We study the random K-satisfiability problem using a partition function where
each solution is reweighted according to the number of variables that satisfy
every clause. We apply belief propagation and the related cavity method to the
reweighted partition function. This allows us to obtain several new results on
the properties of random K-satisfiability problem. In particular the
reweighting allows to introduce a planted ensemble that generates instances
that are, in some region of parameters, equivalent to random instances. We are
hence able to generate at the same time a typical random SAT instance and one
of its solutions. We study the relation between clustering and belief
propagation fixed points and we give a direct evidence for the existence of
purely entropic (rather than energetic) barriers between clusters in some
region of parameters in the random K-satisfiability problem. We exhibit, in
some large planted instances, solutions with a non-trivial whitening core; such
solutions were known to exist but were so far never found on very large
instances. Finally, we discuss algorithmic hardness of such planted instances
and we determine a region of parameters in which planting leads to satisfiable
benchmarks that, up to our knowledge, are the hardest known.Comment: 23 pages, 4 figures, revised for readability, stability expression
correcte