21 research outputs found

    Lessons from miniature brains: Cognition cheap, memory expensive (sentience linked to active movement?)

    Get PDF
    Studies on invertebrate minds suggest that the neural machinery for basic cognition is cheap, and that bigger brains are probably associated with greater memory storage rather than more advanced cognition. Sentience may be linked to feedforward mechanisms (Reafferenzprinzip) that allow organisms with active movement to distinguish active and passive sensing. Invertebrates may offer special opportunities for testing these hypotheses

    Sentience does not require “higher” cognition

    Get PDF
    I agree with Marino (2017a,b) that the cognitive capacities of chickens are likely to be the same as those of many others vertebrates. Also, data collected in the young of this precocial species provide rich information about how much cognition can be pre-wired and predisposed in the brain. However, evidence of advanced cognition — in chickens or any other organism — says little about sentience (i.e., feeling). We do not deny sentience in human beings who, because of cognitive deficits, would be incapable of exhibiting some of the cognitive feats of chickens. Moreover, complex problem solving, such as transitive inference, which has been reported in chickens, can be observed even in the absence of any accompanying conscious experience in humans

    Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin

    Get PDF
    Lateralization, i.e., the different functional roles played by the left and right sides of the brain, is expressed in two main ways: (1) in single individuals, regardless of a common direction (bias) in the population (aka individual-level lateralization); or (2) in single individuals and in the same direction in most of them, so that the population is biased (aka population-level lateralization). Indeed, lateralization often occurs at the population-level, with 60–90% of individuals showing the same direction (right or left) of bias, depending on species and tasks. It is usually maintained that lateralization can increase the brain’s efficiency. However, this may explain individual-level lateralization, but not population-level lateralization, for individual brain efficiency is unrelated to the direction of the asymmetry in other individuals. From a theoretical point of view, a possible explanation for population-level lateralization is that it may reflect an evolutionarily stable strategy (ESS) that can develop when individually asymmetrical organisms are under specific selective pressures to coordinate their behavior with that of other asymmetrical organisms. This prediction has been sometimes misunderstood as it is equated with the idea that population-level lateralization should only be present in social species. However, population-level asymmetries have been observed in aggressive and mating displays in so-called “solitary” insects, suggesting that engagement in specific inter-individual interactions rather than “sociality” per se may promote population-level lateralization. Here, we clarify that the nature of inter-individuals interaction can generate evolutionarily stable strategies of lateralization at the individual- or population-level, depending on ecological contexts, showing that individual-level and population-level lateralization should be considered as two aspects of the same continuum

    Asymmetric ommatidia count and behavioural lateralization in the ant Temnothorax albipennis

    Get PDF
    © 2018 The Author(s). Workers of the house-hunting ant Temnothorax albipennis rely on visual edge following and landmark recognition to navigate their rocky environment, and they also exhibit a leftward turning bias when exploring unknown nest sites. We used electron microscopy to count the number of ommatidia composing the compound eyes of workers, males and queens, to make an approximate assessment of their relative sampling resolution; and to establish whether there is an asymmetry in the number of ommatidia composing the workers' eyes, which might provide an observable, mechanistic explanation for the turning bias. We hypothesise that even small asymmetries in relative visual acuity between left and right eyes could be magnified by developmental experience into a symmetry-breaking turning preference that results in the inferior eye pointing toward the wall. Fifty-six workers were examined: 45% had more ommatidia in the right eye, 36% more in the left, and 20% an equal number. A tentative connection between relative ommatidia count for each eye and turning behaviour was identified, with a stronger assessment of behavioural lateralization before imaging and a larger sample suggested for further work. There was a clear sexual dimorphism in ommatidia counts between queens and males

    Toddler hand preference trajectories predict 3-year language outcome

    Get PDF
    A growing body of work suggests that early motor experience affects development in unexpected domains. In the current study, children's hand preference for role-differentiated bimanual manipulation (RDBM) was measured at monthly intervals from 18 to 24 months of age (N?=?90). At 3 years of age, children's language ability was assessed using the Preschool Language Scales 5th edition (PLS™-5). Three distinct RDBM hand preference trajectories were identified using latent class growth analysis: (1) children with a left hand preference but a moderate amount of right hand use; (2) children with a right hand preference but a moderate amount of left hand use; and (3) children with a right hand preference and only a mild amount of left hand use. Stability over time within all three trajectories indicated that children did not change hand use patterns from 18 to 24 months. Children with the greatest amount of preferred (i.e., right) hand use demonstrated higher expressive language scores compared to children in both trajectories with moderate levels of non-preferred hand use. Children with the greatest amount of right hand use also had higher scores for receptive language compared to children with a right hand preference but moderate left hand use. Results support that consistency in handedness as measured by the amount of preferred hand use is related to distal language outcomes in development

    Complementary Specializations of the Left and Right Sides of the Honeybee Brain

    Get PDF
    Honeybees show lateral asymmetry in both learning about odors associated with reward and recalling memory of these associations. We have extended this research to show that bees exhibit lateral biases in their initial response to odors: viz., turning toward the source of an odor presented on their right side and turning away from it when presented on their left side. The odors we presented were the main component of the alarm pheromone, isoamyl acetate (IAA), and four floral scents. The significant bias to turn toward IAA odor on the right and away from it on the left is, we argue, a lateralization of the fight-flight response elicited by this pheromone. It contrasts to an absence of any asymmetry in the turning response to an odor of the flowers on which the bees had been feeding prior to testing: to this odor they turned toward when it was presented on either the left or right side. Lemon and orange odors were responded to differently on the left and right sides (toward on the right, away on the left), but no asymmetry was found in responses to rose odor. Our results show that side biases are present even in the initial, orienting response of bees to certain odors
    corecore