following [29]). Colors indicate SW 

(orange)/intermediate (green)/SE (blue)/Britain (black) phenotypes, categorized 

by wintering location. (A) Winter sites of blackcaps breeding within the central 

European migratory divide transect in Austria. (B) Winter sites of blackcaps 

breeding in Austria east or west of the migratory divide. (C) Winter sites of 
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blackcaps breeding in the Netherlands, southern Germany, and northern Poland. 

(D) Breeding sites of blackcaps wintering in Britain.

Figure 2: Autumn migration directions of blackcaps in Central Europe. (A) Gray 

lines indicate migration directions of individual blackcaps, and blue lines indicate

the mean direction at each capture site. In both panels, the solid vertical red line
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indicates the estimated cline center, and the red shading shows estimated cline 

width. (B) Autumn migration direction by breeding longitude for Austrian 

blackcaps, with the maximum likelihood cline plotted. Small gray dots show the 

directions of individual blackcaps, and large black dots represent groupings of 

birds treated as sites for the analysis with hzar, which requires site-based input 

data. The dotted horizontal line is 180º (due south).

Figure 3: Variation in autumn migration direction by breeding area. (A) Migration 

direction of tracked blackcaps caught at breeding sites across continental 

Europe. Each line points in the direction of autumn migration and is colored by 

winter region (SW=orange, intermediate=green, SE=blue, and NW 

(Britain)=black). Levene’s test among sites with 5 or more tracked birds showed 

significantly higher variation in the area of the migratory divide: divide 

vs. Netherlands F1,61=29.3, P<0.0001; divide vs. west Austria F1,45=6.36, 

P=0.015; divide vs. Poland F1,47=7.68, P=0.008 (excluding the NW migrant does 

not appreciably change this result), (B) Each dot shows the migration direction of

one tracked blackcap (colored as in A). (C) Circular variance of autumn migration

directions at each capture site, categorized by breeding region. Dot size shows 

the sample size at each site.
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Migration timing in the divide

Migration timing is an important component of the annual cycle that affects 

reproductive success [30,31] and mate selection [1]. Assortative mating based 

on migration phenotype might occur if migration timing and breeding differ 

consistently among phenotypes [1]. This could result in divergence between 

populations with different strategies and explain the rapid transition from SW to 

SE phenotypes [4]. However, we found no differences in spring arrival timing 

between birds using SW and SE autumn strategies (effect = -0.3 days, t23=-

0.069, P=0.95), nor in any other migration timing trait (Figure 4, Table S1). Data 

from eight individual blackcaps tracked over two years suggests repeatability in 

timing was higher on spring migration (spring migration start: R [95% CI]=0.86 

[0.56,0.99], end: R [95% CI]=0.77 [0.24,0.96]; autumn migration start: R [95% 

CI]=0 [0,0.78], end: R [95% CI]=0 [0,0.73]), albeit with considerable uncertainty 

in all estimates. We therefore find no evidence that the migratory divide is 

maintained by temporal premating isolation. Variation across the divide in other 

traits, including body size (approximated by tarsus length or wing length) is also 

absent from our dataset.

So what is maintaining this migratory divide? One intriguing possibility is 

revealed by an analysis of timing that includes intermediate (S) migratory 

strategies. These blackcaps began spring migration on average 15 days earlier 

than SE and SW migrants (effect = -14.6 days, t23=-2.7, P=0.014) and arrived 9 

days earlier on the breeding grounds (effect = -9.4 days, t23=-2.6, P=0.015) 

(Figure 4A, Table S1). This pattern is apparent even if we do not categorize 

individuals into discrete groups (Figure 4B). Early spring arrival may relate to the 

fact that blackcaps following intermediate strategies have the shortest distances 

to migrate (Figure S7D), so cues on the wintering site may predict conditions on 

the breeding grounds [32,33]. Importantly, early arrival may lead to assortative 

mating among intermediates, allowing them to exist relatively independently of 

pure SW and SE migrating populations within the 22 km cline. Selection against 

birds deviating from an immediately intermediate route (discussed previously) 

could limit the area where intermediates are favored to the observed cline width.
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We used simulations to test if our measured distribution of arrival times would 

generate assortative mating among intermediate birds, comparing simulations 

where mate choice is dependent or independent of arrival time. The proportion 

of matings between intermediates was substantial and increased when we added

mate selection based on timing (from 28% with no timing to 41% with timing), 

suggesting early arrival on the breeding grounds may facilitate assortative 

mating among intermediates, especially given their high relative abundance. 

Hybrid zones maintained by increased hybrid fitness are referred to as zones of 

bounded superiority[34]. Additional work is needed to support this idea, including

direct observations of mated pairs and their offspring in the divide. We also note 

that genetic differentiation across this divide is low [35]. However, all of the 

genetic work on this system has focused on allopatric populations distant from 

the divide [21,36–38].

Figure 4: Blackcap migration timing. (A) Timing within the migratory divide, 

showing model results for two timing comparisons: SW vs. SE (left) and 

intermediate (S) vs. SW/SE (right). Dots give model estimate and bars 95% 

confidence interval. Negative values indicate that SW or intermediate (S) groups,
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respectively, had earlier timing or shorter migrations. (B) Timing of the start of 

spring migration for birds tracked within the migratory divide. Points colored by 

wintering area, and vertical lines indicate the interquartile range of timing 

estimates made with FLightR. Curve is a loess smooth. (C) Boxplots showing 

spring migration duration by wintering area. Gray points correspond to individual

tracks. (D) Breeding longitude vs. spring migration timing, with NW migrants in 

black and other birds in green. Triangles show females and circles show males.

Origins of blackcaps wintering in Britain

Blackcaps wintering in the UK in increasing numbers represent a rapid and recent

change in migratory behavior, illustrating the speed at which movement 

strategies can evolve [11,12]. Early experiments supported a genetic basis for 

this migratory phenotype [5], but its nature is still poorly understood. Foremost is

a lack of knowledge of the breeding grounds of birds wintering in Britain. No 

studies have tracked the direct migrations of free-living blackcaps to understand 

how many adopt this novel phenotype and determine whether those breeding in 

Britain are also changing their behavior by adopting residency. We fitted 

geolocators to blackcaps wintering in the UK and obtained 22 tracks from 20 

blackcaps (11 F, 9 M), in addition to the one NW migrant tracked from our central

Austrian cohort.

Blackcaps wintering in Britain originated from breeding areas in an unexpectedly 

broad expanse covering much of western and central Europe, remarkably 

extending south to latitudes occupied by the species in winter (Figure 1D). Their 

autumn migrations ranged from northerly (e.g. from Spain) to westerly (e.g. from 

Poland). This strategy enabled them to use short migration routes, on average 

939±374 km; in contrast, birds tracked from central Europe flew on average 

1865±717 km when they chose a southerly direction (Figure S7A). Although 

British winterers had the shortest routes in our sample, most also bred relatively 

close to suitable southerly wintering areas. To determine how far a blackcap 

would need to fly if it selected an alternative southerly migration route instead of

a northerly route to the UK, we calculated the distance from the breeding site of 

each British winterer to the 10 closest wintering locations of tracked continental 

breeders. In 17 out of 23 cases (including two repeat tracks), the tracked route to

the UK was longer than the average of the 10 possible southerly routes, often by 
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400-600 km (Figure S7C). This suggests that migration distance is of limited 

importance in explaining the British overwintering strategy. The availability of 

reliable supplemental food in British gardens may be a key driver [6] by 

positively influencing body condition and survival.

Only one of 41 individuals tracked from within the central European divide spent 

the winter in Britain (2.4%, 95% CI [0.13, 14]), and neither did any of the 

remaining 43 individuals tracked elsewhere in continental Europe. Previous 

studies estimated that northwest migrants comprise 6.8–25% of individuals 

breeding in Central Europe, based on ringing data, cage experiments, and stable 

isotopes [3,10,39]. One cage-orientation study suggested that as many as 50% 

of birds breeding in the vicinity of Linz, Austria migrate northwest [3]. Our results

from free flying birds suggest these may be overestimates. Blackcaps wintering 

in Britain appear to breed across most of Europe at low densities, instead of 

occurring locally at higher densities. 

Timing of northwest migrants

We tested for timing differences between NW migrants (British winterers) and SW

migrants that might lead to reproductive isolation. Such timing differences have 

long been anticipated: Terrill and Berthold [40] predicted that differences in 

photoperiod should lead British winterers to depart and arrive c. 5 and 16 days 

earlier, respectively, and Bearhop et al. [1] reported evidence of assortative 

mating by wintering latitude based on stable isotopes from claw samples. Given 

that the NW phenotype appears to occur at low densities across Europe, 

assortative mating could be key to explaining how it is maintained in the 

population.

Other important factors may influence migration timing in blackcaps. For 

example, protandry is common among migratory songbirds and documented in 

blackcaps [41]. In our study, females were primarily sampled from among 

blackcaps wintering in Britain, where females showed later spring timing than 

their male counterparts (Table S2). In addition, different parts of continental 

Europe experience different spring phenology. In our dataset, blackcaps breeding 

further west in Europe underwent earlier spring migrations (Table S2, Figure 4D).
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After including breeding latitude, longitude, sex, and year as predictors to 

account for their effects on timing, we found that NW migrants spending the 

winter in Britain reached their breeding grounds earlier than SW migrants that 

wintered in Iberia and northwest Africa (effect = -10.4 days, t44=-4.1, P=0.00017;

Table S2, Figure 4). They accomplished this by leaving the wintering grounds 

earlier (effect = -6.1 days, t43=-2.5, P=0.018; compare [40]) and having shorter 

migration durations (ratio = 0.4x, t44=-3.3, P=0.0019). In autumn, there were no 

timing differences between NW and SW migrants (Figure 4, Table S2). 

Our data support the hypothesis that differences in arrival timing may contribute 

to reproductive isolation among blackcaps wintering in Britain, likely due to a 

combination of differing photoperiodic cues and shorter migrations [40]. Early-

arriving individuals from Britain may experience fewer hazards during faster 

journeys, they may be in better condition due to supplemental food in British 

gardens [1,6], and they may be able to use local weather cues to judge the 

suitability of their continental breeding areas. In turn, these individuals may be 

able to secure higher quality territories. However, it is unclear whether the 

magnitude of the timing difference (10 days) could result in effective 

reproductive isolation. Rolshausen et al. [39] modeled assortative mating based 

on a timing difference of 10 days and a relative abundance of NW migrants of 1 

out of 13 breeding individuals, concluding that NW migrants had a 28% chance of

mating assortatively. Although we only tracked one NW migrant from within the 

migratory divide and therefore cannot capture the distribution of arrival dates in 

this particular breeding population, our similar average timing difference and 

lower relative abundance of NW migrants corroborate their conclusion of weak 

evidence for effective isolation solely based on timing. However, differences in 

microhabitat selection by migration phenotype [39] or body condition could still 

contribute to reproductive isolation. 

Conclusion

We find considerable variation in blackcap migratory behavior across the central 

European migratory divide and diverse breeding origins for blackcaps exhibiting 

the novel British overwintering strategy. A narrow cline in migration direction 

across the divide suggests that selection on migratory strategy is strong. 

Assortative mating among birds orienting immediately south and selection 
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against those deviating from this direction may help maintain this narrow cline 

(but see [42]). British winterers arrived on continental breeding grounds earlier 

than migrants from Mediterranean wintering areas, but the difference in timing 

may be insufficient to drive assortative mating. Accurately characterizing the 

migrations of individual blackcaps reveals fascinating variability in the migratory 

behavior of this species, paving the way for targeted studies of the genetic basis 

of migration and adaptation to global change.

Methods

Geolocator application and retrieval

From 2016-2019, we deployed 806 archival light-level geolocators on breeding 

blackcaps in Austria (N=376, May–June), Germany (N=57, MONTHS?), the 

Netherlands (N=189, MONTHS?), and Poland (N=53, April–May and August), and 

on wintering Blackcaps in the United Kingdom (N=131, January–March) (Table 

S3). In Austria, we focused our sampling on the anticipated location of the 

migratory divide, where blackcaps with eastern and western migratory routes 

meet, and including populations that prior studies suggested contained NW 

migrants [3,10].

Birds were captured using mist nets and tape luring with audio recordings of the 

male blackcap territorial song. In the UK, we captured birds attending feeding 

stations in suburban gardens from January to March with mist nets and potter 

traps. We used leg-loop harnesses [43] made from elastic, viton, or nylon to 

attach geolocators. Tags were various models manufactured by Migrate 

Technologies, Inc. (see Table S3). Overall, we retrieved 115 devices, of which 106 

contained data from at least one complete migration. We concurrently marked 

control cohorts of in the United Kingdom and the Netherlands (see Table S3). 

Return rates did not significantly differ between control and tagged birds (Fisher’s

exact test, UK: P=0.28; Netherlands: P=1).

Analysis of light data

We first used the preprocessLight function in the TwGeos [44] R package to 

define twilight events. We used a light threshold of 1.5 lux because blackcaps 

often occupy darker understory and mid-story habitats [45]. To maximize 
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repeatability, we minimized manual processing. We manually removed only 

obviously erroneous twilights, focusing on calibration periods. After manual 

processing, we used the twilightEdit function in TwGeos to perform additional 

automated editing and deletion of erroneous twilights. We used the following 

settings in twilightEdit: window = 4, outlier.mins = 30, and stationary.mins = 15. 

In the case of zero device with substantial shading of the light sensor, 

twilightEdit removed too many twilights to use in downstream analysis; in this 

case, we used only manually processed twilight times.

We used FLightR [46,47] to determine migration timing. FLightR uses the slope of

the light curve around twilight to estimate locations and is therefore sensitive to 

data quality. In our dataset, several devices experienced substantial shading due 

to mantle feathers covering the light sensor, especially after the summer molt of 

body feathers. Geolocators with shorter “light pipes” (“-7” models, see Table S3) 

or with the light sensor on the body of the device itself (deployed in Poland, see 

Table S3) were prone to this issue, whereas devices with a light sensor at the end

of a 11-mm “light stalk” (“-11” models) never experienced shading. We therefore

performed an automated step to remove highly shaded light curves. For each 

twilight event, we took the mean of all “log.light” values returned by FLightR and 

removed twilights with values less than 1. We removed no more than 10% of 

twilights with this method; if more than 10% of twilights were heavily shaded, we

removed the worst 10%. This approach improved performance for most 

individuals with light to moderate shading of the light sensor, but we were unable

to obtain FLightR tracks for 6 heavily shaded devices. These were excluded from 

the FLightR timing analysis.

To identify birds’ migration destinations (i.e. breeding or wintering sites, 

depending on the season of deployment), we used the R package GeoLight [48]. 

GeoLight contains a function siteEstimate for estimating a bird’s location during a

given time period, specifically designed for blackcaps and other birds for which 

shading of the light sensor can be a problem [29]. We succeeded in using 

siteEstimate to obtain location estimates for all birds, including those for which 

FLightR had failed. For devices deployed in summer, we used twilights from 15 

December to 15 January to estimate wintering locations. For devices deployed in 

winter, we used twilights from 1 June to 1 August to estimate summer breeding 
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locations. In both cases, we set these time periods in mid-winter and mid-

summer, when they are least likely to overlap with spring and autumn 

movements. We used the same time window for all birds to obtain comparable 

locations across individuals.

Both GeoLight and FLightR require that users define calibration periods during 

which the bird was stationary in a known location. We set calibration periods by 

visually inspecting plots of the log of observed versus expected light slopes for 

the deployment site over time (plot_slopes_by_location function in FLightR). 

When a bird moves away from the deployment site, the observed and expected 

slopes visually diverge [49]. For some individuals, visual resighting data were 

available after deployment and before recapture to aid calibration. After running 

FLightR, we refined calibration periods if the analysis suggested that movement 

had occurred during calibration periods. Some devices had insufficient calibration

periods, if, for example, the bird departed shortly after tagging and the device 

stopped recording before the return migration. In these cases, and cases where 

the resulting track showed clear signatures of poor calibration (e.g. latitudinal 

drift during stationary periods or widely varying location estimates), we used a 

global calibration made from the combined data of all devices. For this global 

calibration, we used a linear model to estimate the overall mean calibration 

slope, accounting for the magnitude of shading to the light sensor. We did not 

include devices that lacked light pipes or light stalks, which made the light data 

qualitatively different from those collected by the other devices.

In GeoLight, we used the same calibration periods as for FlightR, with one 

additional refining step: we used siteEstimate to estimate the location of 

deployment and compared the result to the actual deployment location; if a 

lower or higher sun angle (±0.5º increments) resulted in a more accurate 

estimate of the deployment site, we used the adjusted sun angle instead.

We defined the FLightR model search grid between 10ºS and 65ºN latitude and 

20ºW and 52ºE longitude. We chose these settings after visually inspecting light 

data with the thresholdPath function in the R package SGAT [48,50] to confirm 

that no tracks were likely to occur outside of this area.  FLightR contains a prior 

for the decision to move, which has a default of 0.05. We adjusted this setting 
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outside of the migration season (i.e. from Dec 15–Mar 1 and May 15–Aug 15) to a

value of 0.001. For the final run of each individual, we ran the particle filter with 

the recommended 1 million particles.

Migratory phenotypes

For comparative analyses of migratory phenotypes, we used both (1) winter 

longitude and (2) autumn migration direction. We estimated the bird’s direction 

on autumn migration as the rhumb line connecting breeding and wintering sites 

(bearingRhumb in R package geosphere, [51]). We used this simplified 

representation of the route for calculating migration direction because geolocator

tracks over short distances are sensitive to bias caused by imperfect calibration, 

especially close to an equinox.

In geolocation analyses of bird migration, longitude can generally be estimated 

with greater precision than latitude [52–54]. Latitude estimates are derived from 

daylengths, which are affected by shading and unreliable around the spring and 

autumn equinoxes. We compared destination longitudes estimated with GeoLight

(siteEstimate) to estimates derived from FLightR. The two methods were highly 

correlated (ρ=0.99), affirming destination longitude as a reliable measure of 

migratory phenotype. that is insensitive to the choice of analysis method. 

Destination latitude showed a lower correlation between the two methods 

(ρ=0.82).

On 8 occasions, we were able to track the same individual for two subsequent 

years (5 from the migratory divide, 1 from the Netherlands, and 2 from Britain). 

From these data, we estimated individual repeatability using R package rptR [55] 

as the proportion of total variation explained by bird identity, where the total 

includes both variation from bird identity and among-year variation among birds.

We assigned individuals to four categories based on wintering location. For birds 

wintering north of 37.5ºN, we considered those west of 5ºE to be southwest (SW)

migrants, those east of 20ºE to be southeast (SE) migrants, and those between 

5-20ºE to have intermediate southerly (S) routes. For birds wintering south of 

37.5ºN, we used a cutoff of 0º to distinguish SW from S because these longer 

routes require less of a westerly component to reach the same longitude.
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We used Levene’s test to compare variances (leveneTest R function in the car 

package) to determine whether the distribution of autumn migration directions 

differed among breeding sites. We controlled for multiple testing by applying a 

false discovery rate correction using the p.adjust R function.

Timing

We calculated migration timing using the find.times.distribution function in 

FLightR. To use this function, the user defines a spatial area, and the function 

reports the time at which the bird was likely to have crossed into and out of that 

area. For each individual, we used the shortest-distance route (i.e. a great circle 

route) between summer and winter areas to aid in defining migration progress. 

Specifically, we calculated paths perpendicular to the shortest-distance route at 

30%, 50%, and 70% of the way between summer and winter locations, and we 

used find.times.distribution to determine when on migration the bird crossed 

these thresholds. We chose values of 30 and 70% because we found using values

closer to the endpoints of the journey (e.g. 15%/85%) caused a higher proportion

of calculations to fail, which typically occurs when the bird does not transit 

cleanly across the threshold. Close to summer and winter sites, local movements

and geolocation uncertainty over time may lead to the modeled bird’s path 

approaching the threshold more than twice per year. We treated these thresholds

(30%, 50%, 70%) as representing early, middle, and late stages of the migratory 

journey, and we considered a bird to have reached each point at the 0.50 

quantile time returned by find.times.distribution. As a measure of migration 

duration, we found the number of days it took each bird to travel from early 

(30%) to late (70%) migration stages, setting the value to one if it was estimated 

as less than one day. We calculated the speed of migration by dividing migration 

distance by duration. Because timing estimates of north-south movements can 

be inaccurate near the equinox, we did not retain timing estimates of 

movements taking place within 7 days of an equinox along a route within 15º of 

due north or south.

We validated FLightR timing estimates using simple longitude coordinate output 

from GeoLight (crds function), which we used to derive alternative measures of 

migration timing across an east-west axis. With this method, we considered a 

bird to be halfway through its migration when its estimated longitude was closer 
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to the longitude of its destination than its origin. We defined the start of 

migration as the time when a bird crossed a threshold from its starting longitude 

and did not return. Our threshold was defined as 10% of the difference between 

origin longitude and destination longitude. We defined the end of migration as 

the point when a bird crossed to within 10% of its destination longitude. We 

expected migration timing estimated from longitude data to be most comparable

to FLightR estimates for birds that primarily used east-west routes. For birds that 

primarily moved along a north-south axis, the component of movement across 

longitudes is small relative to the component across latitudes. Therefore, we 

excluded birds with strongly southerly migration directions (150º–210º) from this 

validation. The timing of spring migration was consistent across methods (all 

Spearman ρ>0.77). In autumn, ρ ranged from 0.60 to 0.77).

