2,051 research outputs found

    What makes a phase transition? Analysis of the random satisfiability problem

    Full text link
    In the last 30 years it was found that many combinatorial systems undergo phase transitions. One of the most important examples of these can be found among the random k-satisfiability problems (often referred to as k-SAT), asking whether there exists an assignment of Boolean values satisfying a Boolean formula composed of clauses with k random variables each. The random 3-SAT problem is reported to show various phase transitions at different critical values of the ratio of the number of clauses to the number of variables. The most famous of these occurs when the probability of finding a satisfiable instance suddenly drops from 1 to 0. This transition is associated with a rise in the hardness of the problem, but until now the correlation between any of the proposed phase transitions and the hardness is not totally clear. In this paper we will first show numerically that the number of solutions universally follows a lognormal distribution, thereby explaining the puzzling question of why the number of solutions is still exponential at the critical point. Moreover we provide evidence that the hardness of the closely related problem of counting the total number of solutions does not show any phase transition-like behavior. This raises the question of whether the probability of finding a satisfiable instance is really an order parameter of a phase transition or whether it is more likely to just show a simple sharp threshold phenomenon. More generally, this paper aims at starting a discussion where a simple sharp threshold phenomenon turns into a genuine phase transition

    The Phase Diagram of 1-in-3 Satisfiability Problem

    Get PDF
    We study the typical case properties of the 1-in-3 satisfiability problem, the boolean satisfaction problem where a clause is satisfied by exactly one literal, in an enlarged random ensemble parametrized by average connectivity and probability of negation of a variable in a clause. Random 1-in-3 Satisfiability and Exact 3-Cover are special cases of this ensemble. We interpolate between these cases from a region where satisfiability can be typically decided for all connectivities in polynomial time to a region where deciding satisfiability is hard, in some interval of connectivities. We derive several rigorous results in the first region, and develop the one-step--replica-symmetry-breaking cavity analysis in the second one. We discuss the prediction for the transition between the almost surely satisfiable and the almost surely unsatisfiable phase, and other structural properties of the phase diagram, in light of cavity method results.Comment: 30 pages, 12 figure

    Pairs of SAT Assignment in Random Boolean Formulae

    Get PDF
    We investigate geometrical properties of the random K-satisfiability problem using the notion of x-satisfiability: a formula is x-satisfiable if there exist two SAT assignments differing in Nx variables. We show the existence of a sharp threshold for this property as a function of the clause density. For large enough K, we prove that there exists a region of clause density, below the satisfiability threshold, where the landscape of Hamming distances between SAT assignments experiences a gap: pairs of SAT-assignments exist at small x, and around x=1/2, but they donot exist at intermediate values of x. This result is consistent with the clustering scenario which is at the heart of the recent heuristic analysis of satisfiability using statistical physics analysis (the cavity method), and its algorithmic counterpart (the survey propagation algorithm). The method uses elementary probabilistic arguments (first and second moment methods), and might be useful in other problems of computational and physical interest where similar phenomena appear

    The backtracking survey propagation algorithm for solving random K-SAT problems

    Get PDF
    Discrete combinatorial optimization has a central role in many scientific disciplines, however, for hard problems we lack linear time algorithms that would allow us to solve very large instances. Moreover, it is still unclear what are the key features that make a discrete combinatorial optimization problem hard to solve. Here we study random K-satisfiability problems with K=3,4K=3,4, which are known to be very hard close to the SAT-UNSAT threshold, where problems stop having solutions. We show that the backtracking survey propagation algorithm, in a time practically linear in the problem size, is able to find solutions very close to the threshold, in a region unreachable by any other algorithm. All solutions found have no frozen variables, thus supporting the conjecture that only unfrozen solutions can be found in linear time, and that a problem becomes impossible to solve in linear time when all solutions contain frozen variables.Comment: 11 pages, 10 figures. v2: data largely improved and manuscript rewritte

    Reweighted belief propagation and quiet planting for random K-SAT

    Full text link
    We study the random K-satisfiability problem using a partition function where each solution is reweighted according to the number of variables that satisfy every clause. We apply belief propagation and the related cavity method to the reweighted partition function. This allows us to obtain several new results on the properties of random K-satisfiability problem. In particular the reweighting allows to introduce a planted ensemble that generates instances that are, in some region of parameters, equivalent to random instances. We are hence able to generate at the same time a typical random SAT instance and one of its solutions. We study the relation between clustering and belief propagation fixed points and we give a direct evidence for the existence of purely entropic (rather than energetic) barriers between clusters in some region of parameters in the random K-satisfiability problem. We exhibit, in some large planted instances, solutions with a non-trivial whitening core; such solutions were known to exist but were so far never found on very large instances. Finally, we discuss algorithmic hardness of such planted instances and we determine a region of parameters in which planting leads to satisfiable benchmarks that, up to our knowledge, are the hardest known.Comment: 23 pages, 4 figures, revised for readability, stability expression correcte

    Solution space structure of random constraint satisfaction problems with growing domains

    Full text link
    In this paper we study the solution space structure of model RB, a standard prototype of Constraint Satisfaction Problem (CSPs) with growing domains. Using rigorous the first and the second moment method, we show that in the solvable phase close to the satisfiability transition, solutions are clustered into exponential number of well-separated clusters, with each cluster contains sub-exponential number of solutions. As a consequence, the system has a clustering (dynamical) transition but no condensation transition. This picture of phase diagram is different from other classic random CSPs with fixed domain size, such as random K-Satisfiability (K-SAT) and graph coloring problems, where condensation transition exists and is distinct from satisfiability transition. Our result verifies the non-rigorous results obtained using cavity method from spin glass theory, and sheds light on the structures of solution spaces of problems with a large number of states.Comment: 8 pages, 1 figure

    Random k-SAT and the Power of Two Choices

    Full text link
    We study an Achlioptas-process version of the random k-SAT process: a bounded number of k-clauses are drawn uniformly at random at each step, and exactly one added to the growing formula according to a particular rule. We prove the existence of a rule that shifts the satisfiability threshold. This extends a well-studied area of probabilistic combinatorics (Achlioptas processes) to random CSP's. In particular, while a rule to delay the 2-SAT threshold was known previously, this is the first proof of a rule to shift the threshold of k-SAT for k >= 3. We then propose a gap decision problem based upon this semi-random model. The aim of the problem is to investigate the hardness of the random k-SAT decision problem, as opposed to the problem of finding an assignment or certificate of unsatisfiability. Finally, we discuss connections to the study of Achlioptas random graph processes.Comment: 13 page
    • …
    corecore