49 research outputs found

    Human midcingulate cortex encodes distributed representations of task progress

    Get PDF
    The function of midcingulate cortex (MCC) remains elusive despite decades of investigation and debate. Complicating matters, individual MCC neurons respond to highly diverse task-related events, and MCC activation is reported in most human neuroimaging studies employing a wide variety of task manipulations. Here we investigate this issue by applying a model-based cognitive neuroscience approach involving neural network simulations, functional magnetic resonance imaging, and representational similarity analysis. We demonstrate that human MCC encodes distributed, dynamically evolving representations of extended, goal-directed action sequences. These representations are uniquely sensitive to the stage and identity of each sequence, indicating that MCC sustains contextual information necessary for discriminating between task states. These results suggest that standard univariate approaches for analyzing MCC function overlook the major portion of task-related information encoded by this brain area and point to promising new avenues for investigation

    Strength of family bond predicts disrupted neural habituation to visual familial threat in adolescence

    Get PDF
    BACKGROUND: Familial stressors, such as low family connectedness, confer risk for affective pathologies, yet little is known regarding how they uniquely impinge on neural systems involved in adaptive threat processing. METHODS: MVPA analysis of fMRI data was used in a novel way to measure disrupted neural habituation in a threat network comprising nodes of the limbic system across several classes of stimuli including unpredictable familial and nonfamilial threat and joy. In the present longitudinal design, measures of family connectedness were collected for adolescents (n=22, age=14.38) at the study's outset, and a year later, a neuroimaging protocol was carried out. RESULTS: For those low in family connectedness, elevated sensitivity scores derived from MVPA reflected that the encoding of unpredictable familial threat was more stable across time, indicating reduced habituation to familial threat. Reduced habituation was specific to familial threat, as null relationships were found between family connectedness and MVPA sensitivity to familial joy, nonfamilial threat, and nonfamilial joy. CONCLUSIONS: Results suggest that familial stressors may confer specific biological disruptions to risk-related stimuli, in this case, threatening maternal images. The present novel experimental paradigm and use of MVPA provide the foundation for further exploring how MVPA can be used to test for selective habituation to specific stimuli germane to other environmental risk factors for internalizing pathologies

    Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.

    Get PDF
    The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories

    Regulating craving by anticipating positive and negative outcomes : a multivariate pattern analysis and network connectivity approach

    Get PDF
    During self-control, we may resist short-term temptations in order to reach a favorable future (e.g., resisting cake to stay healthy). The neural basis of self-control is typically attributed to “cold,” unemotional cognitive control mechanisms which inhibit affect-related regions via the prefrontal cortex (PFC). Here, we investigate the neural underpinnings of regulating cravings by mentally evoking the positive consequences of resisting a temptation (e.g., being healthy) as opposed to evoking the negative consequences of giving in to a temptation (e.g., becoming overweight). It is conceivable that when using these types of strategies, regions associated with emotional processing [e.g., striatum, ventromedial prefrontal cortex (vmPFC)] are involved in addition to control-related prefrontal and parietal regions. Thirty-one participants saw pictures of unhealthy snacks in the fMRI scanner and, depending on the trial, regulated their craving by thinking of the positive consequences of resisting, or the negative consequences of not resisting. In a control condition, they anticipated the pleasure of eating and thus, allowed the craving to occur (now-condition). In line with previous studies, we found activation of a cognitive control network during self-regulation. In the negative future thinking condition, the insula was more active than in the positive condition, while there were no activations that were stronger in the positive (> negative) future thinking condition. However, additionally, multivariate pattern analysis showed that during craving regulation, information about the valence of anticipated emotions was present in the vmPFC, the posterior cingulate cortex (PCC) and the insula. Moreover, a network including vmPFC and PCC showed higher connectivity during the positive (> negative) future thinking condition. Since these regions are often associated with affective processing, these findings suggest that “hot,” affective processes may, at least in certain circumstances, play a role in self-control

    A note on decoding elicited and self-generated inner speech

    Get PDF
    A recent result shows that inner speech can, with proper care, be decoded to the same high-level of accuracy as articulated speech. This relies, however, on neural data obtained while subjects perform elicited tasks, such as covert reading and repeating, whereas a neural speech prosthetic will require the decoding of inner speech that is self-generated. Prior work has, moreover, emphasised differences between these two kinds of inner speech, raising the question of how well a decoder optimised for one will generalise to the other. In this study, we trained phoneme-level decoders on an atypically large, elicited inner speech dataset, previously acquired using 7T fMRI in a single subject. We then acquired a second self-generated inner speech dataset in the same subject. Although the decoders were trained exclusively on neural recordings obtained during elicited inner speech, they predicted unseen phonemes accurately in both elicited and selfgenerated test conditions, illustrating the viability of zero-shot task transfer. This has significant practical importance for the development of a neural speech prosthetic, as labelled data is far easier to acquire at scale for elicited than for self-generated inner speech. Indeed, elicited tasks may be the only option for acquiring labelled data in critical patient populations who cannot control their vocal articulators
    corecore