We constructed linear models to compare the timing of migration for three 

different comparisons. For individuals tracked within the Austrian migratory 

divide, we tested for differences (1) between SW and SE parental phenotypes, 

and (2) between intermediate (S) and parental (SW/SE) phenotypes. Finally, we 

(3) tested for differences between NW (i.e. UK) and SW phenotypes. In all cases, 

we tested fixed effects of wintering area (NW/SW/S/SE) and year. We attempted 

to fit a random effect of bird identity, but our sample size of repeat tracks (N=8) 

was insufficient to estimate a variance component of bird identity, resulting in 

singular fits. Therefore, for birds with repeat tracks we randomly chose one track 

to include in the timing analysis, so that only one data point per individual was 

included for each timing measure. For comparison 3 (NW vs. SW), we also 

included effects of sex and breeding latitude and longitude. These effects were 

not relevant for comparisons 1 and 2 because all birds were tracked from a single

breeding area (the contact zone), and all tracked birds were males. We used the 

R package emmeans [56] to construct the proper contrasts for comparisons 1 

and 2. To maximize the precision of our estimates given a limited sample size, we

removed terms with P-values greater than 0.10. For migration speed and 

duration, which had right-skewed distributions, we log-transformed the response 

variable before fitting the model.

We used simulations to test if our measured arrival timing differences in the 

migratory divide among SW, SE, and S (intermediate) could lead to substantial 
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assortative mating. In each simulation, we used the observed relative 

abundances of S, SW, and S phenotypes in the divide to draw a random sample 

of birds of equal number, following a multinomial distribution. Then, we used 

density curves fit to the original data to draw a sample of arrival dates for each 

phenotype group. Finally, for each individual, we selected a random mate based 

on the proportions of individuals present five days after its simulated arrival 

date. We used this delay because pair formation occurs within days after arrival 

[57] and females tend to arrive later than males. We repeated this simulation 

1000 times and extracted the proportion of pairings that occurred between two 

intermediate individuals.

Routes

We used route output from FLightR. For tags that stopped in late winter or close 

to the spring equinox, track estimates could be unreliable. In these cases (n=16),

we ignored location estimates for dates after 1 January if the tag stopped 

operation within three weeks of the spring equinox. 

Cline analysis

We used the R package hzar [58] to estimate the location and width of the cline 

marking the transition from westerly to easterly migratory directions in the 

migratory divide. We used code from the supplementary materials of [58] as the 

basis for the analysis. Because hzar assumes that data come from a one-

dimensional transects (in our case, an east-west transect), we limited the sites 

we included to the narrow range of latitudes within Austria. The analysis requires 

input data in the form of sites (not individuals), so we grouped individuals in the 

following way: we treated individuals as belonging to the same site group if their 

breeding territories were within 0.2 degrees of longitude, setting a maximum 

group size of 5 unless doing so would create an individual without a group. In this

way, we assigned individuals to similarly-sized groups based on the longitude of 

their breeding site in Austria.
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Supplementary Materials

Figure 5: Full tracks of blackcaps from the migratory divide. Tracks estimated 

with FLightR, with each track in a different color. To reduce clutter, one point is 

shown for each month and error bars are omitted. FLightR estimated some 

wintering locations at slightly higher latitudes than the siteEstimate function in 

GeoLight; for example, some FLightR tracks that end in the southern Balkan 

Peninsula have GeoLight estimates on the northeast coast of Libya (Figure 1A). 

Note that headings over short distances are sensitive to the calibration used and 

may not be fully trustworthy.
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Figure 6: Repeatability of migratory phenotypes within individuals. (A) Each color 

represents one individual tracked over two subsequent years, with solid black 

lines connecting location estimates for the same individual. Breeding and non-

breeding sites and error bars as in Figure 1. For the two British winterers, our 

repeated location estimates were very similar (59 and 92 km apart, 

respectively), strongly suggesting that they bred in the same area. (B) Migratory 

phenotype estimates for individuals tracked from continental Europe for two 

years (excluding those tagged in Britain). The dashed line is the identity line. We 

estimated repeatability in winter longitude as R [95% CI]=0.99 [0.96,1] and 

repeatability in migration direction as R [95% CI]=0.91 [0.78,1]. The winter 

location estimates for these individuals averaged 385±253 km apart in 

consecutive winters.
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Figure 7: Migration distances. Colors indicate SW (orange)/intermediate 

(green)/SE (blue)/Britain (black) phenotypes, categorized by wintering location. 

(A) Boxplots showing the distance between breeding and wintering sites for all 

blackcaps tracked, by deployment area. (B) Migration distance by breeding 

latitude, for all blackcaps tracked. (C) British winterers fly farther than necessary.

Values shown are the difference between the observed migration distance, and 

the average of the distances to the 10 closest tracked individuals that wintered 

in traditional southerly areas, instead of in the UK. (D) Migration distance by 

wintering longitude for blackcaps tracked within the migratory divide only. 

Intermediate individuals had the shortest migration distances.

Table 1: Model results comparing migration timing in the migratory divide 

between SW and SE phenotypes and between intermediate (S) and SW/SE 

phenotypes. Log-transformed variables indicated by “log” in parentheses.

Contrast

Season 

(response) Estimate SE df t-ratio

P-

value

SW vs. SE Spring start 3.42 7.39 23 0.46 0.648

SW vs. SE Spring middle 3.11 7.25 23 0.43 0.672
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SW vs. SE Spring end -0.33 4.85 23 -0.07 0.946

SW vs. SE Autumn start 8.27 5.39 26 1.53 0.137

SW vs. SE Autumn middle 9.63 5.99 30 1.61 0.118

SW vs. SE Autumn end 11.60 8.04 30 1.44 0.159

SW vs. SE Autumn duration 

(log)

0.19 0.70 25 0.27 0.792

SW vs. SE Spring duration 

(log)

-0.80 0.55 23 -1.44 0.163

SW vs. SE Autumn speed 

(log)

-0.05 0.68 25 -0.08 0.938

SW vs. SE Spring speed 

(log)

0.94 0.55 23 1.72 0.099

S vs. SW & SE Spring start -14.62 5.47 23 -2.67 0.014

S vs. SW & SE Spring middle -12.94 5.38 23 -2.41 0.025

S vs. SW & SE Spring end -9.44 3.61 23 -2.62 0.015

S vs. SW & SE Autumn start -0.42 3.95 26 -0.11 0.917

S vs. SW & SE Autumn middle -4.63 4.11 30 -1.13 0.269

S vs. SW & SE Autumn end -9.82 5.51 30 -1.78 0.085

S vs. SW & SE Autumn duration 

(log)

-0.99 0.53 25 -1.89 0.070

S vs. SW & SE Spring duration 

(log)

0.17 0.42 23 0.41 0.686

S vs. SW & SE Autumn speed 

(log)

0.39 0.51 25 0.76 0.454

S vs. SW & SE Spring speed 

(log)

-0.65 0.42 23 -1.56 0.133
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Table 2: Model results comparing migration timing of British winterers (NW 

migrants) to SW migrants. All models tested for timing differences between NW 

and SW phenotypes; other predictor variables were removed if P>0.1 and are 

therefore omitted from the table. Log-transformed variables indicated by “log” in

parentheses. NW and SW phenotypes differed significantly in all spring timing 

measures and no autumn timing measures. Likewise, protandry was evident in 

all spring timing measures and none in autumn. Breeding longitude was most 

strongly associated with the timing of migration spring. Breeding latitude was not

significantly associated with any timing trait. Year effects were evident only in 

autumn.

Predictor

Season 

(response) Estimate SE df t-ratio

F-

value P-value

NW vs. SW Spring start -6.08 2.47 43 -2.46 - 0.018

NW vs. SW Spring middle -6.61 2.46 44 -2.68 - 0.01

NW vs. SW Spring end -10.38 2.53 44 -4.10 - <0.001

NW vs. SW Autumn start -4.19 5.47 50 -0.77 - 0.447

NW vs. SW Autumn 

middle

0.39 4.15 51 0.09 - 0.926

NW vs. SW Autumn end -12.69 6.72 49 -1.89 - 0.065

NW vs. SW Autumn 

duration (log)

-1.10 0.38 48 -2.89 - 0.006

NW vs. SW Spring 

duration (log)

-0.81 0.24 44 -3.30 - 0.002

NW vs. SW Autumn speed 

(log)

0.43 0.44 48 0.98 - 0.331

NW vs. SW Spring speed 

(log)

-0.07 0.23 44 -0.33 - 0.745

Male 

vs. Female

Spring start -9.34 2.86 43 -3.27 - 0.002

Male 

vs. Female

Spring middle -9.10 2.86 44 -3.18 - 0.003

Male 

vs. Female

Spring end -11.37 2.94 44 -3.87 - <0.001

Male 

vs. Female

Autumn 

duration (log)

-0.99 0.47 48 -2.09 - 0.041

Breeding 

longitude

Spring start 1.21 0.20 43 6.01 - <0.001
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Breeding 

longitude

Spring middle 1.18 0.20 44 5.86 - <0.001

Breeding 

longitude

Spring end 1.14 0.21 44 5.53 - <0.001

Breeding 

longitude

Autumn end 0.87 0.40 49 2.21 - 0.032

Breeding 

longitude

Autumn 

duration (log)

0.10 0.03 48 3.33 - 0.002

Breeding 

longitude

Autumn speed 

(log)

-0.07 0.03 48 -2.80 - 0.007

Breeding 

latitude

Autumn end -1.60 0.91 49 -1.76 - 0.084

Breeding 

latitude

Autumn speed 

(log)

0.13 0.07 48 1.93 - 0.059

Year (F-test) Autumn start - - - - 6.44 0.001

Year (F-test) Autumn 

middle

- - - - 7.20 <0.001

Year (F-test) Autumn end - - - - 2.23 0.097

Year (F-test) Autumn 

duration (log)

- - - - 2.85 0.047

Year (F-test) Autumn speed 

(log)

- - - - 3.13 0.034

Table 3: Geolocator deployment summary. All devices manufactured by Migrate 

Technology Ltd.

Region Year

Devices 

deployed

Devices 

returned

Devices 

retrieved

Harness 

material Device

Austria 2016 202 24 (19 

nylon; 5 

viton)

24 nylon braid 1 

mm; viton 

cord 0.6 mm

P65Z1top2

end-11

Austria 2017 159 28 27 nylon braid 1 

mm

P50Z11-11

Austria 2018 15 4 3 nylon braid 1 

mm

P65Z1top1

-11

Netherlan

ds

2016 61 5 5 nylon braid 1 

mm

P50B1-11

Netherlan

ds

2017 61 8 7 nylon braid 1 

mm

P50B1-11
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Netherlan

ds

2018 67 14 13 stretch elastic

0.7 mm

P30Z11-7-

DIP-NOT; 

P65B1-7-

NOT

Poland 2015 12 1 1 nylon braid 1 

mm

W30Z11-

DIP-NOT ; 

W65B1-

DIP NOT

Poland 2016 9 1 1 nylon braid 1 

mm

W30Z11-

DIP-NOT ; 

W65B1-

DIP NOT

Poland 2017 12 4 4 nylon braid 1 

mm

W65B1-

DIP NOT ; 

W30Z11-

DIP-NOT

Poland 2018 20 4 3 nylon braid 1 

mm

W65B1-

DIP NOT ; 

W30Z11-

DIP-NOT

S 

Germany

2018 57 7 5 stretch elastic

0.7 mm

P30Z11-7-

DIP-NOT; 

P65B1-7-

NOT

UK 2016-

17

36 8 6 stretch elastic

0.8 mm

P50Z11-

11-NOT

UK 2017-

18

48 10 7 stretch elastic

0.8 mm

P50Z11-7-

DIP-NOT
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PART II
PREFACE

It has been a long-standing question to know what are those molecular elements

that make birds migrate, that give birds the adaptations for such an enduring

journey in their life cycle. The first approaches were adopting candidate genes

from phenotype that potentially are involved in migration, like elements of the

circadian cycle in mammals. These approaches started the studies of population

genetics  to  find correlations  between molecular  markers  (e.g.  microsatellites)

with  population  characteristics  related  to  the  migratory  behaviour,  (i.e.

migratory restlessness and geographic breeding location). 

Nowadays, with the extensive use of next-generation sequencing the focus has

changed  to  not  look  into  a  single  marker  in  a  single  gene,  but  to  examine

population differences along the genome. This approach has been used in some

migratory bird species with particular findings that point to different evolutionary

trajectories  creating  the  difference  between  migratory  populations  in  each

species. The different studies find evolutionary mechanisms like genomic islands

of divergence and structural rearrangements as sources of genetic variability in

different migratory species.

More recently, the studies of the molecular biology of migration have started to

explore  beyond the hard  coded DNA sequence elements.  Approaches  to  find

differences in gene expression comparing different migratory states (e.g. during

and outside the migratory season) has started to propose new candidates that

may play a role in migration.

Here we first propose a molecular evolution approach to evaluate any potential

candidate  gene  in  a  macroevolutionary  framework,  making  use  of  publicly

available genome sequences. We found that none of the candidate genes (by the

time we conducted the analysis) can be reliably suggested as migration genes
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along the avian clade. We argue for genome-wide approaches that can suggest

more candidates to evaluate if all the migratory birds have a common gene or

set of genes that make them able to migrate.

Second, we used a genome-wide approach to study the evolution and genomic

associations with the migration of the Eurasian blackcap. We found that despite

having a wide array of variability in migratory traits, the population structure in

this  species  is  low.  Most  of  the  differences  are  with  year-round  resident

populations in the southern part of the European continent and islands of the

Atlantic  Sea.  We  find  as  well  that  the  recently  established  UK  wintering

population has a signature of standing variation in some regions the genome,

that  potentially  let  them  adapt  rapidly  to  this  new  orientation  pattern  of

migration.

Lastly, we conclude this second part with (to our knowledge) the first approach of

gene regulation in migration. We analyse chromatin accessibility in three focal

brain areas related to migration: hippocampus, Cluster N and the ventral anterior

hypothalamus. We compared the chromatin accessibility landscape in individuals

outside the migratory season (when the migratory behaviour is not exhibited)

with individuals during the migratory season (when the migratory behaviour is

expressed).  We find a pattern of genome-wide repression of the chromatin in

individuals that are migrating, probaly due to strict control of any unnecessary

energetically demanding task in the cells of these brain areas. We also identify

cis-regulatory  modules  that  harbour  potential  elements  to  modulate  the

migratory behaviour.
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Figure S1 Trees employed for topology comparison. Seven trees are generated for
each candidate gene. Migratory taxa are highlighted in blue. Here the gene tree 
for PER3 obtained from the Neighbour Joining Analysis (A) is compared to a 
migratory phenotype topology (B), phylogenetic topology (C), random (D). (E) 
Shows Topology comparisons exclusively based on the reduced dataset 
exclusively containing obligate migrants and non-migratory species (E), as well 
as the pattern for the full dataset including all three phenotype classes (F) 
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Figure S2 Simplified topologies of all gene candidates. The gene trees obtained 
from the Neighbour Joining analysis for each candidate gene. Colouring scheme 
and node support as Figure 1 
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Figure S3 Cross-species comparative pattern of length polymorphisms at 
candidate genes for migration exemplarily illustrated for the four most widely 
used candidates (ADCYAP1, CLOCK, NPAS and CREB1). Upper panel (highlighted 
by a blue bar to the left) shows migratory species aligned by decreasing number 
of repeats at the variable locus; lower panel comprises non-migratory species 
arranged by increasing length polymorphisms. Only one sequence per species 
was used as reference
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Figure S4. Intra-specific variation of the CLOCK gene in migratory and non-
migratory species. Boxplot of allele lengths at the poly-Q region in migratory 
(Barn swallow, Chiffchaff, Nightingale, Pied flycatcher, Tree pipit, Whinchats and 
Willow warblers) and non-migratory species (Blue tit, Great tit). Lines indicate the
most common allele of each species
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Table S1 Reference information for all avian species included in the cross-species 
comparison. NCBI ID reference is included if available. Breeding latitude is stated 
as degrees from equator. Migratory distance calculated as kilometres between 
breeding and wintering grounds (only for migratory species). Category is a 
classification into 0: completely non-migratory (resident), 1: partial 
migratory/dispersive, 2: obligate migratory species. Distance and breeding 
latitude obtained following an approach explained in Delmore et al. 2015b
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Annotation Common name Scientific name Order
Y Adelie Penguin Pygoscelis adeliae Sphenisciformes 1
Y American Crow Corvus brachyrhynchos Passeriformes 2 M 52.728282 1449.675551
Y American Flamingo Phoenicopterus ruber Phoenicopteriformes 1
Y Anna’s Hummingbird Calypte anna Trochiliformes 0 R
N Atlantic canary Serinus canaria Passeriformes 0 R
Y Bald Eagle Haliaeetus leucocephalus Accipitriformes 1 57.253298 2196.110047
Y Bar-tailed Trogon Apaloderma vittatum Trogoniformes 0 R
Y Barn Owl Tyto alba Strigiformes 0 R
N Blackcap Sylvia atricapilla Passeriformes 2 M 44.402317 3365.931805
N Blue fronted amazon Amazona aestiva Psittaciformes 0 R
Y Brown Mesite Mesithorniformes 0 R
Y Carmine Bee-eater Merops nubicoides Coraciiformes 2 M -15.601757 1843.256656
Y Chicken Gallus gallus Galliformes 0 R
Y Chimney Swift Apodiformes 2 M 40.90111 5212.796889
Y Chuck-will’s-widow Caprimulgiformes 2 M 34.275962 2244.239074
Y Collared flycatcher Ficedulla albicolis Passeriformes 2 M 50.009516 7141.161536
Y Common Cuckoo Cuculiformes 2 M 50.70067 8342.20431
Y Common Ostrich Struthio camelus Struthioniformes 0 R
Y Common Starling Sturnus vulgaris Passeriformes 2 M
Y Crested Ibis Nipponia nippon Ciconiformes 0 R
Y Cuckoo Roller Leptosomus discolor Leptosiformes (Coraciiformes) 0 R
Y Dalmatian Pelican Pelecanus crispus Pelecaniformes 1 49.397822 2430.699453
Y Downy Woodpecker Picoides pubescens Piciformes 0 R
Y Emperor Penguin Aptenodytes forsteri Sphenisciformes 1
N Golden eagle Aquila chrysaetos Accipitriformes 1 60.715493 2506.946417
Y Golden-collared Manakin Manacus vitellinus Passeriformes 0 R
Y Great Cormorant Phalacrocorax carbo Suliformes 1 48.993437 5823.882464
Y Great tit Parus major Passeriformes 0 R
Y Great-crested Grebe Podiceps cristatus Podicipediformes 1 49.092926 4430.38658
N Greeenish Warbler Phylloscopus trochiloides Passeriformes 2 M 44.402317 3365.931805
Y Grey-crowned Crane Balearica regulorum Gruiformes 0 R
Y Ground tit Pseudopodoceps humilis Passeriformes 0 R
Y Hoatzin Opisthocomus hoazin Opisthocomiformes 0 R
Y Hooded crow Corvus cornix Passeriformes 1 63.443722 3623.510217
N Japanese quail Coturnix japonica Galliformes 0 R
Y Kea Nestor notabilis Psittaciformes 0 R
Y Killdeer Charadrius vociferus Charadriifores 1 51.734141 4741.388576
Y Kiwi bird Apterix australis mantelli Apterigiformes 0 R
Y Little Egret Egretta garzetta Pelecaniformes 1
Y MacQueen's Bustard Otidiformes 1 43.625066 1728.089995
Y Medium Ground-finch Geospiza fortis Passeriformes 0 R
N Northern bobwhite Colinus virginianus Galliformes 0 R
Y Northern Fulmar Fulmarus glacialis Procellariformes 1
Y Peking Duck Anas platyrhynchos Anseriformes 1 55.396228 3447.874244
Y Peregrine Falcon Falco peregrinus Falconiformes 1 60.833053 7458.828129
Y Pigeon Columba livia Columbiformes 1
N Puerto-Rico-Amazone Amazona vittata Psittaciformes 0 R
Y Red-crested Turaco Musophagiformes 0 R
Y Red-legged Seriema Cariama cristata Cariaformes 0 R
Y Red-throated Loon Gavia stellata Gaviiformes 2 M 62.164326 2334.642332
Y Rhinoceros Hornbill Buceros rhinoceros Bucerotiformes 0 R
Y Rifleman Acanthisitta chloris Passeriformes 0 R
N Ruff Calidris pugnax Charadriifores 2 M 60.324554 7905
Y Saker falcon Falco cherrug Falconiformes 1 48.885053 3974.464717
Y Scarlet Macaw Ara macao Psittaciformes 0 R
Y Silvereye Zosterops lateralis Passeriformes 2 M
Y Speckled Mousebird Colius striatus Coliiformes 0 R
N European Stonechat Saxicola rubicola Passeriformes 2 M 44.402317 3365.931805
Y Sunbittern Eurypyga helias Eurypygiformes 0 R
N Swainsons thrush Cathartus ustulatus Passeriformes 2 M 44.402317 3365.931805
Y Swan goose Anser cygnoides Anseriformes 1 49.80434 2067.017276
Y Turkey Meleagris gallopavo Galliformes 0 R
N Turkey Vulture Cathartes aura Cathartiformes 2 M 41.715309 6405.52089
Y White-throated Sparrow Zonotrichia albicollis Passeriformes 2 M 53.993132 2099.292521
Y White-tailed Eagle Haliaeetus albicilla Accipitriformes 1 55.516736 4917.947226
Y White-tailed Tropicbird Phaeton lepturus Pelecaniformes 1 -15.786057 11530.04737
Y White-throated Tinamou Tinamus guttatus Tinamiformes 0 R
N Willow warblers Phylloscopus trochilus Passeriformes 2 M 44.402317 3365.931805
Y Yellow-throated Sandgrouse Pterocidiformes 1
Y Zebra Finch Taeniopygia guttata Passeriformes 0 R

phenotype 
classes

mig/
resident

breeding 
latitude

Migratory 
distance (km)

Mesitornis unicolor

Chaetura pelagica
Antrostomus carolinensis

Cuculus canorus

Chlamydotis macqueenii

Tauraco erythrolophus

Pterocles gutturalis



Table S2. Number of bird species per candidate gene for which we were able to 

obtain full sequence information to be included in respective analyses.

