303 research outputs found

    Spectrum sharing and cognitive radio

    Get PDF

    Distributed spectrum leasing via cooperation

    Get PDF
    “Cognitive radio” networks enable the coexistence of primary (licensed) and secondary (unlicensed) terminals. Conventional frameworks, namely commons and property-rights models, while being promising in certain aspects, appear to have significant drawbacks for implementation of large-scale distributed cognitive radio networks, due to the technological and theoretical limits on the ability of secondary activity to perform effective spectrum sensing and on the stringent constraints on protocols and architectures. To address the problems highlighted above, the framework of distributed spectrum leasing via cross-layer cooperation (DiSC) has been recently proposed as a basic mechanism to guide the design of decentralized cognitive radio networks. According to this framework, each primary terminal can ”lease” a transmission opportunity to a local secondary terminal in exchange for cooperation (relaying) as long as secondary quality-of-service (QoS) requirements are satisfied. The dissertation starts by investigating the performance bounds from an information-theoretical standpoint by focusing on the scenario of a single primary user and multiple secondary users with private messages. Achievable rate regions are derived for discrete memoryless and Gaussian models by considering Decode-and-Forward (DF), with both standard and parity-forwarding techniques, and Compress-and-Forward (CF), along with superposition coding at the secondary nodes. Then a framework is proposed that extends the analysis to multiple primary users and multiple secondary users by leveraging the concept of Generalized Nash Equilibrium. Accordingly, multiple primary users, each owning its own spectral resource, compete for the cooperation of the available secondary users under a shared constraint on all spectrum leasing decisions set by the secondary QoS requirements. A general formulation of the problem is given and solutions are proposed with different signaling requirements among the primary users. The novel idea of interference forwarding as a mechanism to enable DiSC is proposed, whereby primary users lease part of their spectrum to the secondary users if the latter assist by forwarding information about the interference to enable interference mitigation at the primary receivers. Finally, an application of DiSC in multi-tier wireless networks such as femtocells overlaid by macrocells whereby the femtocell base station acts as a relay for the macrocell users is presented. The performance advantages of the proposed application are evaluated by studying the transmission reliability of macro and femto users for a quasi-static fading channel in terms of outage probability and diversity-multiplexing trade-off for uplink and, more briefly, for downlink

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF

    Convolutive superposition for multicarrier cognitive radio systems

    Full text link
    Recently, we proposed a spectrum-sharing paradigm for single-carrier cognitive radio (CR) networks, where a secondary user (SU) is able to maintain or even improve the performance of a primary user (PU) transmission, while also obtaining a low-data rate channel for its own communication. According to such a scheme, a simple multiplication is used to superimpose one SU symbol on a block of multiple PU symbols.The scope of this paper is to extend such a paradigm to a multicarrier CR network, where the PU employs an orthogonal frequency-division multiplexing (OFDM) modulation scheme. To improve its achievable data rate, besides transmitting over the subcarriers unused by the PU, the SU is also allowed to transmit multiple block-precoded symbols in parallel over the OFDM subcarriers used by the primary system. Specifically, the SU convolves its block-precoded symbols with the received PU data in the time-domain, which gives rise to the term convolutive superposition. An information-theoretic analysis of the proposed scheme is developed, which considers different amounts of network state information at the secondary transmitter, as well as different precoding strategies for the SU. Extensive simulations illustrate the merits of our analysis and designs, in comparison with conventional CR schemes, by considering as performance indicators the ergodic capacity of the considered systems.Comment: 29 pages, 8 figure

    Capacity Bounds for a Class of Interference Relay Channels

    Full text link
    The capacity of a class of Interference Relay Channels (IRC) -the Injective Semideterministic IRC where the relay can only observe one of the sources- is investigated. We first derive a novel outer bound and two inner bounds which are based on a careful use of each of the available cooperative strategies together with the adequate interference decoding technique. The outer bound extends Telatar and Tse's work while the inner bounds contain several known results in the literature as special cases. Our main result is the characterization of the capacity region of the Gaussian class of IRCs studied within a fixed number of bits per dimension -constant gap. The proof relies on the use of the different cooperative strategies in specific SNR regimes due to the complexity of the schemes. As a matter of fact, this issue reveals the complex nature of the Gaussian IRC where the combination of a single coding scheme for the Gaussian relay and interference channel may not lead to a good coding scheme for this problem, even when the focus is only on capacity to within a constant gap over all possible fading statistics.Comment: 23 pages, 6 figures. Submitted to IEEE Transactions on Information Theory (revised version
    • …
    corecore