Gene Number of spp.
AANAT 55

ADCYAP1 37
ARNTL 63
CLOCK 61
CPNE4 60
CREB1 67
CRY1 64
CRY2 61

CSNK1E 55
DRD4 61

HRSP12 63
HSP90B1 68

HSPA5 68
HSPA8 63

HSPA90AA1 63
NEK2 66
NFIL3 68
NPAS 58
PARL 66
PER2 60
PER3 67

SLC1A3 53
SLC2A1 41

TTR 22
YPEL1 48

Table S3. Welch t test and F-test for intra- and inter specific comparison on the 

polymorphic CLOCK locus. Comparisons of CLOCK gene variability among and 

between migratory and non-migratory species.

 t-test F-test

Comparison t value df p F value df num df den p
Migratory vs non

migratory -69,779 4733,3 <0.0001 6,1509 3579 3503 <0.0001
Great tit vs Blue tit -86,2 2646,3 <0.0001 5,5388 1895 1607 <0.0001
WW vs Nightingale 7,5993 475,1 <0.0001 1,4549 301 753 <0.0001
Flycatcher vs Bluetit -8,0875 834,3 <0.0001 0,62122 451 1895 <0.0001

Fly vs Great -65,692 526,71 <0.0001 3,4408 451 1607 <0.0001
WW vs Chiff abi -2,7165 69,38 0,008323 1,2333 61 753 0,2303
WW vs Chiff tri 0,84535 54,38 0,4016 1,2378 49 753  0.2646
Chiff tri vs Night -4,2575 69,497 <0.0001 0,85082 49 301 0,5007
Chiff abi vs Night -6,3066 93,018 <0.0001 0,8477 61 301 0,4404

Night vs Blue -20,158 402,62 <0.0001 1,0026 301 1865 0,9597

Great tit vs Whinchat 1,813 476,4 0,07046 0,27898 1607 415 <0.0001

Chiff abi vs Chiff tri -1,2265 104,95 0,2227 0,99633 61 49 0,9813
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Supplementary materials 

Additional details on genome assembly and annotation

Library construction Next-generation sequencing libraries were sequenced on a HiSeq 4000 
with paired-end, 100 bp reads. DNA for Bionano was suspended in CSB and embedded in 
agarose-CSB mold. It was labelled following IrysPrep Reagent Kit protocol using two 
nicking enzymes (BspQI and BssSI). The sample was then loaded onto IrysChips and run on 
the Irys imaging instrument.

ALLPATHS-LG assembly and improvement Next-generation sequencing libraries were 
subsampled to 50x coverage and default parameters in ALLPATHS-LG were used in the 
assembly algorithm, with a ploidy of 2 and choosing the option haploidify=true. This is a 
relatively new option for diploid genomes that are polymorphic. It removes polymorphisms 
from reads following error correction, creating a mixed haploid dataset that allows longer 
contigs and scaffolds to be constructed (because polymorphisms generally have the effect of 
fragmenting assemblies). Polymorphisms are added back to the consensus sequence near the 
end of the process. You must provide ALLPATHS-LG with information on insert-size and 
standard deviation. We obtained these values by generating an assembly using estimated 
values, mapping a subset of the reads to this reference using bwa 0.7.6 for fragment 
libraries(79) and stampy 1.0.23(80) for mate pair libraries. We used picardtools 1.97 
(http://broadinstitute.github.io/picard) CollectInsertSizeMetrics to estimate parameters for the
fragment libraries and stampy automatically outputs these data for mate pairs.

Additional steps were taken to improve the initial ALLPATHS-LG assembly. First, we
identified and softmasked repeats using RepeatMasker open-4.0 (-ggcalc, -species aves(81)). 
6.60% of the reference was masked (compared to 7.76%, 9.08% and 7.93% for hooded crow, 
chicken and zebra finch). Similar to previous assembles of avian genomes, most of the repeat 
elements were retroelements (5.04%). Next, we identified duplicate scaffolds and contained 
sequences using bbmap v 35.51 (https://jgi.doe.gov/data-and-tools/bbtools/). We did not find 
any duplicated scaffolds, but 7 sequences were contained in larger scaffolds (total of 15,625 
bp) and removed. Finally, we filled gaps in the assembly using GapCloser v 1.12(82). 45,493 
gaps were identified in the assembly, totalling 32,284,017 Ns. We finished 12,079 gaps 
(10,599 filled with sequences, 47 with zero length and 1,433 with negative length), reducing 
number of Ns to 26,162,538. We removed contigs that did not blastn to bird targets using the 
NCBI nucleotide database.

Super-scaffolding with optical maps ALLPATHS contigs less than 70kb in size were 
excluded from the hybrid assembly constructed using Bionano optical maps. On its own the 
BspQI map had 1,463 scaffolds, with an N50 of 0.83 Mb and total length of 1,013.85 Mb. 
When combined with the NGS assembly the number of contigs was reduced to 110 with an 
N50 of 21.85 Mb and total length of 1,038.58 bp. The BssSI map had 1,181 scaffolds, with an
N50 of 0.82 and total length of 824.26 Mb. After re-scaffolding with this map we had our 
final assembly.

Annotation The de novo testis transcriptome used in our annotation was obtained by 
sequencing mRNAs of 1 young and 4 adult male individuals. Library reads were obtained 
with mid input of 75 bp paired-end sequencing. From 8 to 35 M reads mapped for each 
individual with an average of 22 M reads. The assembly was obtained for each individual 
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separately, using TRINITY with default k-mer parameters (k=25) and a minimum contig size 
of 300 bp. The different individual transcriptomes were merged eliminating transcripts with 
95% similarity among individuals to obtain a final transcriptome.

Four cycles of the MAKER pipeline were run as follows: The first cycle included 
gene prediction exclusively with EXONERATE and all transcripts and transcriptome as 
evidence.  For the second round we obtained a HMM model to train the SNAP gene predictor
and an additional run of EXONERATE with all transcript evidence. The third and fourth 
rounds included an HMM model obtained from the immediately previous cycle to use it into 
SNAP and the “chicken” HMM model included in Augustus with default settings. In every 
cycle, only models with initial and stop codons, and > 50AA were included and accepted.

Genes were functionally annotated using blastp and Interproscan. We used blastp 
against a database of predicted proteins from ensemble (same species as above) with a 
threshold of 70% similarity and 80% query coverage. Hits under this thresholds, but higher 
than 50% in both cases, were flagged with a warning annotation. Second, we run Interproscan
with default parameters adding GO terms and Pathways and annotations from the following 
databases: CDD Gene3D Hamap PANTHER Pfam PIRSF PRINTS ProDom ProSitePatterns 
ProSiteProfiles SMART SUPERFAMILY TIGRFAM and IPR.
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Table S1. Summary of sequencing data used for ALLPATHS-LG assembly. Libraries with a 
and b are from the same library preparation but sequenced on two separate lanes.

Library Type Insert (bp) Raw (Gb) Used (%) Used (Gb)
Sequence
coverage

Physical
coverage

1 Fragment 174 ± 20 30.3 83.6 25.3 15.3 13.3

2a Fragment 178 ± 20 24.8 84.6 21.0 12.6 11.3

2b Fragment 178 ± 20 32.3 85.3 27.6 16.5 14.8

Total fragment 87.4 73.9 44.4 39.4

3 Mate 1,468  ± 223 51.31 64.8 33.2 9.3 61.4

4a Mate 4,617  ± 406 27.24 54.0 14.7 4.1 65.9

4b Mate 4,617  ± 406 28.05 52.3 14.7 4.1 71.4

5 Mate 9,230 ± 978 24.46 22.4 5.5 1.5 40.5

6 Mate 9,474  ± 805 57.44 40.1 23.0 2.1 50.7

Total mate 188.5 91.1 21.1 289.9

Final assembly 275.9 165.0
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Table S2. Assembly statistics at each stage. The second ALLPATHS assembly follows the 
removal of duplicates and contaminants along with gap filling.

Length #_seq N50 Ns Buscoa (%) UCEb (%) UCEc (%)

ALLPATHS
1,032,745,13

5
4,071 9,614,374

3,2284,01
7

92.1 98.0 98.8

ALLPATHS
1,031,299,29

8
2,896

16,854,06
7

27,685,63
6

93.6 98.2 98.9

+Bionano
1,017,107,03

3
96 21,997,114

33,034,38
1

92.8 95.8 96.6

a percentage of complete BUSCOs (aves_odb9). Full results: 
C:93.2%[S:92.1%,D:1.1%],F:3.9%,M:2.9%,n:4915
C:93.6%[S:92.5%,D:1.1%],F:3.7%,M:2.7%,n:4915
C:92.8%[S:91.7%,D:1.1%],F:3.8%,M:3.4%,n:4915
C = complete, S = complete and single-copy, D = duplicated, F = fragmented, M = missing.
b percentage of UCEs identified using whole-genome alignments for three amniotes (chicken, 
anole and zebra finch, total 5472)
c percentage of amniote UCEs with greater coverage (of 2560)
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Table S3. Results from satsuma showing which flycatcher chromosome each scaffold in the 
blackcap reference genome hit. Mean position and orientation refer to the location and 
orientation of scaffolds on the flycatcher genome. The last 6 scaffolds did not hit any of the 
flycatcher chromosomes. Comparing the annotation of the blackcap and zebra finch genomes 
suggests they match the indicated chromosomes.

Blackcap scaffold Flycatcher chr Mean location Orientation
Super-Scaffold_33 chr_1 36485 1
Super-Scaffold_8 chr_1 1339683 -1
Super-Scaffold_37 chr_1 4636214 -1
Super-Scaffold_76 chr_1 8096257 1
Super-Scaffold_4 chr_1 10433711 -1
Super-Scaffold_80 chr_1 11098626 -1
Super-Scaffold_32 chr_10 998131 -1
Super-Scaffold_1819 chr_10 2065253 1
Super-Scaffold_13 chr_11 575478 -1
Super-Scaffold_38 chr_11 1568314 1
Super-Scaffold_57 chr_11 2074346 1
Super-Scaffold_61 chr_12 122961 1
Super-Scaffold_89 chr_12 1181156 1
Super-Scaffold_100 chr_13 811989 -1
Super-Scaffold_79 chr_13 1746253 1
Super-Scaffold_72 chr_14 869082 -1
Super-Scaffold_14 chr_15 747687 -1
Super-Scaffold_26 chr_17 618869 -1
Super-Scaffold_60 chr_18 30886 -1
Super-Scaffold_82 chr_18 689775 1
Super-Scaffold_66 chr_19 599067 1
Super-Scaffold_56 chr_1A 916431 -1
Super-Scaffold_31 chr_1A 2191019 1
Super-Scaffold_63 chr_1A 2340900 1
Super-Scaffold_46 chr_1A 4867478 -1
Super-Scaffold_34 chr_1A 5221726 1
Super-Scaffold_94 chr_1A 5486379 1
Super-Scaffold_78 chr_1A 5863296 -1
Super-Scaffold_48 chr_1A 6119647 -1
Super-Scaffold_58 chr_2 76694 -1
Super-Scaffold_40 chr_2 2567093 1
Super-Scaffold_30 chr_2 10337890 1
Super-Scaffold_23 chr_20 25286 1
Super-Scaffold_9 chr_20 90779 -1
Super-Scaffold_71 chr_20 522682 -1
Super-Scaffold_20 chr_20 1226651 1
Super-Scaffold_110 chr_21 304262 1
Super-Scaffold_44 chr_21 743754 1
Super-Scaffold_90 chr_22 85418 1
Super-Scaffold_27 chr_22 356802 -1
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Super-Scaffold_64 chr_22 379551 1
Super-Scaffold_107 chr_23 91984 1
Super-Scaffold_98 chr_23 363554 -1
Super-Scaffold_74 chr_23 669009 -1
Super-Scaffold_54 chr_24 400871 1
Super-Scaffold_25 chr_25 203656 1
Super-Scaffold_7 chr_26 149251 1
Super-Scaffold_6 chr_26 525390 -1
Super-Scaffold_5 chr_27 126850 -1
Super-Scaffold_92 chr_27 336482 -1
Super-Scaffold_19 chr_27 506654 1
Super-Scaffold_51 chr_28 101721 1
Super-Scaffold_68 chr_28 407272 1
Super-Scaffold_99 chr_3 752368 -1
Super-Scaffold_24 chr_3 1202731 1
Super-Scaffold_18 chr_3 3257995 -1
Super-Scaffold_17 chr_3 7826899 1
Super-Scaffold_70 chr_4 229429 1
Super-Scaffold_36 chr_4 695200 -1
Super-Scaffold_88 chr_4 788400 -1
Super-Scaffold_10 chr_4 3064426 1
Super-Scaffold_65 chr_4 4511879 1
Super-Scaffold_35 chr_4 5697803 -1
Super-Scaffold_12 chr_4A 485424 1
Super-Scaffold_105 chr_4A 1544995 -1
Super-Scaffold_104 chr_5 466620 1
Super-Scaffold_52 chr_5 627439 -1
Super-Scaffold_1 chr_5 1502460 -1
Super-Scaffold_55 chr_5 2409007 1
Super-Scaffold_47 chr_5 4131534 -1
Super-Scaffold_73 chr_5 4955029 1
Super-Scaffold_50 chr_6 68382 1
Super-Scaffold_29 chr_6 322622 -1
Super-Scaffold_67 chr_6 2085795 1
Super-Scaffold_101 chr_6 3689565 1
Super-Scaffold_39 chr_7 97585 1
Super-Scaffold_83 chr_7 342163 -1
Super-Scaffold_103 chr_7 2165078 -1
Super-Scaffold_109 chr_7 3884732 -1
Super-Scaffold_41 chr_8 1389136 -1
Super-Scaffold_16 chr_8 2256504 -1
Super-Scaffold_22 chr_9 709437 -1
Super-Scaffold_3 chr_9 2046570 1
Super-Scaffold_11 chr_Z 550092 1
Super-Scaffold_75 chr_Z 1636321 -1
Super-Scaffold_43 chr_Z 3625804 -1
Super-Scaffold_93 chr_Z 5025976 1
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Super-Scaffold_69 chr_Z 5275119 -1
Super-Scaffold_49 chr_Z 5618693 -1

Super-Scaffold_28a chr_Z_random

Super-Scaffold_2a chr_25

Super-Scaffold_102a chr_Un

Super-Scaffold_2172a chr_Un

Super-Scaffold_42a chr_Z_random

Super-Scaffold_59a chr_3_random
a based on the zebra finch annotation
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Fig S1. Principal component analysis matching that in Fig. 1 but excluding island 
populations.
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Fig. S2. Complimentary figure to Fig. 1c, showing ancestry proportions estimated by 
ADMIXTURE at larger cluster values (k=4 through 7).
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Fig. S3. Down-sampling for demography analysis of effective population size. 
Five individuals were randomly sampled from 44 med+long migrants and 19 continental 
residents for 10 times (down-sampling 1 to 10), which were used for 10 runs of demography 
analysis with MSMC2. Because there were only five individuals for each of the other four 
group (short, Azores, Cape Verde, and Azores), the same sample sets were used for all 10 
runs of demography analysis. The results of the 10 runs of demography analysis are shown 
separately. Note that demography estimates of three island populations (red) and short 
migrants (black) are same across the 10 panels. 

120



Fig. S4. Down-sampling for demography analysis of relative cross-coalescence rate.
The same down-sampled individuals taken for effective population size analysis (Fig. S3) 
were also used for down-sampling of relative cross-coalescence rate analysis. Although the 
exact inferences of relative cross-coalescence rate especially between two continental groups 
(continent vs continent, black) are variable across down-samplings, the general pattern of 
steeper decline of relative cross-coalescence rate between continental and island groups 
(continent vs island, gray) than that of continent vs continent is consistent across all 10 down-
samplings. Note that some inferences (three of continent vs island and three (all) of island vs 
island) are same across the 10 down-sampling because the both two phenotypes had only five
individuals (see Fig. S5).
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Fig. S5. Demography analysis of relative cross-coalescence rate.
Relative cross-coalescence rate of all 15 possible combinations of six groups are shown. One 
line represents relative cross-coalescence rate inference of one down-sampling (five 
individuals per group). The three colours of lines correspond with Fig. 2b and Fig. S4. 
Relative cross-coalescence rate started to increase at ~5,000 years ago between med+long and
continental resident populations (shaded with light blue). Note that there is only one inference
for short vs islands (Azores, Cape Verde, Canary) and island vs island (Azores vs Cape Verde,
Cape Verde vs Canary, Canary vs Azores) because there are only five individuals for these 
phenotypes. Also note that the top and bottom diagonals are identical.
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Fig. S6. Long distance migrants and medium distance migrants show similar demographic 
histories. a) Effective population sizes show the same demographic trajectories. Five 
individuals were randomly sampled from each medium distance phenotype 10 times (down-
sampling 1 to 10), and used for 10 runs of demography analysis with MSMC2. The results of 
the 10 runs are shown separately. This was not done for long distance migrants as only two 
individuals met the coverage cutoff to be included in the analysis. b,c) Relative cross-
coalescence rates stay high in all three pairwise comparisons between medium distance 
migrants. Note that the top and bottom diagonals in (c) are identical.
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Fig. S6. Complimentary to Fig. 3b showing genome-wide local estimates PBS for the 
remaining populations.
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Fig S7. Global neighbor joining trees built hapFLK and data from all genomic regions for 
comparison with local trees showing positive selection in Fig. 4 (a for the analysis including 
all phenotypes and b for the analysis limited to medium distance migrants).The resident 
continent group is only included to root the tree in panel b (i.e., it was not included in the 
analysis which only focused on medium distance migrants).
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ABSTRACT

Bird migration is the quintessential phenotype of animal movement behaviour.

Despite the clear demonstration of its strong inherited component, the molecular

basis that allow some species to migrate or not have remained entirely unknown.

Here, we used an innovative genome-wide approach to investigate differences in

chromatin accessibility contrasting migratory birds tested during and outside the

migratory, making use of the fact that the migratory behaviour is exclusively

exhibited during migratory season. We use ATAC-seq in three focal brain areas

that potentially play an assumed role regulating processes related to migratory

behaviour:  Cluster  N,  Hippocampus  and  the  anterior  ventral  region  of  the

Hypothalamus.  Intriguingly,  our  study  showed  that  chromatin  accessibility

reduced during the migratory season compared to a control condition outside the

migratory  season.  This  pattern  was  particularly  noticeable  in  the  Cluster  N

region,  suggesting  relevant  regulatory  processes.  We  identified  potential  cis-

regulatory  elements  characterizing  the  differentially  accessible  regions  in  the

chromatin.  Furthermore,  we  inferred  potential  Transcription  factors  (TFs)

changing the gene regulatory landscape during migration. Finally, we leverage

this information with population genomic resequencing data to refine identified

cis-regulatory  elements  with  features  of  evolution  in  our  focal  species,  the

Eurasian blackcap.
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INTRODUCTION

Migratory animals have the incredible to cope with the challenge of an intense

and long journey as part of their annual life cycle. Some sources of evidence

support a heritable component for migratory traits like distance and orientation

in birds[1],[2]. In insects like monarch butterflies, migration is multigenerational

meaning  that  an  individual  starts  the  journey,  but  it  is  the  fifth  offspring

generation  that  complete  the  travel  back.  Despite  the  quantitative  genetics

demonstrating  the  heritability  of  migration,  the  molecular  and  genetic

mechanisms underlying this, remain unknown so far.

Whole genome resequencing approaches identify highly differentiated markers in

non-coding regions between bird populations with contrasting migratory traits.

Populations  of  migratory  bird  species  exhibiting  different  orientations  in

Swainson’s thrushes (Catharus ustulatus) have broad, divergent genomic regions

-  so-called  islands  of  differentiation  -,  without  affecting  protein-coding

sequences[3].  In  willow  warblers  (Phylloscopus  trochilus),  populations  with

different  patterns  of  orientation  strategies  have  fixed  genomic  structural

variation. Inside the structural variants, the SNPs with the highest differentiation

map upstream or downstream genes, but not within protein-coding regions[4].

Genetic associations found that upstream genes related to   behaviour and cell

signalling, are strongly associated with environmental variables in breeding areas

in the yellow warbler[5]. More recently, in golden warblers (Vermivora spp.), a

single  region  harbouring  the  gene  VPS13A  has  been  suspected  of  selection

between  two  different  migratory  subspecies[6].  Similarly,  in  the  Eurasian

blackcap  (Sylvia  atricapilla)  a  species  with  a  large  repertoire  in  migratory

behaviour, and thus ideal to study the genetics of migration, we have previously

explored the evolutionary history and genetic associations using a population

genomics approach (Chapter 4). Despite the overall low population structure in

the migratory populations, most SNPs associated with migratory traits map to

non-coding regions of the genome.

Many complex traits –like migration- may rely on cis-regulatory elements. Open

Chromatin  Regions  (OCRs)  are  cis-regulatory  elements  where  in  a  given
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circumstance,  the  DNA  is  completely  naked  without  nucleosomes  and  thus

accessible  for  Transcription  factors  (TFs)  [7].  OCRs  have  a  special  place  in

regulation  because  they  might  harbour  relevant  regulatory  sequences[8].

Correlational evidence shows that TF bind more often to these regions compared

to regions of condensed chromatin. Furthermore, there is mounting evidence of

the significant contribution of non-coding variants in OCRs to complex diseases

phenotypes like schizophrenia and autoimmune responses[8]–[10]. In non-model

organisms,  the study of  chromatin  accessibility  has  allowed to  investiate  the

evolution  of  traits  like  flight  loss[11] or  limb  loss  [12] and  their  genetic

components and mechanisms. Even more recently, this approach has started to

unveil  evolutionary  mechanisms  of  adaptation.  Some  studies  describe  the

pleiotropic effects of different cis-regulatory elements and their role shaping the

landscape  of  evolutionary  adaptation  in  broadly  distributed  regions  of  cis-

regulatory elements[13], [14].

To investigate the role of cis-regulatory elements shaping migratory behaviour,

we characterize the dynamics of OCRs to identify genomic sequences and their

potential role controling the expression of migratory behaviours. Furthermore, we

explore the population genetics of these elements to narrow down potential cis-

regulatory  elements  with  SNPs  potentially  disrupting  the  TF-DNA  interaction.

Specifically, we have performed ATAC-seq in three focal brain regions to contrast

chromatin  accessibility  of  birds  during  migratory  season  when  migratory

behaviour  is  exhibited,  and  birds  outside  the  migratory  season  as  a  control

condition during which the migratory behaviour is not shown. We found that all

the brain  regions  present  loci  of  Differentially  Accessible  Regions  (DARs)  (i.e.

regions changing accessibility in either ON or OFF season samples) when birds

migrate and when birds do not migrate. One of our key results is that the Cluster

N region harbours most of the differences between the migratory states. This

region is  known to be involved in magnetic  compass orientation in  nocturnal

migratory birds, such as the blackcap. The genes found close to DARs play a role

in pathways of axon guidance, generation of neurons and energy expenditure

regulation. A further examination of the potential motifs for TF binding to those

regions identified Rev-erb alpha and THR beta are enriched motifs in the DARs of

ON  season  birds.  Lastly,  we  combined  the  DAR  information  and  motif  TF

inference with  polymorphisms in  the genomic  sequence  to  narrow down and
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identify migration specific cis-regulatory modules and the evolutionary processes

that shape migration.

RESULTS

Chromatin accessibility profiles in the brain of a migratory bird.

We aim to characterise the Open Chromatin Regions (OCRs) that are potentially

controlling  migratory  behaviours  in  the  Eurasian  blackcap.  We  approach  that

characterisation performing ATAC-seq in brain regions using a "common garden"

experiment to classify birds during the migratory season (hereafter, ON) and a

control condition with birds out of the migratory season (hereafter, OFF)(see Fig

1A).  We  characterised  OCRs  in  three  brain  regions  with  potential  roles  on

migratory behaviour: Hippocampus (HC); Cluster N (CN) and the Ventral Anterior

Hypothalamus  (VAH)  (Fig1B).  With  this  design,  we  end  up  with  six  different

groups that classify the three brain regions in ON or OFF migratory states. We

generated and sequenced libraries for a total of 36 samples, as well as two input

controls (naked DNA). All samples were sequenced to an average of 50 million

reads (Table 1). After removal of PCR duplicates and reads mapping to multiple

locations, the average number of reads was 32 million. Table 1 describes other

quality measurements like Fraction of reads Inside Peaks (FrIP), PCR Bottleneck

(PBC)  and  reads  mapping  to  the  mitochondrial  genome  (Mitoreads).  These

previous  measurements  are  quality  control  of  filters  commonly  used  in  the

ENCODE standards [15] . The quality control filtering reduced the final number of

samples to 6 ON and OFF samples for Hippocampus, 7 ON and OFF for Cluster N,

and 3 ON and OFF samples for VAH. The quality of our dataset, is comparable to

other similar preparations of ATAC-seq in humans, employing the same quality

and characteristics of flash-frozen bulk brain tissue [9]. (See table 1).

Due  to  the  limited  number  of  samples  from the  VAH area  available  for  this

working manuscript, and hence lower power in this region to reliably detect OCR,

the subsequent results and discussion presented in this manuscript will mainly

be focussed on data from the Cluster N and the Hippocampal samples that to

allow for more robust conclusions. This work is ongoing and more samples of the 
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Figure  1.  Experimental  overview.  A)  Outline  of  the  experimental  design.  Birds  were

sampled OFF (outside) and ON (during) the migratory season (the focus here is in spring

migration).  Each  bird  was  classified  into  either  OFF  or  ON  season,  using  nocturnal

migratory restlessness activity as proxy for migratory activity (blue bars in circular insets

represent activity profiles, the red line indicates light intensity, i.e. valleys represent night

while peaks represent day). Migratory restlessness is expressed only during the migratory

season. Outside migratory season blackcaps are diurnal and in consequence, birds OFF

season show little to no activity during the night (blue inset). Once spring progresses and
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the migratory season approaches, birds start to show nocturnal migratory restlessness

activity, allowing to classify them as ON season (yellow inset). B) Birds were sampled 1 to

4 hours after onset of darkness, brain tissue was microdissected and immediately flash

frozen.  Collected  tissue  was  subsequently  processed  with  ATAC-seq  to  perform  the

enzymatic  tagmentation.  C)  Quality  assessment  of  samples.  Left  panel  is  from  a

chromatin sample maintaining the nucleosome structure. Right panel is for a sample on

naked DNA without nucleosome structure (hereafter, background/BACK). Plots show the

insert size distribution indicating the approximate location of mono- and dinucleosomes.

The heatmaps to the right of each plot show the frequency of reads around Transcription

Start Sites (TSS, dashed line) +/- 1000 bp. Each row in the heatmap corresponds to a

single gene. In the heatmap, blue colors indicate high frequency, while red colors indicate

low frequency of reads.

VAH  will  be  processed  in  the  near  future  to  complete  the  dataset  for  final

analyses and publication.

The  distribution  of  insert  sizes  in  each  sample  passing  QC  shows  the

conservation of at least the mono nucleosome portion of the chromatin (see Fig

1C and Fig 1S1). Similarly, a higher frequency of reads near to Transcription Start

Sites (TSS,  commonly known as highly open chromatin regions),  confirms the

success of ATAC-seq in the samples (Fig 1D, Fig 1S1). In the naked DNA samples,

the same procedure outputs a distribution of insert sizes and read frequency in

TSS entirely different to those expected for a high-quality ATAC-seq sample; in

these  naked  DNA  samples,  reads  do  not  accumulate  around  TSS,  further

confirming the success of the ATAC-seq in our samples (Fig 1S1).

A correlation analysis of read numbers in windows of 10 kbs across the whole

genome,  evidence  that  the  ATAC-seq  procedure  is  reproducible  witihn  the

samples. The average Pearson’s correlation value of samples is r2=0.81 (Fig 1S3).

This  value  is  significantly  higher  compared  to  samples  correlated  with  the

background, naked DNA (r2=0.62 average of  red distribution in Fig  1S2).  The

correlations are neither significantly different between the samples nor different

brain  regions  or  migratory  states  (Fig  1S2),  which  could  suggests  an  overall

degree of similarity between all the different groups. 
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Table 1. Quality assessment of each sample.  

Total  of sequenced reads, and reads uniquely aligned are shown. Fraction of reads in

Peaks  (FRIP),  PCR  bottleneck  coefficient  (PBC).  Reads  aligning  to  the  mitochondrial

genome and the total of peaks identified. Four samples do not pass the quality controls

and therefore they are not included in the study. Our criteria include FrIP>0.2 and more

than 15000 peaks identified. 

The identification of OCRs shows an average of 22716 and 32481 OCRs for ON

and OFF season, respectively (see table 1). The sum of OCRs length accounts on

average for 5% of the genome in both groups combined. Approximately 80% of
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Sample Sequenced read reads aligned Frip PBC Read Mito Peaks

CN_OFF

CN_OFF_1 34599118 23803294 0.2175 0.87 9228490 21056
CN_OFF_20 60101530 42305706 0.2473 0.9 16585608 35293
CN_OFF_24 52034204 34238380 0.3409 0.87 16227278 33308
CN_OFF_33 54029188 32233364 0.3280 0.95 20228489 42532
CN_OFF_35 31845383 29049559 0.2052 0.84 1585607 20261
CN_OFF_6 92172657 64776833 0.2254 0.98 25827277 43131
CN_OFF_86 45393558 27597734 0.3928 0.97 16228488 49182

HC_OFF

HC_OFF_13 42174899 24379074 0.2304 0.84 16585606 30320
HC_OFF_26 36161639 32365815 0.2277 0.85 2227276 36049
HC_OFF_41 40154274 23358455 0.2609 0.96 15228487 40945
HC_OFF_44 55125942 32830118 0.2285 0.93 21085605 38134
HC_OFF_45 39442958 21647134 0.2542 0.87 16227275 31451
HC_OFF_46 41650978 23855154 0.2562 0.89 16228486 35764

VAH_OFF
VAH_OFF_00 34870207 27074333 0.2285 0.81 6585604 22209
VAH_OFF_39 48080209 30284385 0.2055 0.77 16227274 19108
VAH_OFF_89 39088100 33292276 0.2310 0.8 4228485 21090

CN_ON

CN_ON_21 92094669 60798845 0.2056 0.87 29728484 16908
CN_ON_3 43923768 26127944 0.2476 0.92 16585602 25948
CN_ON_30 41284377 24488550 0.2441 0.87 15227272 19852
CN_ON_4 45135113 27339289 0.2422 0.99 16228483 25583
CN_ON_43 46291211 27795391 0.2611 0.83 17285601 20915
CN_ON_49 60624797 40828973 0.3094 0.94 18227271 29674
CN_ON_56 96006551 50910727 0.2903 0.92 43528482 29532

HC_ON

HC_ON_12 49973844 30178020 0.2238 0.83 18585600 17973
HC_ON_14 49735092 31939268 0.2725 0.84 16227270 23191
HC_ON_23 42028791 24232967 0.2830 0.91 16228481 24994
HC_ON_28 45394127 26798303 0.3148 0.96 17385599 25786
HC_ON_31 36350944 24855125 0.3097 0.87 9927269 25992
HC_ON_7 49253058 30457234 0.2872 0.90 17228480 25812

VAH_ON
VAH_ON_87 61076614 39280790 0.2159 0.78 20585598 16860
VAH_ON_9 49936667 32140843 0.2114 0.72 17795824 15248
VAH_ON_99 44465111 27669295 0.2341 0.77 16795824 18437

BACKGROUND
BACK_62 40257858 27468291 0.0456 0.81 9421363 455
BACK_58 35650915 24456271 0.0987 0.74 8143677 207

NO_QC

CN_OFF_72 45147358 34769233 0.1615 0.64 10376640 9201
HC_OFF_22 51473548 37816221 0.1754 0.71 13655842 8596
HC_OFF_42 41215699 28193345 0.1642 0.68 13020869 10622
VAH_OFF_59 35129844 30184566 0.1249 0.52 4943793 9711



OCRs in each sample are present in 3 or more samples. The presence in other

samples  and  the  absence  in  the  naked  DNA  samples  accounts  for  the

reproducibility of each OCR (Fig 2S1A). The proportion of overlap in three or more

samples within the same migratory state and brain region is 50% for each OCR

(for VAH groups, the 50% are found in two samples Fig 2S1B). The overlap with

other samples supports the scenario that the chromatin accessibility landscape

has shared features among the different brain areas.

To investigate whether the OCRs identified are potential cis-regulatory regions.

Therefore, we evaluated the annotation of OCRs and their conservation. For the

former, we compared the overlap of OCRs and Genomic annotations for each

sample with a set of the same number of OCRs, shuffled around the genome

(Random  regions).  In  our  samples,  the  enrichment  of  OCRs  is  significantly

different from randomly placed regions, in promoters (defined as 500bp up and

downstream the TSS) except for VAH regions with a marginal significance (recall

the low sample sie in this region) (See Figure 2).

Migration induces widespread chromatin changes in the brain of migratory birds.

We were interested in identifying the differences in chromatin accessibility that

migratory behaviours might induce in the focal brain regions. We can describe

the set of OCRs in a sample as an OCR landscape. To assess the similarity of OCR

landscapes between all  samples, we obtained a matrix of similarity using the

Jaccard distance as a metric of overlap between two samples. Clustering analysis

of the similarity matrix reveals three main clusters:  one with mostly samples

from the OFF season, one with mainly ON season samples, and one with mixed

samples mainly from the VAH region (Fig 3). A bootstrap analysis supports the 3

clusters mentioned above with values of 90 or higher (Fig 3S1). The degree of

similarity does not cluster samples by brain region suggesting that several OCRs

might be shared between them(See also Fig 2S1).

It is important to note that the differences might not be limited to the presence/

absence of OCRs. The differences might be rather influenced by the degree of

accessibility. We quantified the number of reads in each OCR as a proxy for the
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Fiigure 2. Peak (Open Chromatin Regions (OCRs)) annotation with features of the genome.

The  amount  of  overlap  was  addressed  in  the  different  groups  of  samples  (blue).

Additionally, a random sample generated shuffling the peaks around the whole genome

was generated for comparison (red). Each genomic feature is noted to the right side of

each row. The degree of overlap takes into account the number of bp overlapping for

each feature,  normalized by the length of  such feature in  the genome. The genomic

features  evaluated  are:  Exons,  first  exon  only,  gene  bodies(exon+intron),  intergenic

regions  (excluding  RepeatMasker  regions),  introns,  other  exons,  promoter  upsteram,

promoter downstream (defined by +/- 500 bp from TSS, respectively) random regions in

the  genome  and  repeatable  elements  (identified  with  Repeatmasker).  Significance

compared  against  the  random  samples  is  indicated  with  a  Mann-Whitney  U  test

**pval<0.01 *pval<0.1.

intensity of accessibility of the OCR. As a measure to reduce dimensionality, we

use a Principal Component Analysis (PCA) of all the samples. We found that the

main driver of variance is the difference between OFF and ON migratory season.

PC1 is the component that explains most of the variance of ON or OFF samples
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Figure 3. Chromatin accessibility landscape similarity. The heatmap represents the degree

of  overlap  of  all  the  peaks  between  two  samples.  High  values  of  similarity  are

represented in red. A pair of samples having exactly all the same peaks would be a value

of  1  (diagonal).  The  tree   to  the  left  represents  the  clustering  pattern  of  samples,

obtained with a bootstrap analysis with 1000 re samplings to support the groups. Red

lines  show  the  support  of  clusters  of  more  than  90%.  The  different  regions  are

represented with shapes. Hippocampus (triangle), Cluster N (circles) and VAH (squares).

The migratory status is represented with colors: blue (outside migratory season OFF),

yellow (during migratory season ON)  

(Fig 4). To evaluate whether the difference between ON and OFF came about

randomly,  or  by  an  accurate  biological  signal  in  the  identified  OCRs,  we

performed the same PCA analysis in randomly shuffled OCRs around the genome

(Fig 4S1). The results confirm that the variance obtained in the identified OCRs is

not due to any systematic bias between the samples. To address the likelihood of

random associations of the ON/OFF migratory states being the main drivers of
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the  variance,  we  permuted 100 times the  ON/OFF  state  of  the  samples  and

performed the PCA analysis as before. The expected distribution of values in the

PC1 has lower variance than the observed distribution (Fig 4S2), confirming that

the migratory state mainly drives the variance in our data set.

The  gene  regulatory  landscape  of  migration  induces  a  general  chromatin

repression.

The  chromatin  remodelling  happening  during  migration  is  changing  the  gene

regulation mechanisms in the three focal brain areas. To obtain a detailed picture

of  the  potential  mechanisms,  we  obtained  a  consensus  set  of  OCRs  (see

Methods)  for  each  brain  region.  Subsequently,  we  quantified  the  differences

between  birds  OFF  and  ON  migratory  seasons.  We  identified  differentially

accessible Regions (DARs) in either of the migratory states. The observed pattern

shows higher chromatin accessibility in OFF season birds for the Cluster N and

Hippocampus  regions  (Fig  5A  and  B),  which  means  potential  repression  of

chromatin in the ON season samples. We performed permutations of the OFF and

ON states of the samples to verify that the DARs are not a result of  random

associations of the migratory phenotype. The distribution of p-values in the real

dataset  shows a skew towards small  p-values,  while  permutated associations

have an even distribution of p-values (Fig.5S1). This shows that the real data set

contains significant DARs while in the permutated dataset there are no DARs or

those that are significant are portentially false positives.

Similarly, we confirmed that the observed trend is not due to an outlier sample

distorting the overall accessibility pattern. We used a Jack-knife approach (also

known as Leave one out (LOO) procedure) to confirm that the distribution of Fold

change is not significantly different to the whole dataset (Mann-Whitney U pval >

0.1) (Fig 5S2). We again compared our data with randomly picked regions along

the genome, to test if the accessibility pattern is systematic in the samples or if

it  is  intrinsic  to  the  OCRs  found.  This  analysis  shows  that  the  fold  change

distribution is only skewed towards the OFF season samples in the consensus

OCRs set but not in the randomly picked genomic regions. This confirms that the

change on accessibility is due primarily to an effect on the OCRs and not the

whole sample (FIG5S3). 
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Figure 4.  Principal components analysis of read counts in a consensus set of all peaks in

all regions and migratory states. The main variability among the samples is dictated by

differences in migratory state. Shapes and migratory status are represented as in Figure

3.  

It could be possible that a lack of resolution could influence the change in the ON

season samples due to degradation or any other factor affecting the quality of

the  sample.  However,  we  also  confirmed  that  the  samples  behave  similarly

compared to a naked DNA sample (which would resemble a completely degraded

sample)  [7](FIG 5S4).  We performed a differentially  accessible analysis in  the

OCRs  identified,  comparing  ON or  OFF  season  samples  with  the  naked  DNA

samples.  Samples  from  the  ON  and  OFF  season  have  similar  patterns  of

differential accessibility. This confirms that the pattern of differential accessibility

in the brain regions is not an artefact of the status of the sample.
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Figure 5. Volcano plots identifying differential  accessible  regions (DAR) fore each region.  A)  Hippocampus  B)  Cluster N,  C)  Ventral  anterior

hypothalamus (VAH). In each panel yellow colored characters are DARs significantly more accessible in the experimental group of birds tested

during  migratory  season  (ON).  Blue  characters  signify  DARs  more  accessible  in  control  birds  tested  outside  the  migratory  season  (OFF).

Significance of DARs are represented with two thresholds settings: triangles denote the strict threshold (padj<0.01 and log2foldchange >1, also

denoted by dashed lines) while dots indicate an empirical threshold (see text for details). 
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Figure 6. Gene ontology (GO)

enrichment  of  closest  genes

to each DAR by brain region.

Each  migratory  state  is  in

different panels. Each shape,

indicates  a  different  brain

region  (VAH  not  significant

due  to  limited  sample  size)

We included  a  set  of  genes

merging the DARs in all brain

regions. 
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It  is surprising that we find a general pattern of repression in the ON season

samples.  Only  few  chromatin  regions  are  selectively  open  only  during  the

migratory season samples but not in OFF season samples, which agrees with the

idea that many physiological processed are shut down or downregulated during

the energetically demanding process of migration.  [2], [16]. It  is important to

note that this skew was most prominent in the Cluster N region, which suggests

that this region goes under an extreme change of regulation during the migratory

season and highlights its potential role in controling migration behaviour (Fig 5B).

By assigning the closest gene to any DAR, we can infer patterns of regulation

changing at the gene level. With an enrichment of Gene Ontologies (GO) of those

genes close to regions with differential accessibility, we confirm the pattern of

repression and negative regulation of many processes in the brain of migratory

birds (Fig 6). The hits that are more accessible between off and on are mainly

part  of  opposite  pathways.  The  OFF  samples  have  GOs  enriched  for  normal

processes enhancing neuronal development, and regular cell division (Fig 6). The

opposite pattern is present in ON samples presenting considerable repression of

energy  expenditure  and  negative  regulation  of  membrane  potential  and

regulation  of  long  term  synaptic  depression  a  phenomenon  involved  in  the

formation of memory and focal sensory mechanisms. These findings suggest that

there are few DARs in ON migratory samples. The functions of nearby genes are

likely relevant to the birds' needs during migration.

Transcription factor usage potentially represses chromatin during migration.

The role of DARs in the expression of nearby genes is due to the transcription

factors potentially binding inside these specific regions. It is known that TFs bind

more often to regions of accessible chromatin [8]. Thus, it is possible to narrow

down  the  identity  of  potential  regulators  by  analysing  the  motifs  that  each

transcription factor binds. We hypothesise that some of them will be responsible

for the differences between migratory states.

Using the information of Position Weight Matrices (PWM), we searched motifs of

potential transcription factor binding sites (TFBS) inside DARs. We scanned the

Position Weight Matrix of 414 TF with known binding motifs, from the database

JASPAR[17]. We analysed the enrichment of TFBS in the DARs for a given brain
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Table 2 Motif Enrichment for transcription factors.

Each brain region is indicated. The columns ON and OFF DARs indicates the enrichment

and fdr corrected value for a given TF in a specific region. 

region and migratory state, by comparing to a background that includes all OCRs

from a single brain region. Several motifs are similarly enriched in DARs for ON

and OFF migratory season samples. To differentiate those motifs that might be

differentially used in ON or OFF migratory samples, we selected TFs significantly

enriched in either migratory state (fdr pval<0.01). Additionally, we checked if the
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ON DARs OFF DARs
Brain region TF(family) fdr value Enrichment score fdr value enrichment score

CN

ERE(NR),IR3 1.00E-12 2.371 0.1 0.241

ON

p53(p53) 1.00E-03 3.322 1 0
RAR:RXR(NR),DR5 1.00E-06 4.129 0.1 0.795

Reverb(NR),DR2 1.00E-07 2.184 0.1 0.35
THRa(NR) 1.00E-13 1.746 1 0.027
THRb(NR) 1.00E-18 1.527 0.1 0.136

VDR(NR),DR3 1.00E-04 1.434 1 0.043
ZEB1(Zf) 1.00E-08 0.737 1 0.035
ZEB2(Zf) 1.00E-11 1.092 1 0.044
Nur77(NR) 1 0.191 1.00E-33 1.664

OFF

Eomes(T-box) 1 0.041 1.00E-52 0.382
DUX4(Homeobox) 1 0.24 1.00E-14 2.624
NF1-halfsite(CTF) 1 0.025 1.00E-38 0.323

BORIS(Zf) 1 0.143 1.00E-108 1.866
Ronin(THAP) 1 0.322 1.00E-87 4.368

ISRE(IRF) 1 0.12 1.00E-20 2.177
Rfx2(HTH) 1 0.1 1.00E-72 2.189

Nkx2.2(Homeobox) 1 0.004 1.00E-09 0.169
PGR(NR) 1 0.023 1.00E-92 2.062

HC

E2A(bHLH),near_PU.1 1.00E-06 2.781 1 0.019

ON

EBF2(EBF) 1.00E-04 2.492 0.1 0.272
HEB(bHLH) 1.00E-04 2.081 1 0.07
Ptf1a(bHLH) 1.00E-06 2.042 0.1 0.159
Tbx5(T-box) 1.00E-05 1.515 0.1 0.105
THRb(NR) 1.00E-10 3.585 1 0.114
ZEB1(Zf) 1.00E-04 1.974 1 0.046
Gata6(Zf) 1 0.159 1.00E-03 0.581

OFF

RFX(HTH) 1 0.414 1.00E-11 1.558
X-box(HTH) 1 0.737 1.00E-29 3.108
Rfx2(HTH) 1 0.361 1.00E-11 1.557

Lhx3(Homeobox) 1 0.152 1.00E-10 0.75
KLF5(Zf) 1 0.059 1.00E-19 0.543

FOXA1(Forkhead) 1 0.043 1.00E-02 0.505
CHR(?) 1 0.073 1.00E-05 0.996

Pit1(Homeobox) 1 0.09 1.00E-09 1.303
KLF6(Zf) 1 0.01 1.00E-10 0.402

VAH

Atoh1(bHLH) 1.00E-03 2.175 1 0.155

ON

Tlx?(NR) 1.00E-03 3.164 1 1.708
PRDM1(Zf) 1.00E-03 3.029 1 1.577
TCF4(bHLH) 1.00E-03 2.039 1 0.021
Hand2(bHLH) 1.00E-03 3.907 1 2.322
MyoD(bHLH) 1.00E-04 3.644 1 2.322
EBF1(EBF) 0.1 2.322 1.00E-03 3.907

OFF
AP-2gamma(AP2) 0.1 1.474 1.00E-02 2.907



enrichment is more significant in ON or OFF DARs and selected those that had a

ratio of Enrichment score > 1.5. (Table 2 ). Given the number of DARs in Cluster

N and Hippocampus in OFF season samples, many TFs were enriched. We report

the top 10 of these groups.

Each brain region has its own set of enriched motifs. We found in both Cluster N

and  Hippocampus  the  motifs  for  THR  beta  and  ZEB1  enriched  in  the  ON

migratory season birds. Similarly, motifs for RFX2 were found in both CN and HC

for  OFF  season  samples.  This  finding  suggests  that  these  TFs  have  general

purposes for migration (ZEB1 and THR beta) or off migratory season (RFX2). With

the exception of motifs for p53, the enrichment in Cluster N of ON season birds is

in accordance with the repression pattern found in the differential accessibility

analysis.  The  enrichment  of  motifs  for  ZEB1  and  ZEB2  suggest  repression

functions[18]. Similarly, nuclear receptors like Rev-erb, THR alpha and beta, VDR,

and RAR:RXR can act as transcriptional repressors, depending on the availability

of their ligand( NCOR, TRH and retinoic acid, respectively)[19]. All of the Nuclear

receptors with enriched motifs are involved in the regulation of circadian and

circannual  rhythms[20],  [21].  The  transcription  factors  enriched  in  the

Hippocampus, are involved in general pathways of cell proliferation and immune

responses.  The TFs in the VAH, are enriched in functions related to neuronal

development and particularly TLX (also known as NR2E1) has functions related to

retinal cells[22].

The different motifs found in the DAR for each brain region and migratory state

shows that the elements controlling changes in the regulatory landscape when

birds  enter  migration  are  related  to  functions  of  neuronal  development  and

circadian entrainment. Although the enrichment of motifs shows general patterns

of  factors  influencing  accessibility,  there  might  be  individual  elements  that

harbour differences relevant to the onset of migration.

Identification of Cis-regulatory modules involved in migration

TFBS are usually highly conserved, but also sources that contribute to adaptation

via cis-regulatory changes. Mutations in TFBS can potentially induce differences

in  the dynamics of  gene expression[23].  We looked for  potential  SNPs inside
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DARs with highly confident TFBS. To select those confident sites, we established a

threshold  using  the  distribution  of  TFB  scores  in  random regions  around  the

genome. We set the 5% percentile for each transcription factor as the threshold

to use in the DARs found. In those regions over the threshold, we searched for

SNPs overlapping the TFBS and evaluating if the SNPs can potentially disrupt the

motif.  For  this,  we  used  a  whole-genome  resequencing  dataset  previously

generated in the Behavioural Genomics Laboratory (Chapter 5). We only included

SNPs that are in highly conserved positions of the TFBS using custom generated

scripts.

We found 233 SNPs disrupting 130 motifs of TFs (many TF share binding sites) in

183 cis-regulatory elements (Table 3). The GO enrichment of the closest genes to

the  cis-regulatory  elements  identified  are  involved  in  many  of  the  ones

previously identified (Fig 6). Most of the identified cis-regulatory elements are

present in  cluster  N OFF season (TABLE S1).  We also identified cis-regulatory

elements for the other brain regions OFF season (HC = 9, VAH=1). Cis-regulatory

elements of the ON season are mainly in CN (7). VAH and HC have 1 and 2 cis-

regulatory  elements,  respectively.  One module  is  shared for  CN and HC,  and

another shared for CN and VAH. A GO analysis of the ON season cis-regulatory

elements does not give a significant result, due to the limited number of genes.

The integration of  DAR,  TFBS and SNPs  on these regions,  results  in  a region

located inside an intron of the Gene VATL1 (Fig. 7). It is one of the top DARs in

migratory  birds  for  Cluster  N  and  VAH  brain  regions.  This  region  was  not

differentially accessible in the Hippocampus. This region comprises an extended

region  of  approximately  8  kb.  Within  this  region,  there  are  several  potential

motifs for TFs. The low density of SNPs suggests that this is a conserved region.

These findings suggest that the region could be a cis-regulatory module, a cluster

of  cis-regulatory  elements.  CRM  are  sites  for  integration  of  multiple  TF  and

therefore make a complex combinatorial regulation of gene expression [24]. 

Furthermore, this region comprises the majority of motifs for potential TFBS with

SNPs. A total of four SNPs disrupt the predicted motif. This makes this region a

potential source for adaptation at the regulatory level and at the evolutionary

level.
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Figure  7.  Identification  of  a  potential  cis-regulatory  module  involved in  migration. A)

Accessibility  landscape  of  Cluster  N  samples  (OFF  and  ON  season  blue  and  yellow

respectively). The diagram on top illustrates the location of exons of the gene VAT1L. The

height of each landscape represents the number of reads per million in every position of
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the  genome.  The  red  line  indicates  the  location  of  a  highly  differentiated  DAR (also

present in VAH, but absent in Hippocampus). B) Heterozygocity of a panel of 110 whole

genome  resequenced  individuals  across  different  migratory  phenotypes  (Data  from

Chapter 4). The number of heterozygotes for each SNP identified is indicated in the y

axis.  C)  Minor  allele  frequency  in  the  whole  genome  resequencing  panel.  Each  line

represents  a  different  population  with  different  migratory  phenotypes  (Migratory

populations in blues and greens: long distance, medium distance with North West, South

East and South West orientations. Resident populations in warm colors: Southern Spain,

Atlantic islands, Lisbon and North Africa. Short distance South west migratory populations

in pale purple).

When analysing the population data, we found that most of the genotypes in the

SNPs in the TFBS were homozygotes. Indeed, we found that this specific region

has a drop on heterozygosity compared to its surroundings (Fig 7B). However, the

allele frequencies do not show fixation in any population. All  the populations,

except the residents from Islands and residents from the continent, have similar

allele frequencies (Fig 7C). These results suggest that this cis-regulatory module

is  undergoing  a  process  of  underdominance  or  any  other  process  where  the

heterozygotes have very low fitness.

DISCUSSION

It  is  widely  accepted  that  cis-regulatory  elements  can  play  core  roles  that

contribute to adaptation or regulation of complex traits. Here, we have explored

the  contribution  of  these  elements  in  a  complex  trait  as  bird  migration.  We

observed that in birds during the migratory season the chromatin accessibility

changes  for  all  the  regions  and  that  this  difference  is  the  primary  driver  of

variability between our sampling groups. However, we could not identify OCRs

that are exclusive for a particular brain region in either the ON or OFF migratory

states.  Many  elements  might  actually  be  shared  between  brain  regions  and

between different migratory states. 

Importantly, we found that for two of the three brain regions from our study, our

identified  patterns  highlight  repressed  accessibility  and  thus,  activity  during

migration. The pattern is most evident in the Cluster N where many DARs are

148



more accessible in the OFF season birds. This finding was supported by the fact

that the regions more accessible in birds tested during the migratory season, are

enriched for binding motifs of repressors, like ZEB1 and ZEB2 and depending on

the availability of the ligands, Rev-erb a, RAR:RXR, VDR and THR alpha and beta.

This changes the view of migratory behaviour as an activating process, into a

mechanism where many elements must be tightly controlled and repressed to

allow for successful execution and focus of this demanding behaviour. Possibly,

all  the  negatively  regulated  metabolic  processes  and  regulation  of  cell

proliferation and neurogenesis found in the GO enrichment must be controlled to

allow the bird to allocate energy for the demanding process of migration.

One of  the most exciting results  of  our study is  the integration of  regulatory

elements with genomic and evolutionary patterns. With the combination of these

two  components  of  the  regulatory  network,  we  were  able  to  identify  a  cis-

regulatory  module  with  potential  roles  on  migratory  behaviour.  It  is  a  region

highly accessible only during migration that contains potential motifs for TF with

SNPs potentially disrupting the interaction DNA-TF. More importantly, this region

has  a  drop  in  heterozygosity  levels,  which  could  indicate  a  process  of

heterozygote disadvantage or underdominance. Usually, this scenario would lead

to disruptive selection  [25]. However, this is not the case here, as none of the

alleles are entirely fixated in any of the populations studied. It could also suggest

that a potential role for structural rearrangements might be taking  place around

this region. The region found in the VAT1L gene makes part of chromosome 11, a

chromosome that has a structural chromosome variant in blackcaps, potentially

an inversion (data not shown). Very little is known about VAT1L. It is involved in

oxidation-reduction processes, and it is expressed in the brain. A recent single-

cell expression study found this gene as a marker for von Economo neurons, a

specific type of neurons present is some clades of mammals. The presumable

function of this neurons is to allow communication across regions in large brains.

Nothing is yet known about this cell type in birds. However, this cis-regulatory

module could be controlling transcription of not only VAT1L but of many other

genes via long-range interactions. More analysis are needed to shed light into

possible processes in that regard.
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To our knowledge, this is the first study that investigates migratory behaviour

and gene regulation at the cis-regulatory level. Previous studies had a focus on

gene expression in various tissues (liver, heart and blood) of several migratory

bird species[26]–[29]. Two studies focused on changes of gene expression in the

brain using the whole organ[28] or  focal  regions of  the hypothalamus[29].  In

general,  these  studies  identify  genes  that  are  differentially  expressed  during

migratory season in birds of the same population that are required in pathways

related to neurogenesis and synapsis formation. Our GO analysis also suggests

the  regulation  of  cell  proliferation  and  neuron  generation.  Johnston  et  al.

[29] found that  CRABP1 was a hub gene for  a  hypothalamic region  in  birds

tested during migration. This gene is regulated by T3 a thyroid hormone. This

could suggest that although we found a motif enrichment of Thyroid regulators

(THR alpha and beta) in Cluster N during migration, the thyroid pathway might

have an important role in the onset of migration[19]. CRABP1 is also a regulator

of retinoic acid signalling, which again is in line with similar findings of motif

enrichment for VDR and RAR:RXR transcription factors[20], [21]. This might call

attention  to  the  study  of  Thyroid  and  retinoic  acid  pathways  for  migratory

studies, as it is known the role of these pathways in circadian entrainment and

seasonal  neural  plasticity.  (REFs  from paper!!).  We did  not  find any element

related  to  candidate  genes  previously  associated  with  bird  migration  like

ADCYAP1[30] or  CLOCK[31].  Because the associations of  migratory traits with

candidate gene  approaches are purely sequence based, might not be detected

with our approach.  

It is also important to note that our approach has limitations. Our experimental

setup is the best to maintain controlled conditions; however, these might not

confidently represent the whole environmental inputs that birds encounter in the

wild. We are not including other cues that birds might use[32], like polarized light

and other compasses. We are also aware that most of the functions assigned to

the elements found in our study are based on human/mice derived studies. This

might have an implicit bias on our results because the genes found might have

different functions in avian animals.  This  is  also very important for the motif

analysis  performed.  All  the  position  weight  matrices  (PWM) are  derived  from

human or mice backgrounds. Therefore many elements might be missed or prone

to  false  positives.  The  study  of  chromatin  accessibility  must  thus  be  tightly
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coupled  with  gene  expression  analyses  to  get  a  better  assessment  of  the

mechanisms involved in  migration.  This  aids to  confirm how the accessibility

changes influence gene expression. For this reason, future approaches should

integrate studies of gene expression using RNA-seq or similar methods.

Overall, our study gives new insight into the study of genetics, neurobiology and

molecular elements of bird migration behaviour. First, our study gives different

interpretations  of  the  processes  of  how  migration  might  not  indicate  the

activation of elements, but rather the repression of elements that might not be

essential for migration. Secondly, our study supports the analysis of region based

approaches in the brain, because many of the signals found could be masked

when the whole brain is studied. Here, we integrated functional approaches of

chromatin accessibility and resequencing data. This aid to narrow down potential

elements  that  are  going  through  evolutionary  processes  that  shaped  the

migratory behaviour and could give insight on how it appears or disappears along

with the avian clade. Finally, the integration of many sources of evidence from

multiple levels of the regulatory machinery will have a profound impact on the

detection of migratory elements.

METHODS

Bird capture

>  Eurasian  Blackcap  (S.  atricapilla)  juvenile  males,  i.e.  without  migratory

experience were caught with mist nets at the end of the breeding season and

after the post-juvenile moult to allow sex phenotyping (July/August). We caught

birds in two distinct locations Freiburg, Germany (47° 59'49.9 "N 7° 45'58.2 "E)

and Hartberg,  Austria.  Birds  were  kept  and  monitored  for  weight  and  health

status at the catching site in cloth cages for one night prior to transporting them

to  our  animal  housing  facilities  at  the  MPI  for  Evolutionary  Biology  in  Ploen,

Germany. At the facilities,  all  birds were kept in  individual  cages,  were fed a

controlled diet, and experienced a light regime approximated to the region of

origin.

Migratory Phenotyping
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>In  order  to  classify  individuals  as  "during  migration"  (ON)  or  "outside  the

migratory season" (OFF), we quantified migratory restlessness (MR, Zugunruhe)

activity  as  a  proxy  for  migration.  MR  is  a  nocturnal  behaviour  that  caged

migratory birds exhibit during the time their con-specifics in the wild carry out

actual migration. It consists of nocturnal motor activity with specific behavioural

elements, such as nocturnal wing whirring, directed flight and hopping around in

the  cages.  MR is  exclusively  exhibited  during  the  migratory  season,  and  the

timing of MR is in good accordance with the actual timing of migration in wild

con-specifics,  therefore,  serves  as  a  good  proxy  to  characterize  migratory

behaviour in captive conditions [33].

Birds were monitored with individual motion sensors mounted in their individual

cages and behaviour was confirmed through infrared video camera observations.

Birds were classified as OFF-season if  they did not show nocturnal movement

activity for at least five days previous to sacrifice during winter. ON-season birds

were identified if the bird showed consistent nocturnal MR activity for at least 3-4

days  after  a  period  of  inactivity  during  nights  before  sacrifice  during  spring,

identified through change point analysis. (SEE FIG 1). Both, OFF and ON season

birds were sacrificed 1-3 h after light offset simulating the onset of the night as

this species migrates during the night.

Brain regions: Rationale.

>We  dissected  three  focal  brain  areas  assumed  to  play  a  central  role  in

processing information relevant to migratory behaviour: the hippocampus (HC),

the ventral anterior hypothalamus (VAH), and the Cluster N (CN). It has been

extensively indicated that the hippocampus plays a role in navigation and spatial

memory in mammals and birds [34], [35]. Cluster N is a brain region involved in

processing magnetic compass orientation in migratory birds during night vision

[32], [36], [37]. As migration is a behaviour coupled to changes in daylight length

and  circadian  cycle,  several  nuclei  of  the  hypothalamus  are  related  to  gene

expression  changes  during  the  circadian  and  circannual  cycle.  Arguably,  the

Suprachiasmatic nuclei (SCN), located in the (VAH), is the leading region showing

gene expression changes throughout the circadian cycle[38].

Brain microdissection:
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> The brain regions were microdissected right after sacrifice with the following

approach:  the  right  hemisphere  of  the  brain  was  placed  on  a  tissue  slicer

(Stoeling)  with Vetbond 3M tissue adhesive and the medial  part  of  the brain

facing the blade.  Sagittal  sections of  400 um were obtained and placed in a

clockwise fashion on a  Petri  dish  with  ice-cold  PBS with  complete proteinase

inhibitor  cocktail.  From the  most  medial  sections,  the  VAH and the  HC were

obtained.  The  VAH  was  obtained  from  the  tissue  between  the  optical

decussations,  and  the  hippocampus  was  obtained  from the  tissue  above  the

lateral ventricle and 1 to 2 mm before the end of the lateral ventricle. Cluster N

was obtained from more lateral sections (approximately 1.2 cm inside the brain)

obtaining a 3 mm portion of the hyperpallium and the Dorsal mesopallium after

2mm  of  the  lateral  ventricle.  Dissections  were  photo-documented  to  allow

anatomical  assessment.  The  dissected  regions  were  placed  in  separate

Eppendorf tubes, immediately flash frozen in dry ice and stored at -80 C until

ATAC-seq procedure. The average time of the obtained brain regions is around 25

minutes since sacrifice time.

ATAC-seq

>The procedure of  ATAC-seq was  performed following the protocol  for  frozen

sections described on Corces, et al. 2017, based on the principles of Buenrostro

2013[7] with slight modifications. Individual brain sections were slowly thawed in

50  ul  of  homogenization  Buffer  on  ice  during  10  minutes.  The  tissue  was

mechanically disrupted with plastic Eppendorf pestles doing 5 to 8 soft strokes.

The  sample  was  diluted  on  washing  buffer  and  strained.  The  pellet  was

resuspended in  a  buffer with  glucose  to  perform a gradient  to  separate  and

selectively  obtain  nuclei.  The  glucose  gradient  with  the  samples  were

centrifugated at 4500 rpm during 45 minutes in a swinging bucket centrifuge.

After centrifugation, we counted approximately 25000 nuclei, and the pellet was

resuspended  in  a  tagmentation  reaction  using  25ul  of  TD  buffer  and  2ul  of

transposase. The procedure was carried out on a thermomixer at 37C degrees for

30 minutes and stopped with proteinase k. DNA was obtained using the minelute

PCR kit. The number of PCR cycles to amplify the library was optimised for each

region using qPCR. A total of 12 cycles was used for hypothalamus sections and

11 cycles for Cluster N and Hippocampus sections.  Library size selection was

performed  with  AMPure  beads,  and  the  final  library  size  distribution  was
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observed  to  obtain  the  expected  pattern  of  distribution.  The  libraries  were

sequenced on a Next-seq or Hi-seq 4000 machine.

Analysis of ATAC-seq

>Raw  sequences  were  trimmed  with  trimmomatic  with  the  following

specifications NexteraPE-PE.fa:2:30:10 MINLEN:35. Trimmed reads were aligned

to the Blackcap 1.0 reference Genome with bwa mem, using default parameters.

Reads aligning to the mitochondrial genome and reads with a mapping quality

lower than 30 were removed. Optical and PCR duplicate reads were removed

using Picard MarkDuplicates. The final file only kept uniquely aligned paired reads

with a mapping quality higher than 30.

OCR  identification  was  performed  with  MACS2[39] with  the  following

specifications: -g 1e9 --nomodel --shift -100 --extsize 200 --keep-dup all -q 0.05 --

min-length 80. Regions of the genome where enzyme transpositions are more

common  than  the  background,  identify  those  potential  regions  with  more

accessible chromatin. The reproducibility of those OCRs was performed with the

IDR  procedure.  Briefly,  subsamples  for  each  sample  were  taken  using

DownsampleSam from Picard tools with a probability of 0.6. OCRs were called in

this  subsamples  with  the  same  settings  as  above.  The  IDR  procedure  was

performed with a false discovery rate < 0.1.

The  quality  control  for  each sample was  addressed observing  the insert  size

distribution  requiring  that  the  mononucleosome  fraction  was  present.  Reads

inside the OCRs were counted and obtaining a FRiP score > 0.2 was required to

pass QC. The distribution of reads around TSS was also used as a criterion for

QC: the highest point of the read distribution must be close to the TSS and must

be at least one third higher than the lowest point of the distribution. The PCR

bottleneck Coefficient (PBC) and Relative strand cross-correlation (RSC) were also

used as filters for a QC of the samples.

Differentially accessible chromatin Analysis

>To obtain a consensus set of OCRs we obtained only those OCRs overlapping in

3  or  more  samples  of  the  same brain  region  and same migratory  state.  We

obtained a set for each region and one merging the sets for all regions. Then, we
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counted reads for each individual sample on each of those OCRs. We obtained a

matrix of Each OCR and the raw counts for each sample. We used this as an

input for DESeq2.

>The  differential  accessibility  analysis  was  carried  on  in  DESeq2.  First,  we

explored covariates for the whole dataset, including all samples from different

brain areas. We used PCA approach to find high correlations between the two

most  important  PCAs  with  the  covariates:  we  performed  100  permutations

finding that  the correlation between the sequencing machine Hi-seq or  Next-

seq(platform)  and  PC1  was  significant.  We  modelled  the  effect  of  this  batch

effect, adding this as a covariate in the design of the fitting:

Differential accessibility ~ Platform + Migratory_phenotype.

After  the  modelling,  a  regular  binomial  test  was  performed  paired  contrasts

between the OFF and ON groups of the same brain region. After this, we set two

thresholds to define Differentially Accessible Regions. (DARs): a strict threshold

using padjusted value < 0.05 and a Fold change bigger than 2. For the second

threshold, we obtained a distribution of log2Foldchange for random regions of the

genome and selected the 1% top percentile as the Foldchange threshold value.

To  estimate  the  rate  of  false  positives  in  this  approach,  we  permuted  the

migratory status of the samples 100 times and performing the same analysis as

before. We estimated the significance of the permutation following the equation:

times the number of sig genes higher than real data / number of permutations.

Similarly,  we  performed  the  same  analysis  for  randomly  shuffled  regions  as

random OCRs to find the rate of what would be regions expected by chance to be

differentially accessed. To eliminate any possible effect of outliers, we performed

a Jackknife (or Leave one out – LOO - ) approach and analysed the distribution of

Foldchanges  afterwards,  checking  that  the  distribution  is  not  different  by

performing a Mann-Whitney-U test.

Annotation

155



For any given set of OCRs, we annotated where in the genome are the OCRs

located and if there is any enrichment of the prefered location in the genome. To

do this, we obtained the sum of bases overlapping between the OCR and the

genomic feature OVER the length of the genomic feature. The features included

are exon, intron, gene body(introns + exons), Repeats, Promoters(TSS – 2kb) and

intergenic regions.

Gene ontology (GO) enrichment

The  functional  annotation  of  any  OCR  was  associated  to  the  closest  gene

downstream. The GO enrichment was performed with enricher[40] having the

human  genome  as  a  background.  All  the  enrichments  are  based  on  GO

annotation for biological function, molecular function and cell compartment.

Transcription factor scanning:

We used the motifs from JASPAR [17] to scan for potential TFBS inside any given

set of OCRs. We obtained a null distribution of TFBS scores along the genome by

scanning 100000 randomly placed OCRs and establishing an alfa of 0.05 for each

Transcription factor. Only the OCRs that had a TFBS score inside the 0.05 alfa

were taken as potential TFBS. To evaluate if our OCRs have significant differences

in  the  potential  TFBS  we  performed  a  scan  of  414  TFs  in  the  differentially

accessible  regions  of  each  brain  region  and  migratory  state  compared  to  a

background of the OCRs from the same region. We assessed the significance with

a binomial test implemented in HOMER[41] .

Genetic associations with Regulatory regions.

We  used  the  resequencing  data  from 110  individuals,  including  the  different

migratory phenotypes,  previously  published in our group.  We identified which

SNPs were overlapping with the significant  TFBS previously identified (see TF

scanning section). We used bedtools and a custom script to obtain only those

SNPs that affected very conserved regions of the motifs. For the focal study of

the region in VAT1L,  we used PLINK 1.90  [42]to calculate  heterozygosity  and

Minor Allele Frequencies (MAF).
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Figure 1S1. Insert size distribution and frequency of reads around TSS for every 

sample passing quality control in this work. A) Insert size distribution showing the

presence of mono-nucleosomes (and dinucleosomes). B) Heatmaps showing the 

frequency of reads +/- 1000 bp around the TSS for each brain region and 

experimental condition. All the samples of the same brain region are set to scale.
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Figure  1S2.Sample  replicability.  Correlation  of  counts  per  million  (CPM)

normalized reads in windows of  10kb along the genome. A)  Shows panels  of

different pairs of samples. i)correlation of a sample with background (BACK_62).

Correlation  of  reads  of  samples  of  different  brain  region  (hippocampus)  with

different experimental gorups ii) OFF and iii) ON). iv) Correlation of Samples of

the same brain region and same experimental group. B) Density plot of pairwise

correlations between samples of the groups indicated on the left. Comparisons of

samples against the background/naked DNA are indicated in the red distribution.

The  dashed  line  indicates  the  average  of  correlation  of  samples  against  the

Backgrounds (mean =0.62) 
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Figure 2S1. Replicability of peaks between samples.  Every point indicates the

proportion of peaks that are replicated in “n” number of samples (x axis) A value

of 1 indicates that 100% of the peaks in one sample are replicated in at least “n”

samples. The overlap is performed with the total number of samples included in

the study (left panels,  n=32),  and the sample inside the groups (right panel.

Number of samples per experimental condition (ON and OFF) and brain region:

VAH n=3, CN n=7 HC n=6).Blue and yellow panels indicate OFF and ON season

samples, respectively.
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Figure 4S1. Principal Component Analysis for a set of 30000 randomly placed 

peaks. The same procedure as in Fig 4 was performed. 
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Figure 4S2. Permutation analysis  of  PC1.  Permutations of  the migratory  state

were performed 100 times to obtain a distribution random of values on the PC1.

Boxplots  show  the  distribution  of  PC1  values  for  each  sample  (includes  all

samples  n  =  32).  Values  of  PC1  for  the  permutations  and  the  ON  or  OFF

experimental groups are represented in the boxes on the left. Boxes on the right,

represent the distribution of the real dataset. The ON and OFF assignments of the

real data has significantly different variances (**Levene test  p val <0.05).
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Figure 5S1. Distribution of P-values for 20 permutations of the migratory status in samples of Cluster N and Hippocampus (VAH does 

not have a distribution of p-values, not many DARs). The gray histogram represents the distribution of the real dataset. All colored 

lines indicate density plots of permutations.
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Figure 5S2. Distribution of Foldchanges for jackknifed (Leave One Out - LOO) and real datasets of Cluster N, Hippocampus and VAH. 

Gray distribution indicates real dataset, and lines indicate permutations. Mann whitney U test pval > 0.1 in all comparisons.
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Figure 5S3 Distribution of Fold change for Random regions and the real dataset. The gray histogram represents the distribution of 

Fold change in the OCRs identified. All colored lines indicate density plots of Randomly placed regions. The dashed line indicates the 

empirical threshold for each brain region. It is the top and bottom 2.5% percentiles, based on the distribution of fold changes for 

random regions. 
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Figure 5S4. Maplots for Cluster N samples compared to Background samples. The left panel shows the MA plot for a differential 

Accessibility analysis comparing all Cluster N OFF season samples versus background samples. The left panel shows the same 

procedure for All Cluster N ON season samples versus background samples.  
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Supplementary Table 1. significant disrupted TFBS. Motifs located in DARs 

with Single nucleotide Polymorphisms potentially disrupting the 

interaction. Each SNP indicated is located in a DAR of the group indicated 

in the column “Region”.  The closest gene to the DAR and the potential TF 

for which the motif is potentially disrupted is indicated
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Scaffold SNP Putative Transcription factor affected Closest gene Region
Super-Scaffold_67 27808353 Bapx1_Homeobox_VertebralCol-Bapx1 ADAM12 CN_OFF
Super-Scaffold_67 27809077 Nkx3.1_Homeobox_LNCaP-Nkx3.1 ADAM12 CN_OFF
Super-Scaffold_35 4079108 Sox10_HMG_SciaticNerve-Sox3 AFAP1 CN_OFF
Super-Scaffold_10 12472208 EWS_FLI1-fusion_ETS_SK_N_MC-EWS_FLI1 AFF1 CN_OFF
Super-Scaffold_22 3665246 ERG_ETS_VCaP-ERG AGFG1 CN_OFF
Super-Scaffold_37 30298158 STAT6_Stat_Macrophage-Stat6 AKAP17A CN_OFF
Super-Scaffold_67 6064204 Oct6_POU ANXA11 CN_OFF
Super-Scaffold_67 6064214 Brn1_POU ANXA11 CN_OFF
Super-Scaffold_67 6064912 Tbx21_T-box_GM12878-TBX21 ANXA11 CN_OFF
Super-Scaffold_65 9191764 RBPJ_Ebox_?_bHLH_Panc1-Rbpj1 APBB2 CN_OFF
Super-Scaffold_65 9191777 Meis1_Homeobox_MastCells-Meis1 APBB2 CN_OFF
Super-Scaffold_65 9192128 PU.1-IRF_ETS_IRF_Bcell-PU.1 APBB2 CN_OFF
Super-Scaffold_65 9233032 Sox9_HMG_Limb-SOX9 APBB2 CN_OFF
Super-Scaffold_17 19291613 EHF_ETS_LoVo-EHF ARHGAP18 CN_OFF
Super-Scaffold_41 2260148 NFkB-p65_RHD_GM12787-p65 ARHGAP29 CN_OFF
Super-Scaffold_41 2260683 Eomes_T-box_H9-Eomes ARHGAP29 CN_OFF
Super-Scaffold_80 10434060 ZNF519_Zf_HEK293-ZNF519.GFP ARL6 CN_OFF
Super-Scaffold_32 12142163 EBF2_EBF_BrownAdipose-EBF2 ARNT2 CN_OFF
Super-Scaffold_65 8608184 Nkx6.1_Homeobox_Islet-Nkx6.1 ATP8A1 CN_OFF
Super-Scaffold_41 2445071 bZIP:IRF_bZIP BCAR3 CN_OFF
Super-Scaffold_80 3955219 ZEB1_Zf_PDAC-ZEB1 C21orf91 CN_OFF
Super-Scaffold_80 3955790 PRDM10_Zf_HEK293-PRDM10.eGFP C21orf91 CN_OFF
Super-Scaffold_30 44227057 Meis1_Homeobox_MastCells-Meis1 C6orf62 CN_OFF
Super-Scaffold_40 22296239 RARa_NR_K562-RARa CALCR CN_OFF
Super-Scaffold_30 58722338 E2A_bHLH_proBcell-E2A CDH2 CN_OFF
Super-Scaffold_67 4006960 Hoxd13_Homeobox_ChickenMSG-Hoxd13.Flag CDHR1 CN_OFF
Super-Scaffold_56 11783085 RARa_NR_K562-RARa CELF2 CN_OFF
Super-Scaffold_56 12002481 WT1_Zf_Kidney-WT1 CELF2 CN_OFF
Super-Scaffold_37 38117898 bZIP:IRF_bZIP CHAMP1 CN_OFF
Super-Scaffold_30 1227698 E2A_bHLH_proBcell-E2A CLASP2 CN_OFF
Super-Scaffold_30 1256903 GATA3_Zf_iTreg-Gata3 CLASP2 CN_OFF
Super-Scaffold_8 3087701 Sox9_HMG_Limb-SOX9 CLCN4 CN_OFF
Super-Scaffold_40 40030806 Nkx2.2_Homeobox_NPC-Nkx2.2 CMTM7 CN_OFF
Super-Scaffold_67 8786660 COUP-TFII_NR_K562-NR2F1 COMTD1 CN_OFF
Super-Scaffold_30 81237623 Lhx2_Homeobox_HFSC-Lhx2 CPQ CN_OFF
Super-Scaffold_80 10784816 FOXK2_Forkhead_U2OS-FOXK2 CREG1 CN_OFF
Super-Scaffold_17 69984440 MafB_bZIP_BMM-Mafb CTSB CN_OFF
Super-Scaffold_37 31672534 Nanog_Homeobox_mES-Nanog CYFIP1 CN_OFF
Super-Scaffold_48 6908699 Sp2_Zf_HEK293-Sp2.eGFP CYP2D49 CN_OFF
Super-Scaffold_10 25911293 Tbx20_T-box_Heart-Tbx20 CYP2U1 CN_OFF
Super-Scaffold_30 91941943 Egr1_Zf_K562-Egr1 DERL1 CN_OFF
Super-Scaffold_30 91942035 Eomes_T-box_H9-Eomes DERL1 CN_OFF
Super-Scaffold_22 426707 Hoxa13_Homeobox_ChickenMSG-Hoxa13.Flag DLG1 CN_OFF
Super-Scaffold_30 54694477 AR-halfsite_NR_LNCaP-AR DLGAP1 CN_OFF
Super-Scaffold_37 4426325 EBF1_EBF_Near-E2A DNAJC15 CN_OFF
Super-Scaffold_30 47799321 STAT6_Stat_CD4-Stat6 DOK6 CN_OFF
Super-Scaffold_30 47931107 Sox10_HMG_SciaticNerve-Sox3 DOK6 CN_OFF
Super-Scaffold_30 47931356 CArG_MADS_PUER-Srf DOK6 CN_OFF
Super-Scaffold_40 6015636 Tgif2_Homeobox_mES-Tgif2 DPP6 CN_OFF
Super-Scaffold_41 1331100 bZIP:IRF_bZIP DPYD CN_OFF
Super-Scaffold_41 1528868 Arnt_Ahr_bHLH_MCF7-Arnt DPYD CN_OFF
Super-Scaffold_30 61358525 bZIP:IRF_bZIP DTNA CN_OFF
Super-Scaffold_17 69809075 ZNF264_Zf_HEK293-ZNF264.GFP EFHC1 CN_OFF
Super-Scaffold_24 10488641 Bcl6_Zf_Liver-Bcl6 EHBP1 CN_OFF
Super-Scaffold_22 5671428 Tbx5_T-box_HL1-Tbx5.biotin EPHA4 CN_OFF
Super-Scaffold_32 12325129 CDX4_Homeobox_ZebrafishEmbryos-Cdx4.Myc FAH CN_OFF
Super-Scaffold_67 1663940 Unknown_Homeobox_Limb-p300 FAM13C CN_OFF
Super-Scaffold_94 1042215 Hoxa11_Homeobox_ChickenMSG-Hoxa11.Flag FBXO7 CN_OFF
Super-Scaffold_10 29945123 CRX_Homeobox_Retina-Crx FHDC1 CN_OFF
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Super-Scaffold_8 4203934 ZEB2_Zf_SNU398-ZEB2 FRMPD4 CN_OFF
Super-Scaffold_65 7451386 CEBP_CEBP_bZIP_MEF-Chop GABRA2 CN_OFF
Super-Scaffold_65 7454413 Rfx1_HTH_NPC-H3K4me1 GABRA2 CN_OFF
Super-Scaffold_65 7504361 Hoxa13_Homeobox_ChickenMSG-Hoxa13.Flag GABRA2 CN_OFF
Super-Scaffold_47 2044053 Hoxa13_Homeobox_ChickenMSG-Hoxa13.Flag GALC CN_OFF
Super-Scaffold_47 2044202 bZIP:IRF_bZIP GALC CN_OFF
Super-Scaffold_10 36693962 CRX_Homeobox_Retina-Crx GALNT7 CN_OFF
Super-Scaffold_10 36694366 TATA-Box_TBP_Promoter GALNT7 CN_OFF
Super-Scaffold_10 36694470 Sox10_HMG_SciaticNerve-Sox3 GALNT7 CN_OFF
Super-Scaffold_26 780791 Zic3_Zf_mES-Zic3 GAPVD1 CN_OFF
Super-Scaffold_17 66375016 Brn1_POU GCFC2 CN_OFF
Super-Scaffold_17 66375074 Brn1_POU_Homeobox_NPC-Brn1 GCFC2 CN_OFF
Super-Scaffold_72 2480791 Hoxa13_Homeobox_ChickenMSG-Hoxa13.Flag GET4 CN_OFF
Super-Scaffold_12 8895011 p63_p53_Keratinocyte-p63 GPC3 CN_OFF
Super-Scaffold_46 23586736 AR-halfsite_NR_LNCaP-AR GRIP1 CN_OFF
Super-Scaffold_46 23632104 Tbx21_T-box_GM12878-TBX21 GRIP1 CN_OFF
Super-Scaffold_46 23632109 Tbet_T-box_CD8-Tbet GRIP1 CN_OFF
Super-Scaffold_56 9959304 Brn1_POU GRM3 CN_OFF
Super-Scaffold_76 16135605 ARE_NR_LNCAP-AR GRM5 CN_OFF
Super-Scaffold_56 5482772 Fox_Ebox_Forkhead_bHLH_Panc1-Foxa2 GSAP CN_OFF
Super-Scaffold_17 49936095 Tbx5_T-box_HL1-Tbx5.biotin GSTA1 CN_OFF
Super-Scaffold_1 5224092 Bcl6_Zf_Liver-Bcl6 GTF2H1 CN_OFF
Super-Scaffold_47 11267449 Isl1_Homeobox_Neuron-Isl1 HEATR5A CN_OFF
Super-Scaffold_47 11267691 Brn1_POU HEATR5A CN_OFF
Super-Scaffold_30 4367357 Sox9_HMG_Limb-SOX9 HECW1 CN_OFF
Super-Scaffold_17 21050214 THRb_NR_Liver-NR1A2 HEY2 CN_OFF
Super-Scaffold_67 23849978 Nanog_Homeobox_mES-Nanog HSPA12A CN_OFF
Super-Scaffold_56 10270876 NFAT_AP1_RHD_bZIP_Jurkat-NFATC1 HSPA14 CN_OFF
Super-Scaffold_17 49909016 GLIS3_Zf_Thyroid-Glis3.GFP ICK CN_OFF
Super-Scaffold_17 49909176 GATA3_Zf_iTreg-Gata3 ICK CN_OFF
Super-Scaffold_89 6585905 Brn1_POU IP6K2 CN_OFF
Super-Scaffold_30 71597866 Nkx2.1_Homeobox_LungAC-Nkx2.1 KCNB2 CN_OFF
Super-Scaffold_10 48377895 KLF3_Zf_MEF-Klf3 KDM3A CN_OFF
Super-Scaffold_10 34023853 RUNX2_Runt_PCa-RUNX2 KLHL2 CN_OFF
Super-Scaffold_73 4330760 Nkx2.5_Homeobox_HL1-Nkx2.5.biotin LGMN CN_OFF
Super-Scaffold_17 44539163 E2F3_E2F_MEF-E2F3 LMBRD1 CN_OFF
Super-Scaffold_103 11303693 Gata1_Zf_K562-GATA1 LOC100859020 CN_OFF
Super-Scaffold_8 13900637 PR_NR_T47D-PR LOC101816675 CN_OFF
Super-Scaffold_30 39784298 Oct6_POU LPCAT1 CN_OFF
Super-Scaffold_56 15795412 GFY_?_Promoter LRGUK CN_OFF
Super-Scaffold_55 1429916 Mef2b_MADS_HEK293-Mef2b.V5 LRRC4C CN_OFF
Super-Scaffold_37 39052930 Pitx1_Homeobox_Chicken-Pitx1 MCF2L CN_OFF
Super-Scaffold_17 69766567 E2F1_E2F_Hela-E2F1 MCM3 CN_OFF
Super-Scaffold_73 17217046 Arnt_Ahr_bHLH_MCF7-Arnt Meis2a.1 CN_OFF
Super-Scaffold_103 5859145 Pitx1_Homeobox_Chicken-Pitx1 MGAT5 CN_OFF
Super-Scaffold_103 5859367 Hoxa11_Homeobox_ChickenMSG-Hoxa11.Flag MGAT5 CN_OFF
Super-Scaffold_8 3361606 GATA3_Zf_iTreg-Gata3 MID1 CN_OFF
Super-Scaffold_10 34091858 Tgif1_Homeobox_mES-Tgif1 MSMO1 CN_OFF
Super-Scaffold_67 20689748 Smad4_MAD_ESC-SMAD4 MXI1 CN_OFF
Super-Scaffold_80 841383 Nkx2.1_Homeobox_LungAC-Nkx2.1 MYH15 CN_OFF
Super-Scaffold_80 841604 AR-halfsite_NR_LNCaP-AR MYH15 CN_OFF
Super-Scaffold_103 18772121 CDX4_Homeobox_ZebrafishEmbryos-Cdx4.Myc MYO3B CN_OFF
Super-Scaffold_103 18809436 Tgif1_Homeobox_mES-Tgif1 MYO3B CN_OFF
Super-Scaffold_32 8475886 BMAL1_bHLH_Liver-Bmal1 MYO5A CN_OFF
Super-Scaffold_54 4015620 Fox_Ebox_Forkhead_bHLH_Panc1-Foxa2 NCAPD3 CN_OFF
Super-Scaffold_10 35451995 Bcl6_Zf_Liver-Bcl6 NEK1 CN_OFF
Super-Scaffold_10 30851564 PAX5_Paired_Homeobox_GM12878-PAX5 NPY2R CN_OFF
Super-Scaffold_10 14138597 CDX4_Homeobox_ZebrafishEmbryos-Cdx4.Myc NR3C2 CN_OFF
Super-Scaffold_47 1031335 Nanog_Homeobox_mES-Nanog NRDE2 CN_OFF
Super-Scaffold_30 92842491 Znf263_Zf_K562-Znf263 NSMCE2 CN_OFF
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Super-Scaffold_40 18198969 Oct6_POU NSUN6 CN_OFF
Super-Scaffold_67 27164366 Atf1_bZIP_K562-ATF1 OAT CN_OFF
Super-Scaffold_10 35284543 Rfx6_HTH_Min6b1-Rfx6.HA PALLD CN_OFF
Super-Scaffold_1 7313940 Oct6_POU PDE3B CN_OFF
Super-Scaffold_40 21882437 Znf263_Zf_K562-Znf263 PEX1 CN_OFF
Super-Scaffold_67 10770104 ZNF467_Zf_HEK293-ZNF467.GFP PIK3AP1 CN_OFF
Super-Scaffold_48 7422537 ELF5_ETS_T47D-ELF5 PLBD1 CN_OFF
Super-Scaffold_103 27105304 AR-halfsite_NR_LNCaP-AR PLCL1 CN_OFF
Super-Scaffold_46 4489290 CRX_Homeobox_Retina-Crx PLEKHA5 CN_OFF
Super-Scaffold_1 6186311 SCL_bHLH_HPC7-Scl PLEKHA7 CN_OFF
Super-Scaffold_1 6186895 NeuroG2_bHLH_Fibroblast-NeuroG2 PLEKHA7 CN_OFF
Super-Scaffold_35 3108361 bZIP:IRF_bZIP PPP2R2C CN_OFF
Super-Scaffold_48 3930150 ZNF7_Zf_HepG2-ZNF7.Flag PTN CN_OFF
Super-Scaffold_24 3708663 KLF14_Zf_HEK293-KLF14.GFP PUS10 CN_OFF
Super-Scaffold_35 867260 HIF-1b_HLH_T47D-HIF1b RAB28 CN_OFF
Super-Scaffold_10 32302962 TEAD1_TEAD_HepG2-TEAD1 RAPGEF2 CN_OFF
Super-Scaffold_10 32362595 Bcl11a_Zf_HSPC-BCL11A RAPGEF2 CN_OFF
Super-Scaffold_67 5563401 Oct2_POU RASGEF1A CN_OFF
Super-Scaffold_10 48377895 KLF3_Zf_MEF-Klf3 REEP1 CN_OFF
Super-Scaffold_55 7868804 Foxa2_Forkhead_Liver-Foxa2 RGS6 CN_OFF
Super-Scaffold_22 3908653 Gata1_Zf_K562-GATA1 RHBDD1 CN_OFF
Super-Scaffold_17 39308802 THRa_NR_C17.2-THRa RWDD2A CN_OFF
Super-Scaffold_73 3586782 Oct2_POU SERPINA10 CN_OFF
Super-Scaffold_103 22280670 Tgif1_Homeobox_mES-Tgif1 SESTD1 CN_OFF
Super-Scaffold_10 35361750 Olig2_bHLH_Neuron-Olig2 SH3RF1 CN_OFF
Super-Scaffold_10 35361752 Olig2_bHLH_Neuron-Olig2 SH3RF1 CN_OFF
Super-Scaffold_65 6775973 Gata4_Zf_Heart-Gata4 SLAIN2 CN_OFF
Super-Scaffold_73 364112 AR-halfsite_NR_LNCaP-AR SLC25A29 CN_OFF
Super-Scaffold_41 122424 Hoxa13_Homeobox_ChickenMSG-Hoxa13.Flag SLC44A5 CN_OFF
Super-Scaffold_46 16658093 Bapx1_Homeobox_VertebralCol-Bapx1 SLC6A15 CN_OFF
Super-Scaffold_46 16658094 Bapx1_Homeobox_VertebralCol-Bapx1 SLC6A15 CN_OFF
Super-Scaffold_10 15959490 SPDEF_ETS_VCaP-SPDEF SMARCA5 CN_OFF
Super-Scaffold_10 15961393 Otx2_Homeobox_EpiLC-Otx2 SMARCA5 CN_OFF
Super-Scaffold_46 13479029 DMRT1_DM_Testis-DMRT1 SOCS2 CN_OFF
Super-Scaffold_30 92717024 Zac1_Zf_Neuro2A-Plagl1 SQLE CN_OFF
Super-Scaffold_20 1683974 Rfx6_HTH_Min6b1-Rfx6.HA SS18L1 CN_OFF
Super-Scaffold_10 1120268 THRa_NR_C17.2-THRa STXBP5L CN_OFF
Super-Scaffold_35 8394775 PU.1-IRF_ETS_IRF_Bcell-PU.1 TBC1D19 CN_OFF
Super-Scaffold_17 3911872 GLIS3_Zf_Thyroid-Glis3.GFP TBCE CN_OFF
Super-Scaffold_40 25815159 NFIL3_bZIP_HepG2-NFIL3 THSD7A CN_OFF
Super-Scaffold_10 13819879 Zfp809_Zf_ES-Zfp809 TMEM184C CN_OFF
Super-Scaffold_10 13820314 EBF1_EBF_Near-E2A TMEM184C CN_OFF
Super-Scaffold_73 19911957 Atf3_bZIP_GBM-ATF3 TMEM229B CN_OFF
Super-Scaffold_73 19912646 Smad3_MAD_NPC-Smad3 TMEM229B CN_OFF
Super-Scaffold_31 3923621 OCT_OCT_POU_Homeobox_NPC-OCT6 TSPAN12 CN_OFF
Super-Scaffold_31 3924296 Olig2_bHLH_Neuron-Olig2 TSPAN12 CN_OFF
Super-Scaffold_31 3924640 TEAD1_TEAD_HepG2-TEAD1 TSPAN12 CN_OFF
Super-Scaffold_1 1933844 Znf263_Zf_K562-Znf263 TSPAN4 CN_OFF

Super-Scaffold_103 29277234 Oct6_POU TSSK6 CN_OFF
Super-Scaffold_103 29285265 NFkB-p65_RHD_GM12787-p65 TSSK6 CN_OFF
Super-Scaffold_30 19850211 PAX3_FKHR-fusion_Paired_Homeobox_Rh4-PAX3_FKHR TUBB2B CN_OFF
Super-Scaffold_31 725876 Pitx1_Homeobox_Chicken-Pitx1 TUBGCP6 CN_OFF
Super-Scaffold_65 3755292 Tcf7_HMG_GM12878-TCF7 TUSC3 CN_OFF
Super-Scaffold_30 62019145 LRF_Zf_Erythroblasts-ZBTB7A UBE2V2 CN_OFF
Super-Scaffold_30 62019074 Elk1_ETS_Hela-Elk1 UBE2V2 CN_OFF
Super-Scaffold_10 22297337 Fox_Ebox_Forkhead_bHLH_Panc1-Foxa2 UNC5C CN_OFF
Super-Scaffold_67 8823484 Smad4_MAD_ESC-SMAD4 VDAC2 CN_OFF
Super-Scaffold_67 8823575 PBX2_Homeobox_K562-PBX2 VDAC2 CN_OFF
Super-Scaffold_76 5165505 Oct4_Sox17_POU_Homeobox_HMG_F9-Sox17 WASF3 CN_OFF
Super-Scaffold_10 45962192 Egr1_Zf_K562-Egr1 WHSC1 CN_OFF
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PART III
PREFACE

Hybrid zones have been a long-standing feature of interest to study evolution

because they represent a window in time of to evaluate what are the processes

that differentiate populations.  At the same time also represent the setup  to

study characteristics gene flow between populations and fitness consequences

for hybrids. With the increasing availability of genomic resequencing studies of

hybrid zones, there is evidence of the role of introgression patterns for barrier

loci or adaptations and the potential evolutionary outcomes of gene flow across

hybrid  zones  (hybrid  speciation,  adaptive  introgression  or  extinction  via

hybridzation).

Nonetheless,  all  the  approaches  so  far,  take  only  into  account  pairs  of

populations in the same or very closely related species. But could we draw any

patterns of parallelism in the genomic differentiation of different hybrid zones in

different species? We researched this question looking for correlated patterns of

divergence in eight pairs of songbird populations in hybrid zones. Songbirds are

an ideal  model for this question, because the genomes of  the avian clade is

highly  conserved  in  features  like  chromosome  numbers,  recombination  and

macro synteny. We calculated windowed estimates of divergence (FST and  dXY)

and its correlation in the different pairs. Our results showed that the degree of

repeatability depend on two main factors: the divergence estimator (i.e,  FST or

dXY) and the pair location along the speciation continuum.
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Table S1. Datasets included in the present study.
Species Ficedula 

flycatchers
Corvus crows Phylloscopus 

greenish 
warblers

Catharus 
thrushes

Phylloscopus 
willow 
warblers

Saxicola 
stonechats

Sylvia blackcaps Vermivora 
warblers

Pair Collared and 
pied (F. albicollis
and hypoleuca) 

Hooded and 
carrion (C. 
corone orone 
and C. c. 
cornix) 

Eastern and 
western (P. 
tochiloides 
plumbeitarsus 
and P. t. 
viridanus)

Coastal and 
inland 
(Catharus 
ustulatus 
ustulatus and 
C. u. 
swainsoni)

Southern and 
northers (P. 
trochilus 
trochilus and 
P. t. acredula)

European 
and Siberian
(S. rubicola 
and S. 
maurus)

German and 
Austrian 
populations 
(Sylvia 
atricapilla)

Blue- and 
golden-
winged (V. 
cyantopter
a and V. 
chrysopter
a)

Resequencin
g data

WGS data from 
four populations 
(n=20/populatio
n)

WGS data from
two 
populations 
(n=15/populati
on) 

GBS data from 
34 and 19 birds,
respectively

WGS poolseq 
data from 2 
populations 
(n=10/populati
on)

WGS data 
from two 
populations 
(n=9/populatio
n)

WGS 
poolseq 
data (n=49 
[European] 
and 
52[Siberian]
)

WGS data from 
two populations 
(n=15/population
)

Accession 
numbers

ENA PRJEB7359; 
Genbank 
AGT002000000

SRA 
PRJNA192205

SRA 
SRR1176844; 
DDBJ/ENA/GenB
ank 
LYPA00000000

SRA 
PRJNA275819

SRP074112 ENA 
PRJEB19452
; 
PRJEB19453

https://
www.zoology.
ubc.ca/
~kdelmore/; 
Dryad upon 
acceptance.

PRJNA3251
26; 
PRJNA3251
57 

References Burri et al. 2015
Kawakami et al. 
2014

Poelstra et al. 
2014

Alcaide et al. 
2014; Irwin et 
al. 2016

Delmore et al. 
2015

Lundberg et 
al. 2017 

Van Doren 
et al. 2017 

Delmore et al. in 
prep

Toews et al.
2016

Table S2. Summary of final consensus sequences included in the present study. The length of each chromosome is provided along with the percentage of 
the flycatcher chromosome it covers. Lengths are the number of base pairs in the consensus without gaps of Ns. Macrochromosomes are those greater 
than 40 Mb and microchromosomes those less than 20 Mb. 
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chr flycatcher blackcap crow blue/gold willow thrush greenish stonechat 

 length length % length % length % Length % length % length % length %

1 120002344 90136271 75.1 59620835 49.7 95993241 80.0 54058012 45.0 97347748 81.1 97683349 81.4 102066987 85.1

1A 74947036 48879787 65.2 40202034 53.6 57498691 76.7 57749718 77.1 58550819 78.1 61028700 81.4 63356200 84.5

2 157563209 132248109 83.9 73562279 46.7
12279973

3 77.9
11695765

9 74.2
12939797

5 82.1
13074616

1 83.0 117858622 74.8

3 115844353 96698794 83.5 75853557 65.5 90728830 78.3 92584803 79.9 96761318 83.5 97746071 84.4 97985779 84.6

4 70439523 52016224 73.8 60250282 85.5 56882071 80.8 37147958 52.7 58149848 82.6 59354464 84.3 62340083 88.5

4A 21182716 16026903 75.7 17022485 80.4 15762793 74.4 15154164 71.5 15488001 73.1 14334247 67.7 18296289 86.4

5 64724594 49907695 77.1 52762582 81.5 48862770 75.5 54367822 84.0 51849320 80.1 53034140 81.9 56805964 87.8

6 37227452 31384756 84.3 25164402 67.6 30082679 80.8 29498648 79.2 30044214 80.7 30396279 81.7 33408554 89.7

7 39412007 34094738 86.5 33361110 84.6 31303551 79.4 34263494 86.9 32013904 81.2 33078282 83.9 34858256 88.4

8 32100816 22935871 71.4 27830922 86.7 26078388 81.2 28020258 87.3 25395769 79.1 26648552 83.0 28513982 88.8

9 26793321 22576347 84.3 22910380 85.5 21086208 78.7 21779656 81.3 20931760 78.1 21800432 81.4 21898138 81.7

10 21346708 17924858 84.0 16798936 78.7 16978521 79.5 17865715 83.7 16663500 78.1 17498509 82.0 18776919 88.0

11 21727166 18258423 84.0 12507783 57.6 17216928 79.2 18746169 86.3 16691697 76.8 17523717 80.7 19428494 89.4

12 21938106 18236025 83.1 18666245 85.1 17207319 78.4 18665559 85.1 17090405 77.9 17265384 78.7 19429616 88.6

13 18641552 15235186 81.7 14485192 77.7 14290123 76.7 14820107 79.5 13540864 72.6 14345885 77.0 16149134 86.6

14 17374186 14026179 80.7 14416366 83.0 13296177 76.5 13987910 80.5 12888791 74.2 13233457 76.2 15145780 87.2

15 14943019 12117646 81.1 9640549 64.5 11301992 75.6 12105690 81.0 10698802 71.6 10643530 71.2 12836525 85.9

17 12378331 9789432 79.1 9758513 78.8 7512843 60.7 9969948 80.5 8307378 67.1 8957804 72.4 10137087 81.9

18 13163162 9605582 73.0 7496181 56.9 8062768 61.3 9676338 73.5 8554042 65.0 8166354 62.0 10117730 76.9

19 11933672 9561990 80.1 9593105 80.4 8425778 70.6 9775189 81.9 8406962 70.4 8779264 73.6 10234172 85.8

20 15675940 12527461 79.9 12566710 80.2 11973761 76.4 12967530 82.7 11239349 71.7 12053729 76.9 12804409 81.7

21 8073070 5742695 71.1 5944624 73.6 4230261 52.4 5818547 72.1 4709579 58.3 5100060 63.2 6288065 77.9

22 5733621 2396835 41.8 3162411 55.2 1871261 32.6 2718128 47.4 2053051 35.8 1540315 26.9 3592435 62.7

23 7944683 5308793 66.8 5126807 64.5 4132107 52.0 4646607 58.5 3739029 47.1 3522204 44.3 5559624 70.0

24 8009359 5796045 72.4 5988272 74.8 5037427 62.9 5997533 74.9 4496957 56.1 4707706 58.8 6516443 81.4

25 2802420 1025451 36.6 963319 34.4 721357 25.7 978166 34.9 682990 24.4 369145 13.2 1215130 43.4

26 7653694 4938326 64.5 4968167 64.9 3648646 47.7 4565093 59.6 3510613 45.9 3577204 46.7 3938873 51.5

27 5572044 3195560 57.3 3092758 55.5 2563901 46.0 3153518 56.6 2546310 45.7 2545477 45.7 3727994 66.9

28 6182350 3690716 59.7 3728152 60.3 2782648 45.0 3995888 64.6 2898680 46.9 2931216 47.4 4436153 71.8

Z 59856998 45300926 75.7 37259879 62.2 46372801 77.5 45029809 75.2 47742596 79.8 48790136 81.5 48563346 81.1
Tota
l 1041187452 811583624 77.9

68470483
7 65.8

7947055
74

76.
3

75706563
6

72.
7

81239227
1

78.
0

82740177
3 79.5 866286783 83.2
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Table S3. Summarizing repeatability in genomic differentiation across pairs using outlier status of windows and observed values of 
overlap. Values in (a) are z-scores, comparing the number of outlier windows that were shared across each comparison to the mean 
expected number obtained using the hypergeometric distribution. Z-scores are effect sizes that indicate how many standard deviations 
the observed value is beyond the mean expected value. Values in (b) are based on the same outlier windows, but combining strings of 
outliers into peaks and expressing estimates of overlap as the total number of shared peaks in the comparison divided by the total 
number of unique peaks in the comparison. Results for FST are shown below the diagonal and dXY above (not estimated for greenish 
warbelrs).
a)

Flycatcher Crows Willows Blackcaps Greenish Stonechats Thrushes Blue/gold
Flycatcher 0.92 0.40 1.23 3.56*** 1.30 0.62
Crows 0.22 0.25 1.60* 1.60* 1.60* 0.55
Willows -0.44 -0.39 2.35* 0.77 1.98* 2.20**
Blackcaps -0.22 0.06 0.72 2.96*** 4.24*** 4.01***
Greenish 2.16* 0.39 -0.06 0.22
Stonechats 1.88* 0.61 0.17 -0.11 1.22 4.76*** 1.07
Thrushes 1.00 -0.17 1.33 0.39 0.78 1.50 2.58***
Blue/gold -0.55 0.17 1.33 0.66 0.55 -0.66 1.66*
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b)
Flycatcher Crows Willows Blackcaps Greenish Stonechats Thrushes Blue/gold

Flycatcher 0.08* 0.15** 0.14* 0.2*** 0.16*** 0.18***
Crows 0.04 0.09*** 0.10** 0.06* 0.06* 0.08**
Willows 0.04 0.04 0.22*** 0.10*** 0.20* 0.20*
Blackcaps 0.04 0.06 0.07 0.14*** 0.22*** 0.32**
Greenish 0.09* 0.05 0.09 0.07
Stonechats 0.15*** 0.08 0.04 0.05 0.11** 0.10*** 0.12*
Thrushes 0.05 0.05 0.07 0.06 0.08 0.08 0.23***
Blue/gold 0.03 0.06 0.1 0.09 0.06 0.04 0.08*
p-values corrected for multiple testing (* 0.05, ** 0.01, *** 0.001)

Table S4. Variables used to estimate the speciation continuum, including genetic distance based on cytb 
and autosomal sequences, hybrid zone width and the proportion of hybrids in each zone (the latter 
variable is missing for European blackcaps).

Cytb Autosoma
l

Width (km) Proportion 
of hybrids

Flycatchers 0.036 0.0035 20 a 3a

Crows 0.029 0.00044 67b 12 a

Willows 0.003 0.0017 350 a 70g

Blackcaps 0.027 0.0021 340c

Greenish 0.051 0.0032 0d 0 d

Stonechats 0.035 0.0039 0e 0e

Thrushes 0.048 0.0044 50f 20.5 f

Blue/
golden-
winged

0.027 0.0029 600 a 0h

a Price 2008 b Haas And Brodin 2005 c Berthold et al. 1990 d Alcaide et al. 2014 e Helm 2009 f Ruegg 2009 g 
Lundberg et al. 2017 h Vallender et al. 2007
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Supplementary Methods – Additional details on how ds was estimated.

We performed gene prediction for each consensus genome with the MAKER pipeline which included four 
rounds of gene prediction as follows. The first round included gene prediction with EXONERATE using cDNA 
transcripts retrieved from Ensembl for zebra finch, chicken and flycatchers. This round also included repeat
masking using the library of “aves” included in REPEATMASKER. For the second round, an HMM model was 
obtained from all gene predictions to use as input for the gene predictor SNAP. An additional round of 
repeat masking was run as described before. Third and fourth rounds of MAKER included two gene 
predictors: SNAP using HMM models from the previous round and the “chicken” HMM model available in 
AUGUSTUS. In every iteration we accepted only models with start and finish codons and genes > 50 amino
acid (AA) length. Once we had annotated each consensus genome, we identified potential homologues for 
high quality transcripts (AED < 0.05) using a Blastn search against all transcripts from the flycatcher 
(flycatcher was searched against zebra finch). In this search we obtained the best hit of a transcript with at
least 60% of identity and coverage of at least 50% of the flycatcher transcript.  We then aligned codons 
from each pair of sequences using PRANK to calculate dN/ds with PAML v4.8 package. All dN/ds calculations 
were performed pairwise, comparing all the species with the flycatcher and this in turn, compared to zebra
finch. We extracted only ds values from this analysis and to avoid false positives and (potential mistakes in 
alignments) we filtered out results with ds values bigger than 2 SD.
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Table S5. Results from GLMs examining the relationship between repeatability and predictor variables related to genomic factors for 
each species pair. Repeatability is estimated as the number of pairs each window was considered an outlier in (outliers = windows in 
the top 5 percentile of each species pairs’ distribution for FST and bottom 5 percentile of dXY). dXY was not estimated for greenish 

warblers. Parameter estimates, standard errors, test statistic (z value) and significance (p value) are shown for each predictor along 
with correlation coefficients (and confidence intervals) for each model. The coefficients were obtained by regressing observed 
repeatability to repeatability predicted by each model. Information on centromeres is only known for six macrochromosomes. 
Accordingly, we reran models with centromere included and size excluded and show parameter estimates for centromeres from these 
models in the last row for each pair and measure of genomic differentiation. A positive association with position indicates increased 
repeatability at the center of chromosomes.
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Blackcap Crow Stonechat Willow
cor = 0.17 (0.14 - 0.21) cor = 0.17 (0.14 - 0.21) cor = 0.18 (0.15 - 0.21) cor = 0.18 (0.15 - 0.22)

estimate std error z value p value estimate std error z value p value estimate std error z value p value estimate std error z value p value
(Intercept) -0.85 0.04 -23.4 0.001 -0.89 0.04 -21.15 0.001 -0.86 0.04 -22.79 0.001 -0.96 0.04 -22.65 0.001

proportion of GC bases -0.2 0.04 -5.39 0.001 -0.14 0.05 -2.98 0.001 -0.18 0.04 -4.79 0.001 -0.29 0.04 -6.82 0.001
dS 0 0.02 0.1 0.92 -0.23 0.06 -3.66 0.001 0.01 0.02 0.23 0.82 -0.26 0.1 -2.53 0.01

position 0.19 0.03 6.89 0.001 0.14 0.03 4.63 0.001 0.14 0.03 5.02 0.001 0.1 0.03 3.5 0.001
chromosome size 0 0.07 -0.07 0.94 -0.02 0.07 -0.25 0.8 0.06 0.07 0.83 0.41 0.13 0.07 1.94 0.05

gene count 0.13 0.03 4.55 0.001 0.12 0.03 4.02 0.001 0.11 0.03 3.5 0.001 0.15 0.03 4.84 0.001
LD 0.15 0.02 7.02 0.001 0.09 0.02 5.4 0.001 0.11 0.03 4.44 0.001 0.22 0.02 10.02 0.001

proximity to centromeres 0.32471 0.08741 3.715 0.001 0.30279 0.08947 3.384 0.001 0.300976 0.089094 3.378 0.001 0.36529 0.09179 3.98 0.001

A) FST repeatability
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Swainsons Greenish Flycatcher Yellow
cor = 0.29 (0.26 - 0.32) cor = 0.22 (0.16 - 0.28) cor = 0.17 (0.14 - 0.20) cor = 0.17 (0.12 - 0.21)

estimate std error z value p value estimate std error z value p value estimate std error z value p value estimate std error z value p value
(Intercept) -1.04 0.04 -26.34 0.001 -1.06 0.09 -12.39 0.001 -0.86 0.03 -25.68 0.001 -0.9 0.05 -18.24 0.001

proportion of GC bases -0.09 0.04 -2.69 0.01 -0.17 0.08 -2.17 0.03 -0.19 0.04 -5.11 0.001 -0.11 0.06 -1.95 0.05
dS 0 0.03 0.13 0.89 -0.03 0.11 -0.24 0.81 -0.05 0.04 -1.29 0.2 0.01 0.04 0.34 0.73

position 0.16 0.03 5.92 0.001 0.23 0.06 3.84 0.001 0.16 0.03 6.21 0.001 0.21 0.04 5.72 0.001
chromosome size 0.24 0.07 3.46 0.001 -0.21 0.15 -1.45 0.15 0.05 0.06 0.78 0.44 0.01 0.09 0.12 0.9

gene count 0.15 0.03 5.68 0.001 0.15 0.05 2.76 0.01 0.1 0.03 3.63 0.001 0.14 0.04 3.36 0.001
LD 0.3 0.02 15.56 0.001 0.13 0.04 3.47 0.001 0.07 0.01 7.17 0.001 0.08 0.03 2.67 0.01

proximity to centromeres 0.232794 0.090644 2.568 0.001 0.30089 0.08552 3.518 0.001 0.29497 0.08143 3.622 0.001 0.20763 0.09321 2.228 0.026

Blackcap Crow Stonechat Willow
cor = 0.27 (0.23 - 0.30) cor = 0.29 (0.25 - 0.32) cor = 0.24 (0.20 - 0.28) cor = 0.27 (0.23 - 0.30)

estimate std error z value p value estimate std error z value p value estimate std error z value p value estimate std error z value p value
(Intercept) -1.24 0.05 -23.62 0.001 -1.34 0.05 -24.6 0.001 -1.26 0.05 -23.01 0.001 -1.32 0.06 -23.42 0.001
proportion of GC bases -0.09 0.04 -2.48 0.01 -0.01 0.04 -0.38 0.7 -0.16 0.04 -4.26 0.001 -0.22 0.04 -5.55 0.001
dS -0.04 0.04 -1.07 0.28 -0.29 0.05 -5.79 0.001 0 0.03 0.14 0.89 -0.28 0.09 -3.08 0.001
position -0.08 0.03 -2.82 0.001 -0.16 0.03 -5.4 0.001 -0.16 0.03 -5.05 0.001 -0.18 0.03 -6.02 0.001
chromosome size 0.62 0.08 7.84 0.001 0.67 0.08 8.76 0.001 0.77 0.08 9.81 0.001 0.77 0.08 9.9 0.001
gene count 0.11 0.03 3.37 0.001 0.11 0.03 3.56 0.001 0.11 0.03 3.52 0.001 0.1 0.03 3.36 0.001
LD 0.24 0.02 12.87 0.001 0.13 0.01 9.54 0.001 0.08 0.03 3.06 0.001 0.2 0.02 9.91 0.001

proximity to centromeres 0.63 0.11 5.66 0.001 0.78 0.1 7.54 0.001 0.95 0.11 8.9 0.001 0.63 0.12 5.36 0.001

B) dXY repeatability



Chapter 7

DISCUSSION AND PERSPECTIVES

Seasonal adaptations such as animal migration are part of the life cycle of many

animals. It is expected that there are some mechanisms behind the prevalence

of  this  behaviour.  With  different  sources  of  evidence it  is  now accepted that

migration  has  a  genetic  component.  Such  components  must  have  been

optimised through the scope of selection and can be sources of adaptation. In

this thesis, I have presented studies that evaluate the potential mechanisms of

genomic  elements  involved  in  migration,  and  how  evolution  has  potentially

shaped the variability of this behaviour.

Migratory tracks of blackcaps in the wild confirm old experimental findings, but

challenge their interpretation.

A  precise  description  and  characterisation  of  the  migratory  phenotype  is  an

essential   prerequisite  to  istudy  the  genetic  basis  of  migratory  behaviour.

Different techniques -all of which are indirect measures- were used in the past to

infer the migratory routes of small songbirds: ringing recoveries, isotopes, and

funnel  experiments aided to assess the distance of  migration and orientation

patterns.  Relevant  findings  from  these  approaches  provided  evidence  for  a

genetic basis of some migratory traits  [1], [2]. Crossbreeding experiments and

phenotypic  evaluation  using  funnel  experiments  showed  that  individuals

crossbred from opposite orientation patterns have an intermediate orientation

pattern. However, nothing was known about wether this phenomenon could be

happening the wild or what are the fitness consequences for putative hybrids .

In a collaborative effort  I  was part  durying my PhD research (Chapter 2),  we

demonstrated for the first time that birds from the area of the migratory divide

do take intermediate routes, and most importantly, successfully return to their

natal  breeding  grounds. Eurasian  blackcaps  have  a  migratory  divide,  a

geographical region where two breeding populations with opposing orientations

meet and potentialy mate and hybridise. Using light-level geolocators allowed us

to  reconstruct  the  migratory  journeys  of  individuals  withing  the  hybrid  zone

across  the  migratory  divide.  Our  results  confirm the  previous  findings  of  an

intermediate  phenotype  that  has  been shown in  experimental  cross-breeding
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settings. In essence, individuals breeding nearer to the edges of the divide, follow

Southeast(SW) or Southwest(SE) orientation patterns while the individuals in the

middle,  i.e.  those potentially  hybridizing,  follow an intermediate  route.  These

results challenge the previous assumption about selection against hybrids. It was

previously thought that  individuals  with  an intermediate  orientation would be

selected against because the route make them go through difficult geographical

barriers like the alps, the Mediterranean Sea and possibly wide stretches of the

Sahara desert  [1]. However, the recovery tracks we were able to retieve from

individuals in the middle of the migratory divide suggest that these birds can

overcome such barriers and return to their breeding grounds. We acknowledge

that this could be a product of a biased sampling. As  geolocators are archival

tags, and thus we rely on birds to return to their natal breeding grounds in order

to recapture them to allow for downloading the data. From the total of individuals

that were tagged, we are recovering only those that came back to roughly the

same areas. This could mean that we are obtaining only those that survived the

journey and possibly some of those birds do not survive the journey followed the

intermediate  orientation  pattern.  Consequently,  those  individuals  are  not

included in any analysis. However, it is importatn to note that the return rates of

individuals is similar (20-25%) in populations inside and outside the migratory

divide.

Another novelty in this chapter is the revealed origin of wintering blackcaps in

the UK. Since the 1960s, observations of blackcaps overwintering across the UK

has been documented[3], [4]. However, the origins of the wintering blackcaps

remained a mistery until now. In this chapter, we tracked individuals from the UK

from their wintering grounds in the UK to reveal their breeding destinations. We

found that the breeding areas of the birds do not belong to a single population

but  instead,  they  come from all  over  central  Europe  suggesting  that  the  UK

wintering adaptation is in low frequency across most European populations.

With this study, we also found an essential element for the genetics of migration.

High repeatability of the travelling routes of individuals tracked in consecutive

years indicates the innate nature of the behaviour. The degree of repeatability in

individuals  of  a  species  with  a  wide  range  of  migratory  phenotypes  like  the

blackcaps,  shows  that  the  variability  of  routes  taken  by  each  individual  are

repeatable, but in a population-wide view, the species still has high variability.
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Limitations of the candidate gene approach.

Candidate gene approaches rely on the known function of certin genes in model

species to probe the feasibility of an effect in the non-model focal species. Some

of the early genes suggested to be associated with migration are ADCYAP1 and

CLOCK. Variability in these genes correlates with migratory distance [5], [6] and

breeding latitude  [7]. Other candidates are genes associated with phenotypes

like morning - evenings and sleep patterns like Period (PER1, PER2, and PER3)[8].

A complex behaviour like migration does not likely involve just a few elements.

Instead, it probably include hundreds of genes acting in concert to execute the

final behaviour. In chapter 3, we analyse the molecular evolution of 25 candidate

genes  of  migration.  We  found  that  the  associations  of  migratory  traits  with

structural  variation  are  not  significant  in  a  macroevolutionary  scale.  Lenght

polymorphisms do not correlate with variability of migratory behaviour between

and within  species.  Overall,  the  gene candidate  approach gives  unconclusive

results  for  a  single  gene  associated  with  migration.  Because  the  genetic

associations of candidate genes are analysed individually, their effect sizes are

usually  not  estimated.  This  is  important  because  it  might  mean ignoring the

contribution  of  other  genes  or  epistatic  effects  on  the  candidate  gene.  This

disregard of effect sizes might be the reason why many genome-wide studies of

migration, whether genomic or gene expression-based, do not find associations

between migration and the candidate genes. 

We  argue  for  a  broad  investigation  of  the  genetic  elements  of  migration.

Currently, there are several datasets of whole-genome resequencing of migratory

species [9]–[13]. Additionally, more and more studies like the ones presented in

this thesis, are proposing new candidates that can be analysed on the available

genomic  datasets  as  a  first  approximation.  Moreover,  some candidates  have

been  around  for  some  time,  like  Cryptochrome-4  [14],  [15] might  influence

sensorial adaptations relevant for migration (i.e. magnetoreception) and deserve

more attention.  

Blackcap genomics reveal variability in migratory genotype with low population 

structure. 

Due to the extensive variability on migratory traits in a single species, blackcaps

are the ideal system to study the genetics of migration. It includes the complete
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range  of  variation  from  long-distance  migratory  animals  to  entirely  resident

populations. It is also ideal for studying the patterns of evolution of migration in

order  to  know  what  evolutionary  events  can  lead  to  the  variability  of  the

phenotype.  Inthis  way,  we  might  be  able  to  explain  the  appearance  and

disappearance of this behaviour. 

Previous  studies  on  the  evolution  of  this  species  have  shown that  migration

variability  started  very  recently,  from 4  000  to  13000  years  ago  [16].  More

importantly, no traces of genomic differentiation between the populations have

been found. Only the comparison between migrants and residents seems to show

a consistent, albeit low, genetic difference. The search for genetic difference in

the migratory divide has been inconclusive. While Perez-Tris et. al [16] argue for a

genetic  differentiation  inside  the  migratory  divide,  Mettler  et.al  [17] finds  no

genetic differences between individuals with different patterns of orientation.

In the collaboration I did in Chapter 4, we used whole-genome resequencing data

of individuals ranging all the phenotypes to describe the patterns of evolution

and potential population structure. Our results confirm that there is low genetic

differentiation within migratory populations, supporting Mettler et al [17] result of

low genetic difference between individuals with migratory orientations. The gene

flow among migratory populations supports the idea of potential interbreeding

between populations of opposite orientations, inside the migratory divide. This

result  could  support  that  the  intermediate  phenotypic  orientation  found  in

Chapter  2  comes  from the  interbreeding  of  opposite  orientations,  but  to  get

conclusive results in this regard more analysis need to be conducted.

The patterns of population structure found in our study show that the highest

genomic differentiation is present between individuals of migratory and resident

populations. This difference allows us to look for a genetic basis of migration. We

observed that  there are  a  few,  small  genomic  regions  going under  selection.

Most  of  them selected  in  resident  populations.  The  SNPs  with  the  strongest

assotiation to the changes in phenotype are close to genes encoding a G protein-

coupled receptor regulating Neuropeptide Y (NPY) and a  glycosylation enzyme. A

similar analysis with the phenotype of orientation in focus, find some regions

selected in the population of North West orientation (i.e. UK wintering blackcaps).

Importantly,  those  genomic  regions  suggest  that  this  recently  adapted

orientation  phenotype,  derives  from  standing  variation.  It  is  accepted  that
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standing variation has potential for rapid adaptation, which would support the

very recent expansion of the UK overwintering phenotype. 

A gene regulatory characterisation of migratory behaviour, suggests a general

shut down and tight control for energy expenditure during migration. 

Most of the SNPs with the highest differentiation in the genome-wide study of

blackcaps are located in non-coding regions of the genome. This suggests that

certain cis-regulatory regions are essential for the regulation of gene expression

of migration. Previous studies had analysed gene expression changes in the brain

of migrant animals, but my core PhD research chapter (chapter five), is the first

addressing the characterisation of the cis-regulation role in bird migration. Here,

we document for  the first  time how chromatin  accessibility  changes  in  three

brain regions are relevant for migration. One of the most surprising results is that

our data show that the expression of migratory behaviour seems to impose a

general chromatin repression in the cells of the focal brain regions. Notably, in

Cluster N, a region involved in magnetic sensing, the repression of chromatin is

stronger compared to birds tested outside the migratory season. Such repression

suggests that the bird on migration reduces and tightly controls all  metabolic

processes that involve unnecessary energy expenditure. 

Supporting the difference in chromatin accessibility, the potential Transcription

Factors (TF) binding to the open chromatin regions (OCRs) in migrating birds are

enriched for repressors like ZEB1 and ZEB2[18] and TF like RAR:RXR that can act

as repressors depending on the availability of their ligand (retinoic acid)[19].

One of  the most  significantly  accessible  regions in  migratory  birds  is  a  large

region of approximately 8kb in an intron of the gene VAT1L. This region contains

potential TF binding sites with SNPs that could disrupt the DNA-TF interaction.

Furthermore, the SNPs overlapping with TF binding sites have characteristics of

underdominance or heterozygotic disadvantage. 

Is speciation following the same patterns in songbird species?

In previous chapters, we suggest that migratory divides could play a role in the

genetic  differentiation  of  phenotypes  in  nearby  populations.  These  migratory

divides are a form of hybrid zones, a natural experiment to study the process of

speciation.  Several  studies  have  shown  that  populations  of  hybrid  zones

differentiate at the genomic level [20], [21]. 
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Nevertheless, until our large scale cross-species comparative approach in hybrid

zones  (Chapter  6),  we  did  not  know  how  this  process  is  happening  at  the

macroevolutionary scale. In the study we analyse the degree of repeatability in

genomic  differentiation.  Our  results  suggest  that  the  degree  of  repeatability

depends on the measure of genomic differentiation (namely, FST or dxy) and the

location of the population pair in the continuum of speciation. The measures of

FsT and dxy are interpreted differently in the extent that FST reflects patterns of

undergoing  processes,  while  dxy shows  patterns  of  sequence  divergence

reflecting several  past processes of speciation.  Repeatability since divergence

(dxy)  might  be  small  because  each  population  goes  under  specific  selective

pressures after a split. Similarly, the relative differentiation (FsT) might have small

repeatability  if  the extant  populations  have  not  been under  enough time for

differentiation.  In  both  cases,  more  time  since  differentiation  will  make  the

differentiation  landscape  clearer.  The  consequences  of  a  more  apparent

differentiation could mean that populations under recent divergence might not

have  accumulated  enough  differences  while  populations  with  long  times  of

differentiation have more significant differences and therefore influences more

correlated differentiation between species. The origin of high repeatability comes

presumably from linked selection, selecting indirectly, regions across the genome

creating correlations in differentiation landscapes. 

 

Concluding and looking forward

Overall, three elements are relevant to emphasise from this thesis:

1) In a world going under climate change, there might be a constant pressure for

rapid  adaptation  threatening  migratory  bird  species.  The recent  expansion  of

individuals in the UK is an example of rapid adaptation where standing variation

might  be  playing  an  important  role.  Two  findings  support  the  influence  of

standing variation: individuals wintering in the UK, come from breeding areas all

over Europe (Chapter 2), and standing variation of genomic regions is positively

selective  in  birds  that  migrate  Northwest  orientation  (Chapter  4).  Evidence

suggests that high frequency of determinate haplotypes can give advantage to

some individuals to adapt in different environments. Individuals wintering in the

UK might be using this as a source of flexibility in orientation while maintaining
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all  the necessary  elements  for  migration.  An experimental  setup designed to

analysise allele-specific gene expression or chromatin accessibility would be one

way to  confirm the functional  input  of  each  allele  and each  haplotype.  Such

experimental setting could be an exciting roadmap for the general understanding

of ecological and behavioural adaptation. 

2) Tracking birds and associating genomic variants to migratory behaviour is one

of the best ways to identify molecular elements for migration. Recently,  [10],

[11] has identified genetic associations to the migratory behaviour of  Golden

warblers  and  Swainson’s  thrush,  respectively.  However,  these  species  have

morphotypes that suggest and undergoing the process of speciation. Because

migratory populations of blackcaps have overall low genomic differentiationwhile

diverging in migratory traits like timing, distance, and orientation, the genotype

associations with those migratory traits will have a high degree of confidence.

3)  Nowadays  there  are  increasing  genomic  sequencing  and  functional

approaches to study migratory behaviours. Comparative approaches to identify

potential  new  candidate  genes  (see  Chapter  3)  or  genome-wide  patterns  of

differentiation  (Chapter  4),  will  generate  and  support  hypotheses  about  how

migration appears and disappears through the avian clade. 

Finally, the integration of several sources of evidence will be a key to understand

complex  traits  like  migration.  In  recent  years,  plenty  of  studies  have  been

published  that  integrate  several  data  sources  to  improve  our  understanding

about  the  mechanisms  of  autoimmune  diseases,  height,  cancer  and  other

complex  phenotypes.  We  now  have  the  opportunity  to  implement  such

approaches  in  the  study  of  migration.  I  would  argue  to  whenever  possible,

performing "common garden" experiments or using highly controlled setups to

measure  genetic  (whole  genome  sequencing)  and  phenotypic  features  (gene

expression, chromatin accessibility) in the same individuals. The integration of all

information  controlling  for  behavioural  variability  will  accelerate  the  findings

towards an understanding of bird migration. The studies presented in this thesis

would be greatly  complemented by such experiments,   leading us to  abetter

understanding of this complex and interesting behaviour.
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